Recognizing Unit Disk Graphs in Hyperbolic Geometry is $\exists \mathbb{R}$ -Complete

EuroCG 2023 · 29.3.2023

Nicholas Bieker, Thomas Bläsius, Emil Dohse, Paul Jungeblut

Unit Disk Graphs

Unit Disk Graphs

Definition:

G is a (Euclidean) unit disk graph if it is the intersection graph of unit disks in \mathbb{R}^2 .

UDG: Class of unit disk graphs.

Unit Disk Graphs

Definition:

G is a (Euclidean) unit disk graph if it is the intersection graph of unit disks in \mathbb{R}^2 .

UDG: Class of unit disk graphs.

Why unit disk?

- lacksquare scaling the plane \mathbb{R}^2 allows to assume r=1

Formalized by axiomatic systems: (Euclid, Hilbert, ...)

 $\begin{array}{c} \text{Euclidean} \\ \text{plane } \mathbb{R}^2 \\ \\ \text{Continuity} \\ \\ \text{Incidence} \\ \\ \text{Congruence} \end{array}$

Formalized by axiomatic systems: (Euclid, Hilbert, . . .)

Formalized by axiomatic systems: (Euclid, Hilbert, . . .)

² Recognizing Unit Disk Graphs in Hyperbolic Geometry is ∃ℝ-Complete Nicholas Bieker, Thomas Bläsius, Emil Dohse, Paul Jungeblut

Formalized by axiomatic systems: (Euclid, Hilbert, . . .)

Models for \mathbb{H}^2 :

- embedd \mathbb{H}^2 into \mathbb{R}^d \sim allows to use human intuition for \mathbb{R}^2 in \mathbb{H}^2
- many different options:
 - Beltrami-Klein model
 - Poincaré model
 - Hyperboloid model

Hyperbolic Unit Disk Graphs

Definition:

A graph is a hyperbolic unit disk graph if it is the intersection graph of equally sized disks in \mathbb{H}^2 .

HUDG: Class of hyperbolic unit disk graphs.

Hyperbolic Unit Disk Graphs

Definition:

A graph is a hyperbolic unit disk graph if it is the intersection graph of equally sized disks in \mathbb{H}^2 .

HUDG: Class of hyperbolic unit disk graphs.

G: star with seven leaves

 $G\not\in UDG$

 $G \in HUDG$

Poincaré disk model:

- \blacksquare $\mathbb{H}^2 \cong$ interior of a disk
- lacktriangle circles
- closer to the boundary:more distorted/compressed→ all circles have equal area

Our Results

Theorem:

Recognizing hyperbolic unit disk graphs is $\exists \mathbb{R}$ -complete.

Our Results

Theorem:

Recognizing hyperbolic unit disk graphs is $\exists \mathbb{R}$ -complete.

Complexity class $\exists \mathbb{R}$:

All problems reducible to the existential theory of the reals (ETR).

Decide truth of formulas like:

$$\exists X_1,\dots,X_n\in\mathbb{R}^n\ :\ X_1X_2+3X_3=10 \land X_2X_4\leqslant 1$$
 (polynomial systems of equations and inequalities)

Simple Stretchability

every two lines intersectno more than two lines intersect in any point

Simple Stretchability

every two lines intersectno more than two lines intersect in any point

Theorem: (Mnëv 1988)

Simple Stretchability is $\exists \mathbb{R}$ -complete.

Simple Stretchability

- every two lines intersect
 - no more than two lines intersect in any point

Theorem: (Mnëv 1988)

Simple Stretchability is $\exists \mathbb{R}$ -complete.

Theorem: (McDiarmid, Müller 2010) Simple Stretchability can be reduced to recognizing UDGs.

- Instance of Simple Stretchability

G_D - Graph constructed from D following McDiarmid and Müller

[McDiarmid, Müller 2010]

D stretchable in \mathbb{R}^2

 \iff $G_D \in UDG$

D - Instance of Simple Stretchability

 $G_{\rm D}$ - Graph constructed from D following McDiarmid and Müller

D stretchable in \mathbb{R}^2 \iff $G_D \in UDG$ [BFKS 2023]

Theorem: (Bläsius, Friedrich, Katzmann, Stephan 2023) It holds that $UDG \subseteq HUDG$.

$$\mathsf{G}_\mathsf{D} \in \mathsf{HUDG}$$

D - Instance of Simple Stretchability

 $G_{\rm D}$ - Graph constructed from D following McDiarmid and Müller

Theorem: (Bläsius, Friedrich, Katzmann, Stephan 2023) It holds that UDG ⊆ HUDG.

D - Instance of Simple Stretchability

 $\ensuremath{G_{\mathrm{D}}}$ - Graph constructed from D following McDiarmid and Müller

Theorem: (Bläsius, Friedrich, Katzmann, Stephan 2023) It holds that UDG ⊆ HUDG.

Beltrami-Klein model:

- \blacksquare $\mathbb{H}^2 \cong$ interior of disk D
- lacktriangle hyperbolic lines \cong chords of D

Beltrami-Klein model:

- \blacksquare $\mathbb{H}^2 \cong$ interior of disk D
- lacktriangle hyperbolic lines \cong chords of D

Beltrami-Klein model:

- \blacksquare $\mathbb{H}^2 \cong$ interior of disk D
- lacktriangle hyperbolic lines \cong chords of D

Beltrami-Klein model:

- \blacksquare $\mathbb{H}^2 \cong$ interior of disk D
- lacktriangle hyperbolic lines \cong chords of D

Theorem:

D stretchable in $\mathbb{R}^2 \iff D$ stretchable in \mathbb{H}^2

$\exists \mathbb{R}$ -Membership

Idea: Given coordinates, verify that all neighbors are closer to each other than all non-neighbors. (in polynomial time on a real RAM machine)

Problem: Involves computing distances in \mathbb{H}^2 : requires hyperbolic functions \rightsquigarrow not computable on a real RAM

∃R-Membership

Idea: Given coordinates, verify that all neighbors are closer to each other than all non-neighbors. (in polynomial time on a real RAM machine)

Problem: Involves computing distances in \mathbb{H}^2 : requires hyperbolic functions \rightsquigarrow not computable on a real RAM

Hyperboloid model:

- lacksquare $\mathbb{H}^2\cong$ points in \mathbb{R}^3 with $z^2-x^2-y^2=1$ and z>0
- $d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \operatorname{arcosh}(z_1 z_2 x_1 x_2 y_1 y_2)$

$\exists \mathbb{R}$ -Membership

Idea: Given coordinates, verify that all neighbors are closer to each other than all non-neighbors. (in polynomial time on a real RAM machine)

Problem: Involves computing distances in \mathbb{H}^2 : requires hyperbolic functions \rightsquigarrow not computable on a real RAM

Hyperboloid model:

- lacksquare $\mathbb{H}^2\cong$ points in \mathbb{R}^3 with $z^2-x^2-y^2=1$ and z>0

Open Problems

Problem 1:

Generalize to higher dimensions:

Simple Stretchability of hyperplanes is $\exists \mathbb{R}$ -complete in \mathbb{R}^d .

Open Problems

Problem 1:

Generalize to higher dimensions:

Simple Stretchability of hyperplanes is $\exists \mathbb{R}$ -complete in \mathbb{R}^d .

Problem 2:

Use reduction as a framework for more problems:

(Unit) Segment Graphs

Linkage Realization

RAC-Drawings

•