

A Comparative Analysis of Switchings in Static and Dynamic Power Grids

Master's Thesis Presentation Adrian Grupp | 28 April 2020

INSTITUTE OF THEORETICAL INFORMATICS - RESEARCH GROUP ALGORITHMICS I

Image Source: svs.gsfc.nasa.gov/30028

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

- Shift towards renewables ⇒ decentrality & volatility
- Switching: Remove transmission lines to improve the power flow
- Can a static algorithm guarantee safe dynamic operation?
- Static and dynamic model for high voltage grid

Static Model [GRW+18]

Static Model [GRW+18]

Static Model [GRW⁺18]

Edge flow: Capacity: Susceptance: $b: E \to \mathbb{R}_{\geq 0}$

Adrian Grupp – A Comparative Analysis of Switchings in Static and Dynamic Power Grids

Static Model [GRW⁺18]

Edge flow: Potential angle: $\Theta: V \to \mathbb{R}_{\geq 0}$ Susceptance: $b: E \to \mathbb{R}_{\geq 0}$

 $f(e) = b(e) \cdot (\Theta(j) - \Theta(i))$ Capacity: $cap: E \to \mathbb{R}_{\geq 0}$

Let $\pi(s, t)$ a path from s to t:

$$\|\pi\| = \sum_{e \in \pi} b(e)^{-1} (= \text{length of } \pi)$$

$\|\pi\| = \sum_{oldsymbol{e} \in \pi} b(oldsymbol{e})^{-1} (= ext{length of } \pi)$

$$\underline{cap}(\pi) = \min\{cap(e) \mid e \in \pi\}$$

Let $\pi(s, t)$ a path from s to t:

Switching Heuristic [GRW+18]

 $(\tau) \qquad \bigcirc \qquad 4 \qquad \qquad$

4

3

Let $\pi(s, t)$ a path from s to t:

- $\|\pi\| = \sum_{e \in \pi} b(e)^{-1} (= \text{length of } \pi)$
 - $\underline{\operatorname{cap}}(\pi) = \min\{\operatorname{cap}(e) \mid e \in \pi\}$
 - $\Delta\theta(\pi) = \|\pi\| \cdot \underline{\operatorname{cap}}(\pi)$

Let $\pi(s, t)$ a path from s to t:

 $\|\pi\| = \sum_{e \in \pi} b(e)^{-1} (= \text{length of } \pi)$

$$\underline{\operatorname{cap}}(\pi) = \min\{\operatorname{cap}(e) \mid e \in \pi\}$$

$$\Delta \theta(\pi) = \|\pi\| \cdot \underline{\operatorname{cap}}(\pi)$$

 $\pi_{\text{lim}}(s, t) = \min\{\Delta\theta(\pi) \mid \pi \text{ is } s\text{-}t\text{-path}\}$

8 109 \mathbf{S} $\|\pi_1\| = 3$ $\underline{\operatorname{cap}}(\pi_1) = 2$ $\Delta\theta(\pi_1) = 3 \cdot 2 = 6$

6

Switching Centrality: Which edge limits the power flow in most cases?

Switching Centrality: Which edge limits the power flow in most cases?

$$c_{\mathsf{sw}}(e) \coloneqq rac{\#\pi_{\mathsf{lim}}(s,t,e)}{\#\pi_{\mathsf{lim}}(s,t)}$$

. .

``

Switching Centrality: Which edge limits the power flow in most cases?

What are the effects of switching over time?

What are the effects of switching over time?

Switching of e_1 at $t_0 = 100$

What are the effects of switching over time?

What are the effects of switching over time?

- \Rightarrow Phase angles ϕ_i adopt
- \Rightarrow Frequencies $\dot{\phi}_i$ are perturbed

- How do phase and frequency develop over time?
- Characterize generators and loads by their rotations

- How do phase and frequency develop over time?
- Characterize generators and loads by their rotations

- How do phase and frequency develop over time?
- Characterize generators and loads by their rotations

- How do phase and frequency develop over time?
- Characterize generators and loads by their rotations

Evaluation

- NESTA Dataset [CGS14]
- Compute switching centrality
- Solve dynamic equations
- Compare properties

9/15

Does the switching centrality correlate to system stability?

- Small-signal analysis
- Mean-field theory

Stability

Does the switching centrality correlate to system stability?

Stability

Does the switching centrality correlate to system stability?

 \Rightarrow Switchings with highest centrality yield a stable network.

Load Redistribution

Is more load redistributed after switching with lower centrality?

