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IRequirements for Clusterings KIT

@ Start with a small set of desiderata, or try the converse: it might be
more contradicting combinations of desiderata
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IProperties of Objective Functions T

@ Consider the desiderata and the objective functions mentioned in the
lecture. Try to discover violations.

@ Don't attempt to be optimal, unless you want to spend a lot of time on
it! Something close to matching is pretty good in sparse networks,
start with that.

@ You just need the modularity of any good clustering, this is a lower

bound for the optimum. Make up a clustering on a scalable sparse

graph, calculate or bound its modularity. A simple quadratic grid might
be a simple family.

Strenuous and technical.

Setting the density constraint to 1, the decision version is equivalent to

the question: (min-cut clique partition) Is there a partition C of V into

cligues such that the number of intra-cluster edges ist at least k?

Try to reduce from the following problem:

Exact Cover by 3-Sets (X3C): Given set X with | X| = 3qg and collection S of 3-element

subsets of X. Does S contain an exact cover for X, i.e., a subcollection S’ C S such

that every x € X occurs in exactly one S € S’ ?
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IGreedy Merge Modularity IT

@ Carefully note how entries in the merge matrix change.
First find out what Amod, « is, i.e., the change in modularity if C; and
Cy are merged.
Then, given C; and C; are merged, show that
Amod(,-jM = AmOdi,k + Amodjyk
Based on these observations and on how the greedy algorithm works,
complete the argument.
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IGreedy Merge General AIT

@ A vectorial point of view is one way of proving this. The key
observation here is that when merging clusters, the resulting density is
the vectorial (or component-wise) addition of the numerators and the
denominators of the summands.

@ Solutions can be found in [Schumm et al.: Density-constrained Graph
clustering, 2011]
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@ Do not re-initialize an array repeatedly, re-use the array but keep track
of which entries are valid.
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IBounds Guaranteed by Min-Cuts IT

Problem 1: We prove the assertion by contradiction. Suppose there is a cut (P, Q) in C such
that ¢(P, Q) < a min{|P|,|Q|}. Without loss of generality we assume the representative r(C)
isin P. Thenitis

ca(P, P)

c(P,Q) +c(P,V\ C) + P
a]Q| +¢(P,V\ C) + a|P|

a|Q 4+ ¢(P,V\ C)+a|P|+¢(Q,V\ C)
a|C|+¢(C, V\ C) = ¢a(C, C).

IN A

This contradicts the fact that (C, C) is a minimum r(C)-t-cut in G,.

Problem 2: We prove the assertion by contradiction. Suppose ¢(C, V \ C) > «|V'\ C|. Then
it is

ca({t}, V)

alV\C|+ «a|C|
c(C,V\C)+ alC|
ca(C, C).

A

This contradicts the fact that (C, C) is a minimum r(C)-t-cut in G,.
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IVariabIes and Constraints

The last item is a bit more difficult, please find suggestions for solutions in
[Schumm et al.: Density-constrained graph clustering, 2011, full technical report
version]
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