

# The Local Queue Number of Graphs with Bounded Treewidth

Laura Merker and Torsten Ueckerdt | GD 2020

28th International Symposium on Graph Drawing and Network Visualization



www.kit.edu



#### Queue Number

qn(G) = min k such that there is a k-queue layout for G



#### Local Queue Number

 $qn_{\ell}(G) = min k$  such that there is a k-local queue layout for G



vertex ordering

# Theorem 1 For any $d \ge 3$ and infinitely many *n*, there exist *n*-vertex graphs with local queue number at most d + 2 but queue number $\Omega(\sqrt{d}n^{1/2-1/d})$ .

# Maximum (Local) Queue Number

|                     | max qn                                       | $\max qn_\ell$   |
|---------------------|----------------------------------------------|------------------|
| planar graphs       | $\geqslant 4$ (Alam et al., 2020)            | ≥ 3              |
|                     | <b>≪ 49</b> (Dujmović et al., 2019)          | ≪ 4              |
| treewidth 1         | 1 (Heath and Rosenberg, 1992)                | 1                |
| treewidth 2         | ${f 3}$ (Rengarajan and Veni Madhavan, 1995; | 3                |
|                     | Wiechert, 2017)                              | F. (-7           |
| treewidth $k \ge 3$ | $\geq k+1$ (Wiechert, 2017)                  | $\geq  k/2  + 1$ |
|                     | $\leqslant 2^k-1$ (Wiechert, 2017)           | $\leqslant k+1$  |

#### k-Trees

maximal graphs with treewidth k





attach vertex to  $K_k$ 

#### Theorem 3

Every k-tree admits a (k + 1)-local queue layout.



k queues to parent clique

+ 1 queue to children



The local queue number is tied to the maximum average degree.

series of two-player games

#### Theorem 4

There is a graph with treewidth 2 and local queue number 3.

#### Theorem 5

For every k > 1, there is a graph G with treewidth k and  $qn_{\ell}(G) \ge \lceil k/2 \rceil + 1$ .

#### Corollary 6

The maximum local queue number of planar graphs is either 3 or 4.

Start with a *k*-clique (here:  $k = \ell = 2$ ) In each round:

Alice chooses a k-clique and a number of vertices to add

**Bob** inserts the new vertices into the vertex ordering and assigns the new edges to queues such that ...

Game (i): the layout is  $\ell$ -local



Laura Merker and Torsten Ueckerdt –

The Local Queue Number of Graphs with Bounded Treewidth

Start with a *k*-clique (here:  $k = \ell = 2$ ) In each round:

Alice chooses a k-clique and a number of vertices to add

**Bob** inserts the new vertices into the vertex ordering and assigns the new edges to queues such that ...

Game (i): the layout is  $\ell$ -local



Start with a *k*-clique (here:  $k = \ell = 2$ ) In each round:

Alice chooses a k-clique and a number of vertices to add

**Bob** inserts the new vertices into the vertex ordering and assigns the new edges to queues such that ...

Game (i): the layout is  $\ell$ -local



Start with a *k*-clique (here:  $k = \ell = 2$ ) In each round:

Alice chooses a k-clique and a number of vertices to add

**Bob** inserts the new vertices into the vertex ordering and assigns the new edges to queues such that ...

Game (ii): children to the right in the first round

plus all previous rules



Start with a *k*-clique (here:  $k = \ell = 2$ ) In each round:

Alice chooses a k-clique and a number of vertices to add

**Bob** inserts the new vertices into the vertex ordering and assigns the new edges to queues such that ...

Game (iii): new vertices consecutively

plus all previous rules



Laura Merker and Torsten Ueckerdt –

The Local Queue Number of Graphs with Bounded Treewidth

Start with a *k*-clique (here:  $k = \ell = 2$ ) In each round:

Alice chooses a k-clique and a number of vertices to add

**Bob** inserts the new vertices into the vertex ordering and assigns the new edges to queues such that ...

Game (iv): twin edges in the same queue

plus all previous rules



Laura Merker and Torsten Ueckerdt –

The Local Queue Number of Graphs with Bounded Treewidth

Start with a *k*-clique (here:  $k = \ell = 2$ ) In each round:

Alice chooses a k-clique and a number of vertices to add

**Bob** inserts the new vertices into the vertex ordering and assigns the new edges to queues such that ...

Game (v): all children to the right and edges to parents pw different plus all previous rules



Start with a *k*-clique (here:  $k = \ell = 2$ ) In each round:

Alice chooses a k-clique and a number of vertices to add

**Bob** inserts the new vertices into the vertex ordering and assigns the new edges to queues such that ...

Game (v'): new edges not in the same queue as parent edge  $${\rm plus}$$  all previous rules



Laura Merker and Torsten Ueckerdt -

The Local Queue Number of Graphs with Bounded Treewidth







Laura Merker and Torsten Ueckerdt – The Local Queue Number of Graphs with Bounded Treewidth

7



Laura Merker and Torsten Ueckerdt – The Local Queue Number of Graphs with Bounded Treewidth

7





#### Theorem 4

There is a graph with treewidth 2 and local queue number 3.

#### Corollary 6

There is a planar graph with local queue number at least 3.

#### Theorem 4

There is a graph with treewidth 2 and local queue number 3.

#### Corollary 6

There is a planar graph with local queue number at least 3.



#### Theorem 4

There is a graph with treewidth 2 and local queue number 3.

#### Corollary 6

There is a planar graph with local queue number at least 3.



#### Theorem 4

There is a graph with treewidth 2 and local queue number 3.

#### Corollary 6

There is a planar graph with local queue number at least 3.



#### Theorem 4

There is a graph with treewidth 2 and local queue number 3.

#### Corollary 6

There is a planar graph with local queue number at least 3.



#### Theorem 4

There is a graph with treewidth 2 and local queue number 3.

#### Corollary 6

There is a planar graph with local queue number at least 3.



#### Theorem 4

There is a graph with treewidth 2 and local queue number 3.

#### Corollary 6

There is a planar graph with local queue number at least 3.

#### ... two more games

#### Lemma

If there is a k-tree such that every  $\ell$ -local queue layout contains a k'-clique with  $\leftarrow$  non-nesting children,

1

then there is a k-tree with local queue number at least  $\ell + 1$ , where  $1 < k' \leq k$  and  $\ell \leq k'$ . true for  $k = \ell = 2$ — true for  $\ell \leq \lceil k/2 \rceil$ true for all  $\ell \leq k$ ? otherwise:



#### Theorem 5

For every k > 1, there is a graph G with treewidth k and  $qn_{\ell}(G) \ge \lceil k/2 \rceil + 1$ .

# **Open Questions**

- What is the maximum local queue number of k-trees?
  (lower bound: [k/2] + 1, upper bound: k + 1)
  → find a clique with non-nesting children
- Can our techniques be used to improve the lower bound on the queue number of k-trees?
  (Wiechert (2017): lower bound: k + 1, upper bound: 2<sup>k</sup> 1)
- Is the maximum local queue number of planar graphs 3 or 4?

# **Open Questions**

- What is the maximum local queue number of k-trees?
  (lower bound: [k/2] + 1, upper bound: k + 1)
  → find a clique with non-nesting children
- Can our techniques be used to improve the lower bound on the queue number of k-trees?
  (Wiechert (2017): lower bound: k + 1, upper bound: 2<sup>k</sup> 1)
- Is the maximum local queue number of planar graphs 3 or 4?

Thank you!