

Edge Guarding Plane Graphs

March 17, 2020 Paul Jungeblut, Torsten Ueckerdt

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

www.kit.edu

- G = (V, E) plane graph.
- vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

- G = (V, E) plane graph.
- vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

- G = (V, E) plane graph.
- vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

- G = (V, E) plane graph.
- vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

- G = (V, E) plane graph.
- vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

Question

For all *n*-vertex graphs of a planar graph class C:

How many guards are sometimes necessary and always sufficient?

	Lower	Upper
Planar	$\left\lfloor \frac{n}{3} \right\rfloor^{1}$	$\min\left\{\left\lfloor \frac{3n}{8} \right\rfloor, \left\lfloor \frac{n}{3} + \frac{\alpha}{9} \right\rfloor\right\}^2$
Triangulation	$\left\lfloor \frac{4n-8}{13} \right\rfloor^1$	$\left\lfloor \frac{n}{3} \right\rfloor^3$
Outerplanar	$\left\lfloor \frac{n}{3} \right\rfloor^{1}$	$\left\lfloor \frac{n}{3} \right\rfloor^4$
Max. Outerplanar	$\left\lfloor \frac{n}{4} \right\rfloor^5$	$\left\lfloor \frac{n}{4} \right\rfloor^5$
		au number of guadrilateral faces

 α : number of quadrilateral faces

- ¹ Bose, Shermer, Toussaint, Zhu 1997
- ² Biniaz, Bose, Ooms, Verdonschot 2019
- ³ Everett, Rivera-Campo 1997
- ⁴ Chvátal 1975
- ⁵ O'Rourke 1983

Our Results

	Lower	Upper
Stacked Triangulations	$\left\lfloor \frac{2n-4}{7} \right\rfloor$	$\left\lfloor \frac{2n}{7} \right\rfloor$
Quadrangulations	$\left\lfloor \frac{n-2}{4} \right\rfloor$	$\left\lfloor \frac{n}{3} \right\rfloor$
2-Degenerate Quadrangulations	$\left\lfloor \frac{n-2}{4} \right\rfloor$	$\left\lfloor \frac{n}{4} \right\rfloor$

Our Results

	Lower	Upper
Stacked Triangulations	$\left\lfloor \frac{2n-4}{7} \right\rfloor$	$\left\lfloor \frac{2n}{7} \right\rfloor$ Today!
Quadrangulations	$\left\lfloor \frac{n-2}{4} \right\rfloor$	$\left\lfloor \frac{n}{3} \right\rfloor$
2-Degenerate Quadrangulations	$\left\lfloor \frac{n-2}{4} \right\rfloor$	$\left\lfloor \frac{n}{4} \right\rfloor$

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation:
 Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation:
 Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

Theorem [J. 2019]

For *n*-vertex stacked triangulations $\lfloor \frac{2n}{7} \rfloor$ edge guards are always sufficient.

- 1. Create smaller graph G'of size |G'| = |G| - k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for *G*.

- 1. Create smaller graph G'of size |G'| = |G| - k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for *G*.

- 1. Create smaller graph G'of size |G'| = |G| - k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for *G*.

- 1. Create smaller graph G'of size |G'| = |G| - k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for *G*.

Use induction on the number n of vertices:

- 1. Create smaller graph G'of size |G'| = |G| - k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for *G*.

5

- 1. Create smaller graph G'of size |G'| = |G| - k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for *G*.

- Use induction on the number n of vertices:
 - 1. Create smaller graph G'of size |G'| = |G| - k.
 - 2. Apply induction hypothesis on G' to get edge guard set Γ' .
 - 3. Reinsert old vertices.
 - 4. Use ℓ additional edges to augment Γ' into Γ for *G*.
- $\frac{\ell}{k} \leq \frac{2}{7}$ in all cases \Rightarrow edge guard set of size $\left\lfloor \frac{2n}{7} \right\rfloor$
- Also applied successfully for 2-Degenerate Quadrangulations $\left(\frac{\ell}{k} \leq \frac{1}{4}\right)$.

Remove inner vertices (k = 6).

6

- Remove inner vertices (k = 6).
- Apply induction.

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.
- Add additional edge ($\ell = 1$), so $\frac{\ell}{k} = \frac{1}{6} \leq \frac{2}{7}$.

- Remove inner vertices (k = 6).
- Apply induction.

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.

Induction: Trick

Lemma

There is a minimum size edge guard set Γ with $x, y \in V(\Gamma)$.

Induction: Trick

Lemma

There is a minimum size edge guard set Γ with $x, y \in V(\Gamma)$.

Induction: Trick

Lemma

There is a minimum size edge guard set Γ with $x, y \in V(\Gamma)$.

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.

Remove inner vertices (k = 6).

Remove inner vertices (k = 6).
Add two new vertices (k = 6 → k = 4).

- Remove inner vertices (k = 6).
- Add two new vertices $(k = 6 \rightsquigarrow k = 4)$.
- Apply lemma from last slide.

- Remove inner vertices (k = 6).
- Add two new vertices $(k = 6 \rightsquigarrow k = 4)$.
- Apply lemma from last slide.
- Reinsert old vertices.

- Remove inner vertices (k = 6).
- Add two new vertices $(k = 6 \rightsquigarrow k = 4)$.
- Apply lemma from last slide.
- Reinsert old vertices. One more edge suffices ($\ell = 1$), so $\frac{\ell}{k} = \frac{1}{4} \leq \frac{2}{7}$.

How many edge guards are always sufficient for

- general plane graphs?
- (4-connected) triangulations?
- quadrangulations?

Thank your for your attention.

