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Scenario of Network Analysis
Given a network . . .
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explore the instance
derive its structure
identify its properties

How can we learn about the instance?
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An Archetypal Example
“Zachary’s Karate Club”, a real, social network
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2 years of observation
34 vertices = members
78 edges = social ties

club split up after dispute
manager vs. trainers
archon of toy examples

Caused by an “unequal flow of sentiments and information across the ties”
a “factional division led to a formal separation of the club”.
[Wayne Zachary: An Information Flow Model for Conflict and Fission in Small Groups, ’77]
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A Glimpse of Network Analysis
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A Glimpse of Network Analysis

size, density,
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#vertices = 34, #edges = 78, ∅-degree = 4.6
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A Glimpse of Network Analysis

size, density, centrality / importance,
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A Glimpse of Network Analysis

size, density, centrality / importance, distances,
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A Glimpse of Network Analysis

size, density, centrality / importance, distances, maximum flow,
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Degree Distribution
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Two Basic Models and their Degrees

Question: What is a reasonable random model emulating real networks?

Gilbert’s model G(n,p) / Erdős-Réniy model G(n,m)

1. introduce n vertices
2. for each pair {u, v} ∈

(V
2

)
, connect {u, v} with probability p

degree distribution (binomial): P(d) =
(n−1

d

)
· pd (1− p)n−1−k

Cumulative Advantage / Preferential Attachment (n,a)
for vertices v1, . . . , vn do

add vertex vi to graph
for vi ’s edges e1, . . . ,ea do

connect vi to (other) (non-adjacent) vertex u, with prob.∼ deg(u)

degree distribution: P(d) ∼ d−γ (with γ = 3 for this specific setup)
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Core-Decomposition: Definition

Definition (k -core of a graph)
Maximum subset of vertices Vk ⊆ V such that each v ∈ Vk has at least k
neighbors in Vk (i.e.: ∀v ∈ Vk : |N(v) ∩ Vk | ≥ k ).
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Core-Decomposition: Example
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Core-Decomposition: Example

0-core
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Core-Decomposition: Example

0-core

0-shell
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Core-Decomposition: Example

1-core
0-core
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Core-Decomposition: Example

1-core
0-core

1-shell
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Core-Decomposition: Example

1-core
0-core

2-core

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 11/150



Core-Decomposition: Example

1-core
0-core

2-core

2-shell
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Core-Decomposition: Example

1-core
0-core

2-core

3-core
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Core-Decomposition: Example

1-core
0-core

2-core

3-core

3-shell
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Core-Decomposition: Example

1-core
0-core

2-core

3-core

4-core
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Centrality

Idea: “[quantify intuition that some vertices are more central than others]”1

(note: coreness and degree are special measures for centrality)

Other important centrality measures are:
eccentricity: 1/ distance to farthest vertex in G
closeness: 1/ sum of distances to all vertices in G
stress: total number of shortest paths requiring vertex v
betweenness: sum of ratios of shortest paths requiring vertex v (over
all pairs s, t 6= v )
reach: maximum over all shortest s-t-paths v participates in:
min{distance(s, v), distance(v , t)}
Katz: spectral, random walk, PageRank TODO

1[[Brandes, Erlebach (eds.) ’05, Network Analysis, Methodological Foundations]]
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A Glimpse of Network Analysis

graph clustering / detecting communities
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Why Graph Clustering?

diverse field of network analysis
graph clustering = search for structure in networks
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edges 57
cyclic yes
planar no
components 1
density 0.2065
avg. degree 4.75
core depth 4
triples 233
triangles 40
transitivity 0.515
clust. coeff. 0.6157
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Clustering: Intuition to Formalization
Task: partition graph
into natural groups
Paradigm:
intra-cluster density
vs. inter-cluster
sparsity

Different approaches exist to formalize this paradigm, usually:

Paradigm of Graph Clustering
Intra-cluster density vs. inter-cluster sparsity

⇓
Mathematical Formalization

quality measures for clusterings

Many exist, optimization generally (NP-)hard
There is no single, universally best strategy
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Algorithm Engineering

Algorithms

implement

design

experim
ent

an
al

yz
e

modelling reality is hard

finding optima is hard
satisfying needs of
application is hard

still, we do need to cluster
⇒ need good foundation
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Formalization via Bottleneck
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Quality of the clustering, upper cluster:

inter-cluster sparsity: 2 edges for cutting off 7 nodes (cheap)
intra-cluster density: best addit. cut:
intra-cluster density: 3 edges for cutting off 4 nodes (expensive)
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Quality of the clustering, upper cluster:
inter-cluster sparsity: 2 edges for cutting off 7 nodes (cheap)
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Formalization: Counting Edges
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Measuring clustering quality by counting edges:
inter-cluster sparsity: 6 edges of ca. 800 node pairs (few)

intra-cluster density: 53 edges of 99 node pairs (many)
example: quality measure coverage = # intra-cluster edges

# edges

≈ 0.9
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Clustering vs. Partitioning

clustering partitioning
purpose analysis (pred.) handling of instance
. . . and then? zoom/abstraction computations on parts

