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Goal
• Minimize line losses and production costs

Input
• Graph G = (V , E) representing power grid (e.g., IEEE instances)
• Set F ⊆ V of flow control buses (FCBs)

Find
• Valid operation point for the hybrid model

(Generator production and line loads)

• Flow model assumes F = V and
requires the conservation of flow,
feasible line limits, but no voltage laws.

• Hybrid model assumes F ⊆ V and
combines both models. Requires flow
conservation and feasible line limits
on G, and voltage laws on G − F .

Models
• Physical model assumes F = ∅ and requires the conservation of flow,

feasible line limits and voltage laws [2]

4

1

2

3

9

8

10
11

6

5

14

13

12

t

s

7

Hybrid Model = Flow Model (incl. FCBs) + Physical Model

Flow
subgrid

Physical
subgrid
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DC-based Flow Models [2, 3]

For a given number of available control buses, is there a positive effect
on flow costs and operability when approaching grid capacity limits?
• Simulate load increase by a load increase factor ρ
• Simulations with different numbers k of FCBs
⇒ Physical model requires higher operation costs
⇒ Even a small number of FCBs has a significant effect

Effect of Few FCBs (Q2)

FCBs extend the operation point, while having lower operation cost.
Findings
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More realistic power grid models:
• Control units on transmission lines rather than buses [5],
• AC power grid model.
Volatility in power grids

Future Work
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Q1. How many flow control buses are necessary to obtain globally
optimal power flows and which buses need to be controlled?

Q2. If the number of available flow control buses is given, do we still
see a positive effect on the flow costs and on the operability of
the grid when approaching its capacity limits?

Key Questions

Number of FCBs necessary to match the operation cost lower bound of
the flow model depends on structural situation.

Often a small number
of FCBs suffices for
matching cost of the
flow model.

Findings

Matching the Flow Model (Q1) [1, 4]
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Physical Subgrid is a Forest

Physical subgrid forest.
⇒

All flows obey voltage laws.

Theorem 1
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Physical subgrid cactus,
line limits on cactus suitably

bounded [4].
⇒

For every flow there is a
cost-equivalent flow obeying

voltage laws.

Theorem 2

Physical Subgrid is a Cactus

Vertex Cover
Feedback Forest
Feedback Cactus
Full Control
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Challenges
• Shift towards renewable distributed energy production
→ Changing energy flow patterns

• Independent power producers
• Volatile power flows and flow directions
⇒ Operation of the power grid becomes more demanding

Strategies to cope with the challenges
1. Extend the grid with additional transmission lines
2. Install control units like flexible AC transmission systems (FACTS) to

enhance grid utilization (our approach)

Operation of Power Grids [2]
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