Edge Guarding Plane Graphs

March 17, 2020
Paul Jungeblut, Torsten Ueckerdt

Institute of Theoretical Informatics • Algorithmics Group

Edge Guarding

- $G=(V, E)$ plane graph.
- $v w$ guards face f if at least one from $\{v, w\}$ is on the boundary of f.

Edge Guarding

- $G=(V, E)$ plane graph.
- $v w$ guards face f if at least one from $\{v, w\}$ is on the boundary of f.

Edge Guarding

- $G=(V, E)$ plane graph.
- $v w$ guards face f if at least one from $\{v, w\}$ is on the boundary of f.

Edge Guarding

- $G=(V, E)$ plane graph.
- $v w$ guards face f if at least one from $\{v, w\}$ is on the boundary of f.

Edge Guarding

- $G=(V, E)$ plane graph.
- $v w$ guards face f if at least one from $\{v, w\}$ is on the boundary of f.

Question

For all n-vertex graphs of a planar graph class \mathcal{C} :
How many guards are sometimes necessary and always sufficient?

Previous Results

	Lower	Upper
Planar	$\left\lfloor\frac{n}{3}\right\rfloor^{1}$	$\min \left\{\left\lfloor\frac{3 n}{8}\right\rfloor,\left\lfloor\frac{n}{3}+\frac{\alpha}{9}\right\rfloor\right\}^{2}$
Triangulation	$\left\lfloor\frac{4 n-8}{13}\right\rfloor^{1}$	$\left\lfloor\frac{n}{3}\right\rfloor^{3}$
Outerplanar	$\left\lfloor\frac{n}{3}\right\rfloor^{1}$	$\left\lfloor\frac{n}{3}\right\rfloor^{4}$
Max. Outerplanar	$\left\lfloor\frac{n}{4}\right\rfloor^{5}$	$\left\lfloor\frac{n}{4}\right\rfloor^{5}$
		α : number of quadrilateral faces
${ }^{1}$ Bose, Shermer, Toussaint, Zhu 1997 ${ }^{2}$ Biniaz, Bose, Ooms, Verdonschot 2019 ${ }^{3}$ Everett, Rivera-Campo 1997 ${ }^{4}$ Chvátal 1975 ${ }^{5}$ O'Rourke 1983		

Our Results

	Lower	Upper
Stacked Triangulations	$\left\lfloor\frac{2 n-4}{7}\right\rfloor$	$\left\lfloor\frac{2 n}{7}\right\rfloor$
Quadrangulations	$\left\lfloor\frac{n-2}{4}\right\rfloor$	$\left\lfloor\frac{n}{3}\right\rfloor$
2-Degenerate Quadrangulations	$\left\lfloor\frac{n-2}{4}\right\rfloor$	$\left\lfloor\frac{n}{4}\right\rfloor$

Our Results

	Lower	Upper
Stacked Triangulations	$\left\lfloor\frac{2 n-4}{7}\right\rfloor$	$\left\lfloor\frac{2 n}{7}\right\rfloor$

Definition: Stacked Triangulations

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation:

Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

Definition: Stacked Triangulations

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation:

Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

Definition: Stacked Triangulations

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation:

Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

Definition: Stacked Triangulations

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation:

Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

Definition: Stacked Triangulations

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation:

Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

Definition: Stacked Triangulations

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation:

Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

Theorem [J. 2019]

For n-vertex stacked triangulations $\left\lfloor\frac{2 n}{7}\right\rfloor$ edge guards are always sufficient.

Induction via Vertex Deletion

- Use induction on the number n of vertices:

1. Create smaller graph G^{\prime} of size $\left|G^{\prime}\right|=|G|-k$.
2. Apply induction hypothesis on G^{\prime} to get edge guard set Γ^{\prime}.
3. Reinsert old vertices.
4. Use ℓ additional edges to augment Γ^{\prime} into Γ for G.

Induction via Vertex Deletion

- Use induction on the number n of vertices:

1. Create smaller graph G^{\prime} of size $\left|G^{\prime}\right|=|G|-k$.
2. Apply induction hypothesis on G^{\prime} to get edge guard set Γ^{\prime}.
3. Reinsert old vertices.
4. Use ℓ additional edges to augment Γ^{\prime} into Γ for G.

Induction via Vertex Deletion

- Use induction on the number n of vertices:

1. Create smaller graph G^{\prime} of size $\left|G^{\prime}\right|=|G|-k$.
2. Apply induction hypothesis on G^{\prime} to get edge guard set Γ^{\prime}.
3. Reinsert old vertices.
4. Use ℓ additional edges to augment Γ^{\prime} into Γ for G.

