

Cabling Optimization in a Wind Farm Heuristics Based on Simulated Annealing

Master's Thesis · Final Presentation · May 31, 2016 Sebastian Lehmann

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Given **t** turbines, **s** substations (each with **capacity**), for each edge: cable types (each with **cost** and **capacity**)

- *Given* **t** turbines, **s** substations (each with **capacity**), for each edge: cable types (each with **cost** and **capacity**)
 - *find* for each edge: the **cable type**

- *Given* **t** turbines, **s** substations (each with **capacity**), for each edge: cable types (each with **cost** and **capacity**)
 - *find* for each edge: the **cable type**
- *minimizing* their **total cost**

- *Given* **t** turbines, **s** substations (each with **capacity**), for each edge: cable types (each with **cost** and **capacity**)
 - *find* for each edge: the **cable type**
- *minimizing* their **total cost**
- subject tocable capacity constraintssubstation capacity constraintsflow conservation constraints

- *Given* **t** turbines, **s** substations (each with **capacity**), for each edge: cable types (each with **cost** and **capacity**)
 - *find* for each edge: the **cable type**
- *minimizing* their **total cost**
- subject tocable capacity constraintssubstation capacity constraintsflow conservation constraints

- *Given* **t** turbines, **s** substations (each with **capacity**), for each edge: cable types (each with **cost** and **capacity**)
 - *find* for each edge: the **cable type**

inputs

- *minimizing* their **total cost**
 - subject tocable capacity constraintssubstation capacity constraintsflow conservation constraints

- *Given* **t** turbines, **s** substations (each with **capacity**), for each edge: cable types (each with **cost** and **capacity**)
 - find for each edge: the cable type

binary variables

minimizing their total cost

variables

subject to cable capacity constraints

substation capacity constraints

flow conservation constraints

Given **t** turbines, **s** substations (each with **capacity**), for each edge: cable types (each with **cost** and **capacity**)

Meta-Heuristic Optimization Techniques

Greedy

Simulated Annealing

Hill Climbing

Tabu Search

Stochastic Tunneling

Ant Colony Optimization

Evolutionary Algorithms

Meta-Heuristic Optimization Techniques

Meta-Heuristic Optimization Techniques

- mutate solution candidates
- idea: allow worse solutions temporarily

- mutate solution candidates
- idea: allow worse solutions temporarily

- mutate solution candidates
- idea: allow worse solutions temporarily

- mutate solution candidates
- idea: allow worse solutions temporarily

- mutate solution candidates
- idea: allow worse solutions temporarily

- mutate solution candidates
- idea: allow worse solutions temporarily

- mutate solution candidates
- idea: allow worse solutions temporarily
- temperature controls acceptance of worse solutions

- mutate solution candidates
- idea: allow worse solutions temporarily
- temperature controls acceptance of worse solutions

- mutate solution candidates
- idea: allow worse solutions temporarily
- temperature controls acceptance of worse solutions

Simulated Annealing

 nodes: potential values (permutation of indices)

- nodes: potential values (permutation of indices)
- forbid some edges

- nodes: potential values (permutation of indices)
- forbid some edges

Decoding

- nodes: potential values (permutation of indices)
- forbid some edges

Decoding

- nodes: potential values (permutation of indices)
- forbid some edges

Decoding

- nodes: potential values (permutation of indices)
- forbid some edges

Decoding

- nodes: potential values (permutation of indices)
- forbid some edges

Decoding

- each turbine: construct path
- each edge: find suited cable

- nodes: potential values (permutation of indices)
- forbid some edges

- nodes: potential values (permutation of indices)
- forbid some edges
- **Mutation**

- nodes: potential values (permutation of indices)
- forbid some edges
- **Mutation**

- nodes: potential values (permutation of indices)
- forbid some edges
- **Mutation**

- nodes: potential values (permutation of indices)
- forbid some edges

Mutation

- nodes: potential values (permutation of indices)
- forbid some edges

- swap node potentials
- forbid / allow an edge

- nodes: potential values (permutation of indices)
- forbid some edges

- swap node potentials
- forbid / allow an edge

- nodes: potential values (permutation of indices)
- forbid some edges

- swap node potentials
- forbid / allow an edge

Generating Instances

- Turbines & substations evenly distributed (Poisson Disk Sampling)
- Edges: 6 nearest neighbors + shortcuts
- Substation capacities: tight vs. loose

good results for medium-sized farms (t < 350: faster than Gurobi)

good results for medium-sized farms (t < 350: faster than Gurobi)

long running time required for large farms

temperature curve: parameter tuning difficult

good results for medium-sized farms (t < 350: faster than Gurobi)

- **temperature** curve: parameter tuning difficult
- result depends on random seed

good results for medium-sized farms (t < 350: faster than Gurobi)

- **temperature** curve: parameter tuning difficult
- result depends on random seed
- bad results for tight substation capacities

good results for medium-sized farms (t < 350: faster than Gurobi)

- **temperature** curve: parameter tuning difficult
- result depends on random seed
- bad results for tight substation capacities
- bad results for many substations

Dynamic Temperature Curve

temperature curve: parameter tuning difficult

Dynamic Temperature Curve

temperature curve: parameter tuning difficult

- Observation: escaping deep local optimum takes long time
 - Idea: adjust temperature drop velocity to activity

activity = avg. probability for accepting worse solution

- Observation: escaping deep local optimum takes long time
 - Idea: adjust temperature drop velocity to activity
 - **activity =** avg. probability for accepting worse solution

Dynamic Temperature Curve

12

Dynamic Temperature Curve

12

result depends on random seed

result depends on random seed

- Idea: start same algorithm **multiple times**
 - each with different random seed

result depends on random seed

- Idea: start same algorithm **multiple times**
 - each with different random seed
 - final result = best run
 - distribute **available time** evenly

bad results for tight substation capacities / many substations

Observation: \hficulties assigning turbines \rightarrow substations

bad results for tight substation capacities / many substations

Observation: \hficulties assigning turbines \rightarrow substations

Idea: (1) **partition** into substation networks (2) **optimize** each separately

bad results for tight substation capacities / many substations

Observation: \hficulties assigning turbines \rightarrow substations

Idea: (1) partition into substation networks *in different ways*(2) optimize each separately *for each partitioning*

optimize

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on **turbine paths**
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on **turbine paths**
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on **turbine paths**
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on **turbine paths**
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

using cables

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

using

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

using cables

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

Alternatives: Fuzzy C-means using cables as metric

 use partitioning as representation in top level (decoding = optimize single substation networks)

- Our idea: use substation assignment based on turbine paths
 - But: subgraphs often not connected!

Alternatives: Fuzzy C-means using cables as metric

 use partitioning as representation in top level (decoding = optimize single substation networks)

Future Work

Other Tings We've Tried

Recover when caught in local optimum Problem: Recover to which state?

Other Tings We've Tried

- Recover when caught in local optimum Problem: Recover to which state?
- Cancel runs when caught in local optimum Problem: How detect this?

Other Tings We've Tried

- Recover when caught in local optimum Problem: Recover to which state?
- Cancel runs when caught in local optimum Problem: How detect this?
- Hybrid Simulated Annealing & Evolutionary Algorithm Problem: How cross two solutions?

Related Problems (Future Work)

- Optimize locations of substations
- Optimize types of substations (similar to types of cables)
- Allow adding merge points (\Rightarrow Steiner Tree)
- Avoid intersections
- Redundant cables for failure safety