# of parts open predefined (upper bound)
size of parts open upper bound (or even fixed)
criteria various (later) weighted cuts
constraints often none see above

applications various (later) often: distributed finite element
methods on 3d-meshes of objects
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Bicriterial Formulations

observations:
1 clusterings often “nice” if balanced (like partition)
2 intra-density vs. inter-sparsity is bicriterial

bicriterial (or multi-) measures for clusterings can help:
constrain sparsity within clusters
constrain density between clusters
explicitly formulate desiderata

(more on bicriteria later)
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Postulations to a Measure
Given a graph G and a clustering C, a quality measure should behave as
follows:

more intra-edges⇒ higher quality

less inter-edges⇒ higher quality
cliques must never be separated
clusters must be connected
random clusterings should have bad quality
disjoint cliques should approach maximum quality
locality of the measure (being better/worse in one part does not
depend on what is done in other part of graph)
double the instance, what should happen . . . same result
comparable results across instances
fulfill the desiderata of the application
. . .

exercise: choose desiderata and design a measure!
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A Theorem of Impossibility
A warning theorem on the field of data clustering:

Theorem
Given set S.
Let f : d 7→ Γ be a function on a distance function d on set S, returning a
clustering Γ.
No function f can simultaneously fulfill the following:

Scale-Invariance
for any distance function d and any α > 0, we have f (d) = f (α · d)

Richness
for any given clustering Γ, we should be able to define a distance function d
such that f (d) = Γ

Consistency
if we build d ′ from d by reducing intra-distances and increasing
inter-distances, we should have f (d ′) = f (d)

[Jon Kleinerg: An Impossibility Theorem for Clusterings, 2002]
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Still, there is structure in networks!
we want/need to find it, and it is doable in practice

AS network, decomposed by a clustering;
nodes with a high (low) betweenness are

colored red (green)

a network created with BRITE, designed to
emulate the AS topology

[Görke at al.: LunarVis – analytic visualizations of large graphs, 2008]
[Medina et al.: BRITE – an approach to universal topology generation, 2001]
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Structure
1 Introduction

Scenario: Network Analysis
Paradigm of Clustering
Example Applications

2 Formalization of Aims and Objectives
Objective Functions

3 Algorithmic Approaches
Greedy Merge
Local Moving and Multilevel
Clustering with Minimum-Cut Tree
Integer Linear Programs
Other Algorithmic Approaches

4 Experimental Evaluation
The Role of Test Data in Algorithm Engineering
Comparing Clusterings

5 Dynamic Graph Clustering
Online Dynamic Clustering
Offline Dynamic Clustering

6 Appendix
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Applications

A simplified ecosystem: the antarctic food web
(source: Antarctica)

cluster ≈ self-sustaining / indivisible subsystem
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Applications

Company-internal email traffic, groups are departments
(source: )
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Applications

Excerptof the network of Amazon recommendations, around
”VW Beetle Repairs”

(source: [Gaertler 07])

cluster ≈ customer profile
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Applications

Road network of Europe, 18M vertices, 42M vertices
(source: PTV)

cluster ≈ urban areas used for preprocessing in route planning
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Applications

molecular structure of a protein
(Ca2+ /Calmodulin-dependent kinase II (CaMKII)

source: protein database www.rcsb.org)

cluster ≈ functional unit (domain) of a protein
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Applications

protein interactions
(source: Max-Delbrück-Centre for molecular medicine, www.mdc-berlin.de)

cluster ≈ isolatable seat of disease
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Application: Shopping Data

Data:
product base
product, classification,
brand, setup block, . . .
store base
location, type, size,
catchment area, . . .
customer base
customer number, age,
gender, post code, . . .
receipts
“Who bought what, when
and where?” (example network of receipt-similarity

one store, one month, clustered)
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Scaling of Real-World Instances

”Zachary’s Karate Club“)
(vertices/edges = 34/78)
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Scaling of Real-World Instances

”US college football“ teams and matches
(vertices/edges = 115/616)
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Scaling of Real-World Instances

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 27/150

variables of a
SAT-instance
edges = direct dep.
(electr. components)
(vertices/edges ≈ 2K/6K)



Scaling of Real-World Instances

sci. collaborations:
3-hop neighorhood
von D. Wagner
(DBLP)
(vertices/edges ≈ 10k/40k)
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Scaling of Real-World Instances

physical Internet: autonomous systemes
(vertices/edges ≈ 20K/60K)
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Scaling of Real-World Instances

instance vertices edges

coauthors in DBLP 300K 1M

roads in the USA 24M 60M

WWW: .UK-domain ’02 20M 500M

( neurons in human brain & 1011 ∼ 1017 )
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Quality of the clustering, upper cluster:

inter-cluster sparsity: 2 edges for cutting off 7 nodes (cheap)
intra-cluster density: best addit. cut:
intra-cluster density: 3 edges for cutting off 4 nodes (expensive)
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Examples: Conductance, Expansion
generalization to case of weighted edges ω(e) 6≡ 1
e.g.: ω(E ′) =

