Recognizing Unit Disk Graphs in Hyperbolic Geometry is \exists_R-Complete

EuroCG 2023 · 29.3.2023
Nicholas Bieker, Thomas Bläsius, Emil Dohse, Paul Jungeblut
Recognizing Unit Disk Graphs in Hyperbolic Geometry is \(\exists \mathbb{R} \)-Complete

Nicholas Bieker, Thomas Bläsius, Emil Dohse, Paul Jungeblut
Definition:
G is a (Euclidean) unit disk graph if it is the intersection graph of unit disks in \mathbb{R}^2.

UDG: Class of unit disk graphs.
Recognizing Unit Disk Graphs in Hyperbolic Geometry is $\exists \mathbb{R}$-Complete

Nicholas Bieker, Thomas Bläsius, Emil Dohse, Paul Jungeblut

Definition:

G is a (Euclidean) **unit disk graph** if it is the intersection graph of unit disks in \mathbb{R}^2.

UDG: Class of unit disk graphs.

Why unit disk?

- all disks must have the same radius r
 \Rightarrow *equally sized* disk graphs
- scaling the plane \mathbb{R}^2 allows to assume $r = 1$
Euclidean vs. Hyperbolic Geometry

Formalized by axiomatic systems:
(Euclid, Hilbert, …)
Euclidean vs. Hyperbolic Geometry

Formalized by axiomatic systems:
(Euclid, Hilbert, ...)

- Euclidean plane \mathbb{R}^2
- Hyperbolic plane \mathbb{H}^2

- Incidence
- Order
- Congruence
- Continuity
- Parallels
- \neg Parallels

Recognizing Unit Disk Graphs in Hyperbolic Geometry is $\exists \mathbb{R}$-Complete
Nicholas Bieker, Thomas Bläsius, Emil Dohse, Paul Jungeblut
Euclidean vs. Hyperbolic Geometry

Formalized by axiomatic systems:
(Euclid, Hilbert, ...)

Euclidean plane \mathbb{R}^2

Hyperbolic plane \mathbb{H}^2

Incidence
Order
Congruence
Continuity
Parallels
\neg Parallels

absolute geometry
Euclidean vs. Hyperbolic Geometry

Formalized by axiomatic systems: (Euclid, Hilbert, ...)

Models for \mathbb{H}^2:
- embedd \mathbb{H}^2 into \mathbb{R}^d
 \sim allows to use human intuition for \mathbb{R}^2 in \mathbb{H}^2
- many different options:
 - Beltrami-Klein model
 - Poincaré model
 - Hyperboloid model
Hyperbolic Unit Disk Graphs

Definition:
A graph is a *hyperbolic unit disk graph* if it is the intersection graph of *equally sized* disks in \mathbb{H}^2.

HUDG: Class of hyperbolic unit disk graphs.
Hyperbolic Unit Disk Graphs

Definition:
A graph is a hyperbolic unit disk graph if it is the intersection graph of equally sized disks in \mathbb{H}^2.

HUDG: Class of hyperbolic unit disk graphs.

G: star with seven leaves
G \notin UDG
G \in HUDG

Poincaré disk model:
- $\mathbb{H}^2 \simeq$ interior of a disk
- circles \sim circles
- closer to the boundary: more distorted/compressed
- \sim all circles have equal area
Our Results

Theorem:
Recognizing hyperbolic unit disk graphs is $\exists \mathbb{R}$-complete.
Our Results

Theorem:
Recognizing hyperbolic unit disk graphs is $\exists R$-complete.

Complexity class $\exists R$:
All problems reducible to the existential theory of the reals (ETR).

Decide truth of formulas like:

$$\exists x_1, \ldots, x_n \in \mathbb{R}^n : x_1x_2 + 3x_3 = 10 \land x_2x_4 \leq 1$$

(polynomial systems of equations and inequalities)
\(\exists R \)-Hardness

Simple Stretchability

- every two lines intersect
- no more than two lines intersect in any point

pseudolines

lines in \(\mathbb{R}^2 \)
\(\exists R \)-Hardness

Simple Stretchability

- every two lines intersect
- no more than two lines intersect in any point

\textbf{Theorem:} (Mnëv 1988)
Simple Stretchability is \(\exists R \)-complete.
\(\exists \mathbb{R} \)-Hardness

Simple Stretchability
- Every two lines intersect
- No more than two lines intersect in any point

![Diagram of pseudolines and lines in \(\mathbb{R}^2 \)]

Theorem: (Mnëv 1988)
Simple Stretchability is \(\exists \mathbb{R} \)-complete.

