

SCI / RU1 Networks and System Integration

The Maximum Transmission Switching Flow Problem

Alban Grastien¹, Ignaz Rutter², Dorothea Wagner³, Franziska Wegner³, and Matthias Wolf³

¹ Australian National University & Data61, ² University of Passau, ³ Karlsruhe Institute of Technology

Operation of Power Grids [2]

Challenges

- Shift towards renewable distributed energy production,
- → Changing energy flow patterns,
- Independent power producers,
- Volatile power flows and flow directions,
- ⇒ Operation of the power grid becomes more demanding.

Strategies to cope with the challenges

- 1. Extend the grid with additional transmission lines,
- 2. Install control units like circuit breakers (switches) to enhance grid utilization (our approach).

Problem Statement [2, 3]

Goal

Maximize the throughput of the network.

Input

- Network $N := (G = (V, E), V_G, V_C, cap, b)$ representing power grid with buses, lines, generators $s \in V_G$, loads $t \in V_C$, capacities and susceptances,
- \blacksquare Set $S \subseteq E$ of switched edges (circuit breakers),
- Braess' Paradox meaning adding a line might increase the cost.

Models

■ MAXIMUM POWER FLOW (MPF) assumes $S = \emptyset$ and requires an electrically feasible flow obeying the conservation of flow, feasible thermal line limits, and voltage laws [2]. Latter is defined by

$$b(u,v) \cdot (\Theta(u) - \Theta(v) - \Theta_{\text{shift}}(u,v)) = f(u,v) \qquad \forall (u,v) \in E,$$

$$\Theta_{\min}(u) \leq \Theta(u) \leq \Theta_{\max}(u) \qquad \forall u \in V.$$

■ MAXIMUM TRANSMISSION SWITCHING FLOW (MTSF) assumes $S \subseteq E$ and requires an electrically feasible flow on N-S with $MTSF(N) := \max_{S \subset E} MPF(N - S)$

$$\begin{array}{ll} b(u,v)\cdot z(u,v)\cdot (\Theta(u)-\Theta(v))=f(u,v) & \forall (u,v)\in E,\\ |f(u,v)|\leq z(u,v)\cdot \mathrm{cap}(u,v) & \forall (u,v)\in E,\\ \text{where }z\colon E\to\{0,1\}. \end{array}$$

where $z: E \rightarrow \{0,1\}$.

Find

The lines to be switched and the voltage angles.

Source-Sink-Network

Idea

- *MTSF* on networks with one generator $s \in V_G$ and one load $t \in V_C$,
- Function that calculates the voltage angle difference on any u-v-path $\pi(u,v)$ \min cap(i,j),
- \bullet s-t-networks are often dominated by a path having the smallest $\Delta\Theta(\pi(s,t))$ $DTP(u,v) := \Delta\Theta_{\min}(u,v) := \min \Delta\Theta(\pi(u,v)),$
- Calculated using modified multi-criteria shortest-path algorithm.

On **general networks** the *switching centrality* $c_5: E \to \mathbb{R}_{\geq 0}$ is defined by

where $\sigma_{DTP}(s,t,e)$ is the number of DTP-paths between s and t that use e, $\sigma_{DTP}(s,t)$ is the total number of DTP-paths from s to t and $m_B = |V|(|V|-1)$.

MAXIMUM SPANNING TREE

Description

The MAXIMUM SPANNING TREE (MaxST) removes from each cycle the line with the smallest capacity.

MaxST on Cacti

Note that *MTSF* is *NP*-hard on cacti [4].

Theorem 1

MaxST is a factor 2 approximation algorithm for the MTSF problem on cacti.

Simulations on General Networks

Simulations on NESTA benchmark sets that are more realistic than the IEEE benchmark sets, e.g., with regards to thermal line limits.

≥1.00-.⊑ 0.75 -0.50 <u>=</u>0.25 Edges normalized by factor |E|

32% quantile — 35% quantile — 75% quantile

MaxST on **general graphs** is in most cases very close to the OPT_{MTSF} .

The MPF decreases mainly for lines having a small centrality c_5 .

Future Work

- Can the DTP be computed in polynomial time?
- Is there a PTAS on cacti?
- What happens if we minimize the number of switches or fix a set of non-switchable edges?

Literature

- [1] A. Grastien, I. Rutter, D. Wagner, F. Wegner, and M. Wolf. The Maximum Transmission Switching Flow Problem. ACM e-Energy. 340–360. 2018. Doi: 10.1145/3208903.3208910.
- . Frank, I. Steponavice, and S. Rebennack. *Optimal power flow: a bibliographic survey I.* Energy Systems, 3(3):221–258, 2012.
- [3] E. B. Fisher, R. P. O'Neill, and M. C. Ferris. Optimal transmission switching. IEEE Transactions on Power Systems, 23(3):1346–1355, 2008. ISSN 0885-8950. Doi: 10.1109/TPWRS.2008.922256.
- [4] K. Lehmann, A. Grastien, and P. Van Hentenryck. *The complexity of DC-switching problems*. CoRR, abs/1411.4369, 2014.