

Towards Realistic Flow Control in Power Grid Operation

Energy Informatics · Nov 13, 2015

Tamara Mchedlidze, Martin Nöllenburg, Ignaz Rutter, Dorothea Wagner and Franziska Wegner

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP Karlsru Switzerland (CH) Austria (A) KIT – University of the State of Baden-Wuerttemberg and www.kit.edu National Laboratory of the Helmholtz Association

PROSUMER

POWER GRID

PROSUMER

PROSUMER

Motivation

Challenges

- Increasingly distributed energy production
- Independent power producers
- Volatile power flows and flow directions
- ⇒ Operating the power grid gets more demanding

Strategies to cope with the challenges

- Network expansion
- Investment in advanced control units (e.g. FACTS) for better utilization of existing grid

Problem of Power Grid Operator

Given:

Power grid with parameters

Find:

- Valid operation point (respecting thermal branch limits) for power grid with control units at selected branches
- Energy production of each power generator

Goals:

- Minimize production cost (similar to OPF)
- Minimize branch losses

operation cost

How may we simplify the power grid operator's work?

Problem of Power Grid Operator

Given:

Power grid with parameters

Find:

- Valid operation point (respecting thermal branch limits) for power grid with control units at selected branches
- Energy production of each power generator

Goals:

- Minimize production cost (similar to OPF)
- Minimize branch losses

operation cost

How may we simplify the power grid operator's work?

⇒ Place FACTS to enhance controllability.

DC-based Flow Models

Straight-forward transformation:

■ Power grid \rightarrow graph G = (V, E)

- Power grid \rightarrow graph G = (V, E)
- Buses → vertex set V

- Power grid \rightarrow graph G = (V, E)
- Buses → vertex set V
- **Branches** \rightarrow edge set *E* with capacity function c(e)

- Power grid \rightarrow graph G = (V, E)
- Buses → vertex set V
- **Branches** \rightarrow edge set *E* with capacity function c(e)
- Generators \rightarrow set $V_G \subseteq V$ of generator buses

- Power grid \rightarrow graph G = (V, E)
- Buses → vertex set V
- **Branches** \rightarrow edge set *E* with capacity function c(e)
- Generators \rightarrow set $V_G \subseteq V$ of generator buses
- Load \rightarrow set $V_L \subseteq V$ of load buses

Kirchhoff's circuit laws:

Kirchhoff's current law Kirchhoff's voltage law

control unit

Kirchhoff's circuit laws:

Kirchhoff's current law Kirchhoff's voltage law

Kirchhoff's current law Kirchhoff's voltage law

Flow Model

— control unit

Kirchhoff's circuit laws:

Kirchhoff's current law

Kirchhoff's voltage law

Kirchhoff's current law Kirchhoff's voltage law

Hybrid Model = Flow Model + Physical Model

Hybrid Model = Flow Model + Physical Model

control unit

Kirchhoff's circuit laws:

Kirchhoff's current law

Kirchhoff's voltage law

Kirchhoff's current law

Kirchhoff's voltage law

Hybrid Model = Flow Model + Physical Model Lower Bound

control unit

Kirchhoff's circuit laws:

Kirchhoff's current law

Kirchhoff's voltage law

Kirchhoff's current law

Hybrid Model = Flow Model + Physical Model **Upper Bound** Lower Bound

Research Questions

Control units are expensive – how many do we need?

- (Q1) How many controlled branches are necessary for globally optimal power flows? Which branches need to be controlled?
- (Q2) For a given number of available control branches, is there a positive effect on flow costs and operability when approaching grid capacity limits?

Controller Placement on Buses [Leibfried et al., 2015]

Controller Placement on Buses [Leibfried et al., 2015]

Number of Control Branches

For each benchmark case: $\max_{\lambda} \min \#Controller$

Matching the Flow Model (Q1)

How many flow control branches are necessary to obtain globally optimal power flows and which branches need to be controlled?

Left Figure:

² http://www.lichtenwald-mentaltraining.de/files/bild_licht_im_wald.jpg

Globally Optimal Power Flows

Can we become as good as the Flow Model with fewer control branches?

Feedback Forest Set

Feedback Forest Set

Feedback Forest Set

Theorem 1

Physical subgrid forest =

All flows obey voltage laws

Fewer than 7 flow control buses sufficient?

feedback cactus set

Theorem 2

Physical subgrid cactus, line limits on cactus suitably bounded.

For every flow there is a cost-equivalent flow obeying voltage laws.

Number of Control Branches vs. Structural Results

Number of Control Branches vs. Structural Results

Findings

Often a small number of flow control branches suffices for matching cost of the flow model.

Findings

Smaller number of FACTS are sufficient for placing controller on branches rather than buses.

Effect of Few Flow Control Branches (Q2)

For a given number of available control branches, is there a positive effect on flow costs and operability when approaching grid capacity limits?

Figures FLTR:

http://www.abb.com/cawp/seitp202/c36f4e62da52ab46c1257670003690d3.aspx
http://electrical-engineering-portal.com/facts-flexible-ac-transmission-systems

Simulate load increase by a load increase factor ρ , Simulations with different numbers of flow controllers.

Test Data:

- IEEE instances have basically "unlimited" edge capacities
- Reduce capacities to total demand (no effect on cost and feasibility)
- Gradually increase all loads by factor ρ , or, alternatively, reduce all capacities by $1/\rho$
- Compute generation cost and required number of controllers for optimality

Hybrid Model Operation under Increasing Loads

case 57

Hybrid Model Operation under Increasing Loads

Findings

Very few flow control branches extend operation point at lower cost.

Summary & Future Work

North Sea

Hybrid Model = Flow Model + Physical Model

Question 1: Optimality

- How many controlled branches?
- Which branches need control?

Question 2: Cost & Operability

Is there a positive effect on flow costs and operability?

Findings

Often a small number of flow control branches suffices

rance

Switzerland (CH)

Findings

- Extend the operation point
- Lower operation cost having only very few flow control branches

Austria (A)

Summary & Future Work

North Sea

Hybrid Model = Flow Model + Physical Model

Question 1: Optimality

- How many controlled branches?
- Which branches need control?

Question 2: Cost & Operability

Is there a positive effect on flow costs and operability?

Findings

Often a small number of flow control branches suffices

Tarroo

Switzerland (CH)

Findings

- Extend the operation point
- Lower operation cost having only very few flow control branche

Austria (A)