∑
e∈E′ ω(e) or ω(v) =

∑
e∼v ω(e)

conductance of a cut (C,V \ C):

ϕ(C,V \ C) :=
ω(E(C,V \ C))

min
{∑

v∈C

ω(v),
∑

v∈V\C
ω(v)

}

(i.e.: thickness of bottleneck which cuts off C)

inter-cluster conductance (C) := 1−maxC∈C ϕ(C,V \ C)
(i.e.: 1− worst bottleneck induced by some C ∈ C)

intra-cluster conductance (C) := minC∈C minP]Q=C ϕ|C(P,Q)
(i.e.: best bottleneck still left uncut inside some C ∈ C)

expansion of a cut (C,V \ C):

ψ(C,V \ C) :=
ω(E(C,V \ C))

min
{
|C|, |V \ C|

}

(i.e.: in ϕ, replace ω(v) by 1; intra- and inter-cluster expansion analogously)
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Formalization: Counting Edges
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Measuring clustering quality by counting edges:
inter-cluster sparsity: 6 edges of ca. 800 node pairs (few)

intra-cluster density: 53 edges of 99 node pairs (many)
example: quality measure coverage = # intra-cluster edges

# edges

≈ 0.9
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Example Counting Measures

coverage: cov(C) := # intra-cluster edges
# edges

(i.e.: fraction of covered edges)

performance: perf(C) := # intra-cluster edges+# absent inter-cluster edges
1
2 n(n−1)

(i.e.: fraction of correctly classified pairs of nodes)

density: den(C) := 1
2

# intra-cluster edges
# possible intra-cluster edges + 1

2
# absent inter-cluster edges

# possible inter-cluster edges
(i.e.: fractions of correct intra- and inter-edges)

modularity: mod(C) := cov(C)− E[cov(C)]
(i.e.: how clear is the clustering, compared to random network?)
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Motivation for Modularity

Raul

Susan

Phil

Robyn Els

Ken

Alice

KadkaChris
Violaine

Holly

Dave
Doro Bob

Yoan

Helen
Cain

Kate
Sue

Ron

Ralph

Tess

Mandy

Didi

Diane

Elaine

Richard

Clair

Marc

Toby

Frank

Lee

coverage = # intra-cluster edges
# edges ≈ 0.9

only one cluster⇒ coverage = 1.0
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A Promising Remedy
[Girvan and Newman: Finding and evaluating community structure in networks,
’04]:
”. . . if we subtract from [coverage] the expected value [. . . ],
we do get a useful measure.”

Modularity

mod(C) := cov(C) − E(cov(C))

=
# intra-cluster edges

|#edges| − 1
4|#edges|2

∑

C∈C

(∑

v∈C

deg(v)

)2

first: stopping criterion for cutting
then: optimization criterion
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Probability Space of Modularity
Intuition: Keep expected node degrees, randomly throw in edges

1 start with set V

2 keep expected degrees
3 edge attaches to node v with p = deg(v)

2|E|

4 other end attaches to w with p = deg(w)
2|E|

5 forward and backward count twice
6 p(e) = deg(v)·deg(w)

2|E|2

3 3

2
2

4

3 4

43

3

4

2

5
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2|E|2 (non-loop)
p(e′) = 32

4·m2

e′
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43

43

4
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2

5

3 3

v

mod(C) = # intra-cluster edges
|#edges| − 1

4|#edges|2
∑

C∈C
(∑

v∈C deg(v)
)2
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Probability Space of Modularity
Intuition: Keep expected node degrees, randomly throw in edges
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2 keep expected degrees
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4 other end attaches to w with p = deg(w)
2|E|

5 forward and backward count twice
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2|E|2 (non-loop)
p(e′) = 32

4·m2

e′

v3 4

43

43

4
2 2

2

5

3 3

v

u v

w C1

C2

G, C(G)
cov = 1

2

C1

C2

1
16
u v

w 1
4

1
4

1
4

1
8

1
16

(Ω,p),
E[cov] = 5

8

mod = − 1
8 (bad!)
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Some thoughts:

(Ω,p) needs loops + parallel edges
hazardous: e.g., paper on loop removal uses loop-agnostic formula!

coverage is bad, why use it, why subtraction? exercise: use performance

modularity vs. ground-truth & other indices?
actual optimization?
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Modularity in Practice
easy to use & implement
reasonable behavior on many practical instances
; heavily used in various fields

ecosystem exploration
collaboration analyses
biochemistry
structure of the internet (AS-graph, www, routers)

close to human intuition of quality
[Görke et al.: Comp. aspects of lucidity-driven clustering, 2010]

scaling behavior (double instance, result differs) [folklore]

non-locality of optimal clustering [folklore]

resolution limit (no tiny and large clusters at the same time)
[Fortunato and Barthelemy ’07]

large sparse graph ; high values, balanced clusters exercise [Good
et al.: The performance of modularity maximization in practical contexts, 2009]
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Modularity, Algorithmic Theory

