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Algorithms and data structures are at the heart of every
computer application and thus of decisive importance for
permanently growing areas of engineering, economy, sci-
ence, and daily life. The searching and ranking algorithms
in search engines and the pattern matching algorithms
crucial for reading the human genome are only a few
spectacular examples how algorithms can change our life.

But how is algorithmic innovation transferred to ap-
plications? Traditionally, algorithmics used the method-
ology of algorithm theory which stems from mathematics:
Algorithms are designed using simple models of prob-
lem and machine. Main results are provable performance
guarantees for all possible inputs. This approach often
leads to elegant, highly reliable, and timeless solutions
that can be adapted to many applications. From the
point of view of algorithm theory, taking up and im-
plementing an algorithmic idea is part of application
development. Unfortunately, it can be universally ob-
served that this mode of transferring results is a slow
process. With growing requirements for innovative al-
gorithms, this causes growing gaps between theory and
practice: Realistic hardware with its parallelism, mem-
ory hierarchies etc. is diverging from traditional machine
models. Applications grow more and more complex. At
the same time, algorithm theory develops more and more
elaborate algorithms that may contain important ideas
but are usually not directly implementable. Furthermore,
real-world inputs are often far away from the worst case
scenarios of the theoretical analysis. In extreme cases,
promising algorithmic approaches are neglected because
a mathematical analysis would be difficult.

Since the early 1990s it therefore became more and
more apparent that algorithmics cannot restrict itself to
theory. So, what else should algorithmicists do? Experi-
ments play a pivotal here. Algorithm engineering (AE) is
therefore sometimes equated with experimental algorith-
mics. However, this view is too limited. First of all, to do
experiments, you also have to implement algorithms. This

is often equally interesting and revealing as the experi-
ments themselves, needs its own set of techniques, and is
an important interface to software engineering. Further-
more, it makes little sense to view design and analysis on
the one hand and implementation and experimentation
on the other hand as separate activities. Rather, a feedback
loop of design, analysis, implementation, and experimen-
tation that leads to new design ideas materializes as the
central process of algorithmics.

This cycle is quite similar to the cycle of theory build-
ing and experimental validation in Popper’s scientific
method. We can learn several things from this compar-
ison. First, this cycle is driven by falsifiable hypotheses
validated by experiments — an experiment cannot prove
a hypothesis but it can support it. However, such support
is only meaningful if there are conceivable outcomes of
experiments that prove the hypothesis wrong. Hypothe-
ses can come from creative ideas or result from inductive
reasoning stemming from previous experiments. Thus we
see a fundamental difference to the deductive reasoning
predominant in algorithm theory. Experiments have to
be reproducible, i. e., other researchers have to be able to
repeat an experiment to the extent that they draw the
same conclusions or uncover mistakes in the previous
experimental setup.

There are further aspects of AE as a methodology for
algorithmics, outside the main cycle. Design, analysis and
evaluation of algorithms are based on some realistic model
of the problem and the underlying machine. Applications
are coupled to the AE process in many ways. In particular,
realistic inputs are important for meaningful experiments.
Application engineering is the process of adapting experi-
mental implementations to the particular requirements of
an application. Since algorithm engineers may not know
all the applications for which their algorithms will be
used, algorithm libraries of highly tested codes with clear
simple user interfaces are a further important link be-
tween AE and applications.
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Figure 1 Algorithm engineering as a cycle of design, analysis, imple-
mentation, and experimental evaluation driven by falsifiable hypotheses.
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Figure 1 summarizes the resulting schema for AE as
a methodology for algorithmics. The articles in this spe-
cial issue have been selected to exemplify the key activity
areas in this diagram. Some of them come from partic-
ipants in the DFG priority program on algorithm en-
gineering (http://www.algorithm-engineering.de/) which
has greatly strengthened AE research in Germany.

Bader, Ediger, and Kang discuss the challenges coming
from realistic machine models: ever increasing parallelism,
deep memory hierarchies, heterogeneous architectures,
and the need to adapt every single performance critical
application because the free lunch of ever increasing clock
speeds is over.

Real time scheduling used to be an area with import-
ant practical applications but considerable gaps to theory.
Eisenbrand et al. report on the solution of a scheduling
problem arising in the avionics industry where current
state-of-the-art approaches to tackle the problem are by
far not powerful enough to solve instances of real-world
size. Using the AE paradigm they analyzed the mathemat-
ical properties of the scheduling problem and designed
sophisticated solution methods based on the structural
insights. The result is a model that outperforms current
state-of-the-art approaches by several orders of magni-
tude and solves industrial size real-world instances to
optimality.

Manthey and Réglin show how AE can imply in-
teresting new challenges for algorithm analysis beyond
traditional worst case analysis. They give two interesting
examples how smoothed analysis can fathom the gap be-
tween worst case (which is often too pessimistic) and
plain average case analysis (which is usually unrealis-
tic). A knapsack algorithm that takes exponential time
in the worst case becomes efficient in this model. Simi-
larly, smoothed analysis explains why a well known local
search algorithm for a facility location problem works
well in practice.

The article on certifying algorithms by Mehlhorn et al.
explains an effective way to ensure correct results of algo-
rithm implementations. The idea is to check each returned
result for correctness using a simple checker. It then

suffices to test or perhaps verify the checker. Making
checking fast implies interesting algorithmic questions
when checking is aided by certificates of correctness com-
puted by the main algorithm.

Delling, Goldberg and Werneck report on techniques
for fast route planning that have developed into a show
piece of AE in the last years — leading to exact route
computation in continental size road networks within
less than a microsecond. Experiments play a pivotal role
here because real world networks have special properties
like a pronounced hierarchy that enormously simplify
the problem compared to the worst case. They also give
an example, where closing the AE cycle and going back
to theory gives additional insights and motivates further
improved algorithms.

The last article by Mohring illustrates the differences in
methodology of algorithm engineering in a lab environ-
ment and in real world applications. The article selects
two applications — a project on improving the routing
of automated guided vehicles in a container terminal and
a project on improving the coating of coils in a steel com-
pany. The author shows the different aspects of a close
interaction and collaboration with industrial partners. In
particular, he gives some insight into his experiences with
“playing this game” and how it can lead to great and un-
expected scientific results.
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