Induction via Vertex Deletion

- Use induction on the number n of vertices:

1. Create smaller graph G^{\prime} of size $\left|G^{\prime}\right|=|G|-k$.
2. Apply induction hypothesis on G^{\prime} to get edge guard set Γ^{\prime}.
3. Reinsert old vertices.
4. Use ℓ additional edges to augment Γ^{\prime} into Γ for G.

Induction via Vertex Deletion

- Use induction on the number n of vertices:

1. Create smaller graph G^{\prime} of size $\left|G^{\prime}\right|=|G|-k$.
2. Apply induction hypothesis on G^{\prime} to get edge guard set Γ^{\prime}.
3. Reinsert old vertices.
4. Use ℓ additional edges to augment Γ^{\prime} into Γ for G.

Induction via Vertex Deletion

- Use induction on the number n of vertices:

1. Create smaller graph G^{\prime} of size $\left|G^{\prime}\right|=|G|-k$.
2. Apply induction hypothesis on G^{\prime} to get edge guard set Γ^{\prime}.
3. Reinsert old vertices.
4. Use ℓ additional edges to augment Γ^{\prime} into Γ for G.

- $\frac{\ell}{k} \leq \frac{2}{7}$ in all cases \Rightarrow edge guard set of size $\left\lfloor\frac{2 n}{7}\right\rfloor$

Induction via Vertex Deletion

- Use induction on the number n of vertices:

1. Create smaller graph G^{\prime} of size $\left|G^{\prime}\right|=|G|-k$.
2. Apply induction hypothesis on G^{\prime} to get edge guard set Γ^{\prime}.
3. Reinsert old vertices.
4. Use ℓ additional edges to augment Γ^{\prime} into Γ for G.

- $\frac{\ell}{k} \leq \frac{2}{7}$ in all cases \Rightarrow edge guard set of size $\left\lfloor\frac{2 n}{7}\right\rfloor$
- Also applied successfully for 2-Degenerate Quadrangulations $\left(\frac{\ell}{k} \leq \frac{1}{4}\right)$.

Induction: Examples

Induction: Examples

- Remove inner vertices $(k=6)$.

Induction: Examples

- Remove inner vertices $(k=6)$.
- Apply induction.

Induction: Examples

- Remove inner vertices $(k=6)$.
- Apply induction.
- Reinsert inner vertices.

Induction: Examples

- Remove inner vertices $(k=6)$.
- Apply induction.
- Reinsert inner vertices.
- Add addtional edge $(\ell=1)$, so $\frac{\ell}{k}=\frac{1}{6} \leq \frac{2}{7}$.

Induction: Examples

- Remove inner vertices $(k=6)$.
- Apply induction.

Induction: Examples

- Remove inner vertices $(k=6)$.
- Apply induction.
- Reinsert inner vertices.

Induction: Examples

Problem:

Two edges are necessary for the remaining faces.

- Remove inner vertices $(k=6)$.
- Apply induction.
- Reinsert inner vertices.

Induction: Trick

Lemma

There is a minimum size edge guard set Γ with $x, y \in V(\Gamma)$.

Induction: Trick

somewhere in a stacked triangulation

Lemma

There is a minimum size edge guard set Γ with $x, y \in V(\Gamma)$.

Induction: Trick

somewhere in a stacked triangulation

Lemma

There is a minimum size edge guard set Γ with $x, y \in V(\Gamma)$.

Induction Example: Revisited

Problem:

Two edges are necessary for the remaining faces.

- Remove inner vertices $(k=6)$.
- Apply induction.
- Reinsert inner vertices.

Induction Example: Revisited

- Remove inner vertices $(k=6)$.

Induction Example: Revisited

- Remove inner vertices $(k=6)$.
- Add two new vertices ($k=6 \sim k=4$).

Induction Example: Revisited

- Remove inner vertices $(k=6)$.
- Add two new vertices ($k=6 \sim k=4$).
- Apply lemma from last slide.

Induction Example: Revisited

- Remove inner vertices ($k=6$).
- Add two new vertices ($k=6 \sim k=4$).
- Apply lemma from last slide.
- Reinsert old vertices.

Induction Example: Revisited

- Remove inner vertices $(k=6)$.
- Add two new vertices ($k=6 \sim k=4$).
- Apply lemma from last slide.
- Reinsert old vertices. One more edge suffices $(\ell=1)$, so $\frac{\ell}{k}=\frac{1}{4} \leq \frac{2}{7}$.

Open Problems

How many edge guards are always sufficient for

- general plane graphs?
- (4-connected) triangulations?
- quadrangulations?

Thank your for your attention.