The complexity of modularity optimization:

finding C with maximum modularity is NP-hard
; reduction from 3-PARTITION

restriction to |C| = 2 also hard⇒ not FPT wrt. |C|
greedy maximization (later) does not approximate
very limited families combinatorially solvable
ILP-formulation, feasible for ≈ |V | ≤ 200

[Brandes et al.: On modularity clustering, 2008]

diverse results on approximability on specific classes of graphs

[DasGupta, Devine: On the complexity of newman’s community finding approach
for biological and social networks, 2011]
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Explicitly Bicriterial Approach

Optimization problem:
guaranteed intra-cluster density
good inter-cluster sparsity

Approach:
systematic collection of sparsity and density measures
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Inter-cluster-sparsity: A cut-based
point of view

Isolated View: Each cluster induces a cut
Pairwise View: Each pair of clusters induces a cut in their subgraph
Global View: A clustering with k clusters induces a k-way cut
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Inter-cluster sparsity: Cut Measures

A B

Number of cut-edges: |E(A,B)| = 1

Density: |E(A,B)|
|A||B| = 1

12

Expansion: |E(A,B)|
min{|A|,|B|} = 1

3

Conductance: |E(A,B)
min{vol(A),volB} = 1

7
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Inter-cluster sparsity: Cut Measures

1

vol(A) = 11 vol(B) = 7

A B

vol(C ) =
∑

v∈C deg(v)

Number of cut-edges: |E(A,B)| = 1
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∑

v∈C deg(v)

Number of cut-edges: |E(A,B)| = 1
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|A||B| = 1

12

Expansion: |E(A,B)|
min{|A|,|B|} = 1

3

Conductance: |E(A,B)
min{vol(A),volB} = 1

7

⇒ Number of cut-edges and density can be generalized to k -way cuts
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Inter-cluster Sparsity:
Degrees of Freedom
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Set of cuts
isolated (one for each
cluster)
pairwise (one for each
pair of clusters)
global (k -way cut)
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Measures
number of cut-edges
density
conductance
expansion

Set of cuts
isolated (one for each
cluster)
pairwise (one for each
pair of clusters)
global (k -way cut)
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density
conductance
expansion

Set of cuts
isolated (one for each
cluster)
pairwise (one for each
pair of clusters)
global (k -way cut)

Combinations
average sparsity
minimum sparsity



Inter-cluster Sparsity:
Degrees of Freedom

⇒ 14 (reasonable) inter-cluster sparsity measures
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Intra-cluster density

Definitions analoguous to inter-cluster sparsity possible
Finding cut with optimal density/conductance/expansion is NP-hard

Practical approach: evaluate |intra-cluster edges|
|possible intra-cluster edges|
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Intra-cluster density

6
10

Definitions analoguous to inter-cluster sparsity possible
Finding cut with optimal density/conductance/expansion is NP-hard

Practical approach: evaluate |intra-cluster edges|
|possible intra-cluster edges|

⇒ minimum/average/global intra-cluster density
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Problem Statement

Density-Constrained Clustering2

Given a graph G = (V ,E), among all clusterings with an intra-cluster
density of no less than α, find a clustering C with optimum inter-cluster
sparsity.

3 possible intra-cluster density measure
14 possible inter-cluster sparsity measures
⇒ Family of 42 optimization problems

2[Schumm et al.: Density-constrained graph clustering, 2011]
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Cluster Editing Set
“How many edges must be inserted or deleted to arrive at disjoint cliques?”

[e.g., Böcker et al.: Exact algorithms for cluster editing: evaluation and experiments]
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Cluster Editing Set
“How many edges must be inserted or deleted to arrive at disjoint cliques?”

editing set has size 5 + 12 = 17 (bad)

[e.g., Böcker et al.: Exact algorithms for cluster editing: evaluation and experiments]
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Cluster Editing Set
“How many edges must be inserted or deleted to arrive at disjoint cliques?”

editing set has size 3 + 7 = 10 (better)

[e.g., Böcker et al.: Exact algorithms for cluster editing: evaluation and experiments]

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 45/150

exercise: cluster editing set of Zachary?



Cluster Editing Set
“How many edges must be inserted or deleted to arrive at disjoint cliques?”

Task: find clustering with minimum cluster editing set
NP-complete
nicely approachable with FPT-techniques (|V | > 1000)
popular in biology

[e.g., Böcker et al.: Exact algorithms for cluster editing: evaluation and experiments]

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 45/150

exercise: cluster editing set of Zachary?



Cluster Editing Set
“How many edges must be inserted or deleted to arrive at disjoint cliques?”