Theorem: (McDiarmid, Müller 2010)
Simple Stretchability can be reduced to recognizing UDGs.
∃R-Hardness

D - Instance of Simple Stretchability
G_D - Graph constructed from D following McDiarmid and Müller

\[\text{D stretchable in } \mathbb{R}^2 \iff G_D \in \text{UDG} \]

[McDiarmid, Müller 2010]
∃R-Hardness

\(D \) - Instance of Simple Stretchability

\(G_D \) - Graph constructed from \(D \) following McDiarmid and Müller

\[\text{D stretchable in } \mathbb{R}^2 \iff G_D \in \text{UDG} \]

\[\implies G_D \in \text{HUDG} \]

[McDiarmid, Müller 2010]

Theorem: (Bläsius, Friedrich, Katzmann, Stephan 2023)
It holds that \(\text{UDG} \subseteq \text{HUDG} \).
∃R-Hardness

\(D \) - Instance of Simple Stretchability

\(G_D \) - Graph constructed from \(D \) following McDiarmid and Müller

\[
D \text{ stretchable in } \mathbb{R}^2 \iff G_D \in UDG
\]

\[
D \text{ stretchable in } \mathbb{H}^2 \iff G_D \in HUDG
\]

Theorem: (Bläsius, Friedrich, Katzmann, Stephan 2023)
It holds that \(UDG \subseteq HUDG \).

same argument:
uses only absolute geometry
\(\exists R \)-Hardness

\(D \) - Instance of Simple Stretchability

\(G_D \) - Graph constructed from \(D \) following McDiarmid and Müller

\(D \) stretchable in \(\mathbb{R}^2 \)

\(G_D \in \text{UDG} \)

\(H^2 \)

\(G_D \in \text{HUDG} \)

\[\text{Theorem: (Bläsius, Friedrich, Katzmann, Stephan 2023)} \]

\[\text{It holds that UDG} \subseteq \text{HUDG}. \]
Simple Stretchability

Beltrami-Klein model:

- $\mathbb{H}^2 \cong$ interior of disk D
- hyperbolic lines \cong chords of D
Simple Stretchability

Beltrami-Klein model:
- $\mathbb{H}^2 \cong$ interior of disk D
- hyperbolic lines \cong chords of D
Simple Stretchability

Beltrami-Klein model:
- $\mathbb{H}^2 \cong$ interior of disk D
- hyperbolic lines \cong chords of D
Simple Stretchability

Beltrami-Klein model:
- $\mathbb{H}^2 \cong$ interior of disk D
- hyperbolic lines \cong chords of D

Theorem:
D stretchable in $\mathbb{R}^2 \iff D$ stretchable in \mathbb{H}^2
\(\exists R \)-Membership

Idea: Given coordinates, verify that all neighbors are closer to each other than all non-neighbors. (in polynomial time on a real RAM machine)

Problem: Involves computing distances in \(\mathbb{H}^2 \): requires hyperbolic functions \(\sim \) not computable on a real RAM
∃R-Membership

Idea: Given coordinates, verify that all neighbors are closer to each other than all non-neighbors.

Problem: Involves computing distances in \(\mathbb{H}^2 \):
requires hyperbolic functions \(\leadsto \) not computable on a real RAM

Hyperboloid model:
- \(\mathbb{H}^2 \cong \) points in \(\mathbb{R}^3 \) with \(z^2 - x^2 - y^2 = 1 \) and \(z > 0 \)
- \(d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \text{arcosh}(z_1z_2 - x_1x_2 - y_1y_2) \)
∃R-Membership

Idea: Given coordinates, verify that all neighbors are closer to each other than all non-neighbors.

Problem: Involves computing distances in \mathbb{H}^2:
requires hyperbolic functions \sim not computable on a real RAM

Hyperboloid model:
- $\mathbb{H}^2 \cong$ points in \mathbb{R}^3 with $z^2 - x^2 - y^2 = 1$ and $z > 0$
- $d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \text{arcosh}(z_1z_2 - x_1x_2 - y_1y_2)$
 - monotone function
 - polynomial
 - requires hyperbolic functions; not computable on a real RAM
Open Problems

Problem 1:
Generalize to higher dimensions:

Simple Stretchability of hyperplanes is $\exists R$-complete in \mathbb{R}^d.
Open Problems

Problem 1:
Generalize to higher dimensions:

Simple Stretchability of hyperplanes is $\exists \mathbb{R}$-complete in \mathbb{R}^d.

Problem 2:
Use reduction as a framework for more problems:

(Unit) Segment Graphs
Linkage Realization
RAC-Drawings