Edge load: Capacity saturation with load flow

Load Redistribution

Is more load redistributed after switching with lower centrality?

Edge load: Capacity saturation with load flow

Load Redistribution

Switching of edge (22, 23)

Accumulated Load Redistribution

Accumulated Load Redistribution

Conclusion

- Connect static and dynamic model
- Centrality measure provides useful switchings
- Stable net for high centrality
- More load redistribution for low centrality
- Exceptions due to topological properties

Image Source: A Decomposition Algorithm to Solve the Multi-Hop Peer-to-Peer Ride-Matching Problem - N. Masoud et al.

28 April 2020

14/15

- Limit heuristic to certain topologies (2-connected, ...)
- Refine dynamic model
- Time-expanded networks
 - Invalid states
 - Continuous Time-expanded

Sources

- Carleton Coffrin, Dan Gordon, and Paul Scott. NESTA, The NICTA Energy System Test Case Archive. nov 2014.
- G. Filatrella, A. H. Nielsen, and N. F. Pedersen.
 Analysis of a power grid using a Kuramoto-like model.
 The European Physical Journal B, 61(4):485–491, feb 2008.
 - Alban Grastien, Ignaz Rutter, Dorothea Wagner, Franziska Wegner, and Matthias Wolf.

The Maximum Transmission Switching Flow Problem. pages 340–360, 2018.

Small-Signal Analysis

1) Reduce to first order

System:

$$\dot{\phi}_{i} = \omega_{i}$$
$$\dot{\omega}_{i} = \underbrace{P_{i} - \alpha \omega_{i} + \sum_{j=1, j \neq i}^{n} K_{ij} \sin(\phi_{j} - \phi_{i})}_{=f_{i}(\phi, \omega)}$$

$$\begin{pmatrix} \dot{\phi} \\ \dot{\omega} \end{pmatrix} = \begin{pmatrix} \omega \\ f(\phi, \omega) \end{pmatrix}$$

2) Find equilibrium point $\boldsymbol{a} = (\phi'_1, \dots, \phi'_N, \omega'_1, \dots, \omega'_N)$

$$0 = \omega'_i \qquad \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \omega' \\ f(\boldsymbol{a}) \end{pmatrix}$$
$$0 = P_i + \sum_{j=1, j \neq i}^n K_{ij} \sin(\phi'_j - \phi'_i)$$

Small-Signal Analysis

3) Linearization:

$$\begin{pmatrix} \dot{\phi} \\ \dot{\omega} \end{pmatrix} = \begin{pmatrix} \omega \\ f(\boldsymbol{a}) \end{pmatrix} \implies \qquad \begin{pmatrix} \dot{\phi} \\ \dot{\omega} \end{pmatrix} = \begin{pmatrix} \omega' \\ f(\boldsymbol{a}) \end{pmatrix} + \boldsymbol{J}(\boldsymbol{a}) \cdot (\begin{pmatrix} \phi \\ \omega \end{pmatrix} - \boldsymbol{a})$$

4) Calculate eigenvalues λ_i for J(a):

Stable: $\operatorname{Re}(\lambda_i) < 0 \ \forall i$ Unstable: $\exists i : \operatorname{Re}(\lambda_i) > 0$ Unknown ("critical"): $\operatorname{Re}(\lambda_i) \leq 0 \ \forall i \land \exists i : \operatorname{Re}(\lambda_i) = 0$

Edge Load

$$\ddot{\phi}_{i} = P_{i} - \alpha \dot{\phi}_{i} + \sum_{j=1}^{n} \underbrace{\mathcal{K}_{ij} \sin(\phi_{j} - \phi_{i})}_{=\mathcal{F}_{ji}}$$

Edge load: $L_{ij} = \frac{F_{ij}}{\mathcal{K}_{ij}} = \sin(\phi_{j} - \phi_{i})$

Accumulated Load Redistribution

•
$$L_{ij}^1 = L_{ij}(t_0 - \delta),$$
 $L_{ij}^2 = L_{ij}(T)$
 $\Delta L_{ijacc} := \sum_{\{i,j\} \in E} |L_{ij}^1 - L_{ij}^2|$

Mean-Fields

- Centroid on complex plane
- r: phase coherence
- ψ : average phase angle

 $re^{i\psi} = rac{1}{N}\sum_{i=1}^{n}e^{i\phi_{j}}$

Mean-Fields

$$r_{mean} \coloneqq \textit{Re}\left(rac{1}{N}\langle |\sum_{i=1}^{n}e^{i\phi_{j}(t)}|
angle_{t}
ight)$$

Mean-Fields