Task: find clustering with minimum cluster editing set
NP-complete
nicely approachable with FPT-techniques (|V | > 1000)
popular in biology
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Formal Weaknesses?

exercise: do the proposed measures violate any desiderata?
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Structure
1 Introduction

Scenario: Network Analysis
Paradigm of Clustering
Example Applications

2 Formalization of Aims and Objectives
Objective Functions

3 Algorithmic Approaches
Greedy Merge
Local Moving and Multilevel
Clustering with Minimum-Cut Tree
Integer Linear Programs
Other Algorithmic Approaches

4 Experimental Evaluation
The Role of Test Data in Algorithm Engineering
Comparing Clusterings

5 Dynamic Graph Clustering
Online Dynamic Clustering
Offline Dynamic Clustering

6 Appendix
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How to Cluster?
Optimization of quality function:

Bottom-up: start with singletons

⇒ merge clusters

Top-down: start with the one-cluster

⇒ split clusters

Local Opt.: start with random clustering

⇒ migrate nodes

Variants of recursive min-cutting

Percolation of network by removal of highly central edges

Spectral methods using eigenanalysis of adjacency Laplacian

Direct identification of dense substructures

Random walks

Geometric approaches

. . .
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Greedy Agglomeration / Merge
dendrogram current clustering

1 start: singletons

2 iterative agglomerations, yielding highest gain in quailty
(or least decrease)

3 result: best intermediate clustering
modularity: O(n2 log n) oder O(md log n); often close to O(n log2 n)
other objective functions, like bicriterial formulations?
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Greedy Agglomeration / Merge
dendrogram current clustering

0.46
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2 iterative agglomerations, yielding highest gain in quailty

(or least decrease)
3 result: best intermediate clustering
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Larger Dendrogram

collaboration network, |V | ≈ 1000
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Influence of Measures on Algorithm:
Coarseness

inter-cluster sparsity
intra-cluster density

Rough Intuition

Question
Without constraints, is there always a merge that improves the objective
function?
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(Un-)Boundedness

Definition
An objective function measure f is unbounded if for any clustering C with
|C| > 1 there exists a merge that does not deteriorate f .

Max. pw. inter-cluster conductance
is bounded

1
8

1
8

1
8

e.g., modularity is bounded
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Inter-cluster Sparsity:
Degrees of Freedom (Rep.)

⇒ 14 (reasonable) inter-cluster sparsity measures
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Measures
number of cut-edges
density
conductance
expansion

Set of cuts
isolated (one for each
cluster)
pairwise (one for each
pair of clusters)
global (k -way cut)

Combinations
average sparsity
minimum sparsity



(Un-)Boundedness

Definition
An inter-cluster sparsity measure f is unbounded if for any clustering C
with |C| > 1 there exists a merge that does not deteriorate f .

Max. pw. inter-cluster conductance
is bounded

2
8

Max. pw. inter-cluster conductance
is bounded

2
8

e.g., modularity is bounded

exercise: reachability, proofs for (un)boundedness
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Greedy Merge and Modularity

greedy maximization does not approximate nan worst tie-breaking
> 2 best tie-breaking

modularity has a single peak during agglomeration (exercise)
simple to implement and rather successful
inefficient for large graphs
only known kernelization: degree-1 vertices (exercise)

Data structure and maintained information for efficient greedy
agglomeration?
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Influence of Measures on Efficiency
In a bicriterial setting with constraints:

Feasible
merges
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Update Feasible
merges?

Question
Does feasibility of a merge only depend on involved clusters?
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Influence of Measures on Efficiency
In a general setting:

Optimum

Heap

?Feasible
merges

Question
Given context freeness, can the set of feasible merges be efficiently
maintained in a heap?

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 57/150



Influence of Measures on Efficiency
In a general setting:

Optimum

Heap

?Feasible
merges

Question
Given context freeness, can the set of feasible merges be efficiently
maintained in a heap?

⇒ Locality of an objective function
Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 57/150



Influence of Measures on Efficiency

sufficient?

Feasible
merges

connected
merges

Feasible
merges

important?

Question
Do we have to consider pairs of unconnected clusters?
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Influence of Measures on Efficiency

sufficient?

Feasible
merges

connected
merges

Feasible
merges

important?

Question
Do we have to consider pairs of unconnected clusters?

⇒ Connectedness of an objective function
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Influence of Measures on Efficiency
(Given the necessary data can efficiently be maintained:)

Context
insensitivity Locality+ =

O(n2 log n)
running time

For more information on these topics:
[Schumm et al.: Density-constrained graph clustering, 2011]
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linear space
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Context Freeness

Definition
A constraint is context free, if the feasibility of a merge does not depend on
the remainder of the clustering.

E.g., minimum intra-cluster density is context free
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A constraint is context free, if the feasibility of a merge does not depend on
the remainder of the clustering.

E.g., global intra-cluster density is not context free

Constraint: |intra-cluster edges|
|possible intra-cluster edges| =

1
1 ≥ 0.7

E.g., minimum intra-cluster density is context free
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Locality: Intuition

Locality is a property of an objective functions

Example: Maximum isolated inter-cluster conductance

A,B -0.3 C ,D 0 E ,F C, F G ,H G , I 0.30 0 0A,B C ,D

First approach: Use gain in inter-cluster sparsity as key

good
merges

bad
merges
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good
merges

bad
merges

Clever tie-breaking possible?

Needed: Suitable order that does not change if unrelated clusters merge
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Locality: Intuition

Locality is a property of an objective functions

Example: Maximum isolated inter-cluster conductance

A,B -0.3 C ,D 0 E ,F C, F G ,H G , I 0.30 0 0A,B C ,D

First approach: Use gain in inter-cluster sparsity as key

merge G and I

A,B -0.3 C ,D 0 E ,FC, F 0.2-0.2A,B C ,DG ∪ I ,T -0.3

good
merges

bad
merges

Clever tie-breaking possible?

Needed: Suitable order that does not change if unrelated clusters merge

Existence of such an order ≈ Locality of the inter-cluster measure
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Example: Max. Isolated Inter-cluster
Conductance

0.5

Current sequence of conductance of all clusters (sorted)

A 0.4B 0.3C 0.3D 0.1E

Ordering merges lexicographically is stable
Two merges can be compared in constant time by comparing keys
consisting of three numbers
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Example: Max. Isolated Inter-cluster
Conductance

0.5

Current sequence of conductance of all clusters (sorted)

A 0.4B 0.3C 0.3D 0.1E

Sequence if A and B are merged

0.45A ∪ B 0.3C 0.3D 0.1E
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consisting of three numbers

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 61/150



Example: Max. Isolated Inter-cluster
Conductance

0.5

Current sequence of conductance of all clusters (sorted)

A 0.4B 0.3C 0.3D 0.1E

Sequence if A and B are merged

0.45A ∪ B 0.3C 0.3D 0.1E

Sequence if A and D are merged

0.45A ∪ D 0.3C 0.1E0.4B

Ordering merges lexicographically is stable
Two merges can be compared in constant time by comparing keys
consisting of three numbers

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 61/150



Example: Max. Isolated Inter-cluster
Conductance

0.5

Current sequence of conductance of all clusters (sorted)

A 0.4B 0.3C 0.3D 0.1E

Sequence if A and B are merged

0.45A ∪ B 0.3C 0.3D 0.1E

Sequence if A and D are merged

0.45A ∪ D 0.3C 0.1E0.4B

compare lexicographically:

Merging A and B is better!

Ordering merges lexicographically is stable
Two merges can be compared in constant time by comparing keys
consisting of three numbers

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 61/150



Example: Max. Isolated Inter-cluster
Conductance

0.5

Current sequence of conductance of all clusters (sorted)

A 0.4B 0.3C 0.3D 0.1E

Sequence if A and B are merged

0.45A ∪ B 0.3C 0.3D 0.1E

Sequence if A and D are merged

0.45A ∪ D 0.3C 0.1E0.4B

compare lexicographically:

Merging A and B is better!

Ordering merges lexicographically is stable
Two merges can be compared in constant time by comparing keys
consisting of three numbers

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 61/150



Example: Max. Isolated Inter-cluster
Conductance

0.5

Current sequence of conductance of all clusters (sorted)

A 0.4B 0.3C 0.3D 0.1E

Sequence if A and B are merged

0.45A ∪ B 0.3C 0.3D 0.1E

Sequence if A and D are merged

0.45A ∪ D 0.3C 0.1E0.4B

compare lexicographically:

Merging A and B is better!

Ordering merges lexicographically is stable
Two merges can be compared in constant time by comparing keys
consisting of three numbers

⇒ Maximum isolated inter-cluster conductance is local
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Locality: Results

Does such an order exist for all objective functions?

|inter-cluster edges|
|possible inter-cluster edges| =

17
43

global inter-cluster density is not local

local
mixd
mixc
mixe

aixd
aixc
aixe

nxe

not local
mpxd
apxd
mpxc

mpxe
gxd
apxe

apxc
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Locality: Results

Does such an order exist for all objective functions?
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9
37

global inter-cluster density is not local
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nxe

not local
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Disconnectedness

Definition
An objective function f is connected if merging unconnected clusters is
never the best option with respect to f .
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A Matrix for Maintaining Merges

Update of merge-matrix, when merging clusters Ci and Cj :

Additive update of gain, easy to handle (e.g., modularity):
∆S(ij),k = ∆Si,k + ∆Sj,k

Unaffected entries ∆Sm,n unchanged⇒ log-linear effort (heap)

Divisive update, more complicated (e.g., global inter-cluster density):
∆Sm,n =

A+∆Am,n
B+∆Bm,n

− A
B

Easy to compute, but whole matrix needs update⇒ Ω(n2)

∆Si,j. . . . . .

...

...

i

j
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Quick Divisive Merge
Key idea: geometric (2d) data structure for matrix

One data point for each pair of clusters {Ci ,Cj}
y -coord.: ∆Ai,j , x-coord.: ∆Bi,j

Find best merge with tangent query from origin in
O(log(# points)) = O(log(|V |2)) (Brodal & Jacob [02])
O(n) real updates (as in subtractive case)
Update of nominator and denominator by shifting origin
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Structure
1 Introduction

Scenario: Network Analysis
Paradigm of Clustering
Example Applications

2 Formalization of Aims and Objectives
Objective Functions

3 Algorithmic Approaches
Greedy Merge
Local Moving and Multilevel
Clustering with Minimum-Cut Tree
Integer Linear Programs
Other Algorithmic Approaches

4 Experimental Evaluation
The Role of Test Data in Algorithm Engineering
Comparing Clusterings

5 Dynamic Graph Clustering
Online Dynamic Clustering
Offline Dynamic Clustering

6 Appendix
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Local Movement

A common technique in graph partitioning

locally greedy
node shifts
hierarchical contractions

[e.g., for modularity: Blondel et al.: Fast unfolding of communities in large networks,
2008]
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The Multilevel Approach
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Local vs. Global Greedy

pro local movement
local qualitatively superior
local quicker in practice
better avoidance of local minima, larger search space
refinement adds a few more percent to quality of local approach

pro global agglomeration
global easier to implement (no contraction, updates)
runtime guarantees stronger for global
global yields continuous hierarchy

exercise: collect edges to neighbors

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 69/150



Structure
1 Introduction

Scenario: Network Analysis
Paradigm of Clustering
Example Applications

2 Formalization of Aims and Objectives
Objective Functions

3 Algorithmic Approaches
Greedy Merge
Local Moving and Multilevel
Clustering with Minimum-Cut Tree
Integer Linear Programs
Other Algorithmic Approaches

4 Experimental Evaluation
The Role of Test Data in Algorithm Engineering
Comparing Clusterings

5 Dynamic Graph Clustering
Online Dynamic Clustering
Offline Dynamic Clustering

6 Appendix

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 70/150



Min-Cut Tree Clustering

Raul
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1 original graph

2 star-center t , α
3 min-cut tree
4 delete center⇒ clustering
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Min-Cut Tree Clustering

t

α

1 original graph
2 star-center t , α

3 min-cut tree
4 delete center⇒ clustering
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Min-Cut Tree Clustering

t

1 original graph
2 star-center t , α
3 min-cut tree

4 delete center⇒ clustering

coined in [Gomory and Hu ’61]

simplified in [Gusfield ’90]

construction via (n − 1) max-flows
(variants e.g. Õ(mn) for unweighted)
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Min-Cut Tree Clustering
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Min-Cut Tree Clustering
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path betw.
u and v
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Min-Cut Tree Clustering
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Min-Cut Tree Clustering
⇒ lightest u-v-cut
in graph

1 original graph
2 star-center t , α
3 min-cut tree

4 delete center⇒ clustering
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Min-Cut Tree Clustering

1 original graph
2 star-center t , α
3 min-cut tree
4 delete center⇒ clustering

quality guarantee: [Flake et al. ’04]

intra-cluster
expansion ≥ α ≥ inter-cluster

expansion∗

exercise: prove bounds!
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Min-Cut Tree Clustering

1 original graph
2 star-center t , α
3 min-cut tree
4 delete center⇒ clustering

quality guarantee: [Flake et al. ’04]

ω(E(P,C\P))
min{|P|,|C\P|} ≥ α ≥ ω(E(C,V\C))

|V\C|
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Discussion: Min-Cut Tree Clustering

a vertex v that served to identify a cluster-defining v -t-cut is called the
representative of the respective cluster

scaling α yields a nested hierarchy of clusterings
hierarchy has depth ≤ n − 1

yields a guarantee (very rare!)
user needs to choose suitable α carefully
high runtime: O(n) max-flow computations

no “minimum” in denominator of inter-cluster expansion∗ = ω(E(C,V\C))
|V\C|

(otherwise not always solvable)
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Optimization: ILP Approach

1 introduce decision variables

∀{u, v} ∈

(
V
2

)
: Xuv =

{
0 if C(u) = C(v)

1 otherwise

2 ensure valid clustering with constraints
(transitivity):

∀{u, v ,w} ∈

(
V
3

)
:


Xuv + Xvw − Xuw ≥ 0
Xuv + Xuw − Xvw ≥ 0
Xuw + Xvw − Xuv ≥ 0

3 reflexivity and symmetry for free
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Optimization: ILP Approach
4 optimize target function, e.g., modularity:

modILP(G, CG) =
∑

{u,v}∈(V
2)

(
ω(u, v)− ω(u) · ω(v)

2 · ω(E)

)
· Xuv

Countless other constraints and objectives possible, e.g.,:
bounded cluster sizes
intra-/inter-expansion as constraint of objectives
multicriteria objective functions
maximum pairwise inter-cluster conductance (cumbersome)
. . . exercises

Example runtimes:
modularity, 300 vertices, 1 day
objective mpxc, constraint gid, 50 vertices, 1 day

[Görke: An algorithmic walk from static to dynamic graph clustering, 2010]
[Schumm et al.: Density-constrained graph clustering (technical report), 2011]
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Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients

reduction: 2-core
local: γ-cliques
contractions
hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients

reduction: 2-core
local: γ-cliques
contractions
hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core

local: γ-cliques
contractions
hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core
local: γ-cliques

contractions
hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150

p2

p3

p4

p5
p1

p6



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core
local: γ-cliques
contractions

hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150

p2

p3

p4

p5
p1

p6
2
4

1
4

1
3

4
9

1
4

1
4

1
61

6



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core
local: γ-cliques
contractions

hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150

p2

p3

p4

p5
p1

p6
2
4

1
4

1
3

4
9

1
4

1
4

1
61

6

1
8



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core
local: γ-cliques
contractions

hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150

p2

p3

p4

p5
p1

p6
2
4

1
4

1
3

4
9

1
4

1
4

1
61

6

1
8



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core
local: γ-cliques
contractions

hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150

p2

p3

p4

p5
p1

p6
2
4

1
4

1
3

4
9

1
4

1
4

1
61

6

1
8



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core
local: γ-cliques
contractions
hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150

p2

p3

p4

p5
p1

p6
2
4

1
4

1
3

4
9

1
4

1
4

1
61

6

1
8



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core
local: γ-cliques
contractions
hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150

p2

p3

p4

p5
p1

p6
2
4

1
4

1
3

4
9

1
4

1
4

1
61

6

1
8



Clustering Huge Graphs
goals:

fast on huge graphs
with very good quality

algorithm: ORCA

ORCA Reduction-
and ContrAction-based Clustering

main ingredients
reduction: 2-core
local: γ-cliques
contractions
hierarchy

ORCA clusters
1M/10M in seconds
20M/.5B in 2h
not “one-dimensional”
with good quality

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 77/150

p2

p3

p4

p5
p1

p6
2
4

1
4

1
3

4
9

1
4

1
4

1
61

6

1
8

[Delling et al.: ORCA, ’09]



Other Approaches (I)
S

pe
ct

ra
lC

lu
st

er
in

g 1 use adjacency matrix/Laplacian
2 project points into low (k -) dimensional space
3 assign points to closest axes (e.g. [Kannan et al. ’00])

or use k -means on embedding (e.g. [Shi and Malik ’00])

blurs the line between data- and graph clustering
variants solve, e.g., the relaxed RATIOCUT problem

R
an

do
m

W
al

ks 1 simulate long random walk through graph
2 convergence ; transition matrix induces clusters

pioneered in [van Dongen ’02]

related to spectral graph theory
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Other Approaches (II)
C

liq
ue

-P
er

co
la

tio
n

1 “roll” small clique-template through graph
2 reachable parts in same cluster

resonable but sensitive to structure
slow on large instances
overlapping clusters!
[Palla et al.: Uncovering the overlapping
community structure of complex networks in
nature and society, 2005]

(template: K4)

N
et

w
or

k
P

er
co

la
tio

n

1 iteratively remove most central edges in graph
2 stop at threshold ; components induce clusters

done, e.g., by [Girvan and Newman: Finding and evaluating
community structure in networks ’02]

slow due to computation of centrality
comp.: percolation theory from mathematics
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Other Approaches (III)
quantification of node fitness, migration/survival
best clustering when using scalable parameter:
find largest plateau in plot of |C|
[Santo Fortunato: Detecting the overlapping and hierarchical community
structure in complex networks, 2009]
direct translation of graph to data points ; k-means
e.g.: [Gregor Stachowiak, student thesis, 2011]
randomized rounding of linear programs
emulating electricity: clustering by voltage potential
. . .

overviews:
[Brandes, Erlebach (eds.) ’05, Network Analysis, Methodological Foundations]
[Satu Elisa Schaeffer: Graph Clustering, 2007]
[Santo Fortunato: Community Structure in Graphs, 2009]
[Robert Görke: An algorithmic walk from static to dynamic graph clustering,
2010]
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Why Experiments?

Specifica in field of graph clustering:

generally, “rigorous results” are always preferable, however . . .
hard problems, very few results possible/probable
(e.g. expansion via min-cut tree,
or polylogarithmic quality via iterative. cond. cutting)

performances of algorithms depend on graph type
(again hard to capture, analytically)

constants in runtimes do matter (huge networks)

⇒ graph clustering does need extensive experiments
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“. . . an experiment and emprical data are more valuable than an estimate;
an estimate is more valuable than an approximate calculation;
an approximate calculation is more valuable than a rigorous result.”
[Dorogovtsev and Mendes: Evolution of Networks, 2003 (physicists)]
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Real-World Networks

hand-selected collections
biased in origin, size, structure, . . .
are they representative, diverse, and suitatble?
some rather widespread, e.g.:

source web address
Arenas http://deim.urv.cat/˜aarenas/data/welcome.htm
ANoack http://www-sst.informatik.tu-cottbus.de/˜an/GD/
Cx-Nets http://cxnets.googlepages.com/
GraphDrawing http://vlado.fmf.uni-lj.si/pub/networks/data/GD/GD.htm
Newman http://www-personal.umich.edu/˜mejn/netdata/
pajek http://vlado.fmf.uni-lj.si/pub/networks/data/
UriAlon http://www.weizmann.ac.il/mcb/UriAlon/
Walshaw http://staffweb.cms.gre.ac.uk/˜c.walshaw/partition/

DIMACS http://www.cc.gatech.edu/dimacs10/

table partially taken from and many used in:
[Noack and Rotta: Multi-level algorithms for modularity clustering, 2009]
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Generated Instances

real-word networks cannot answer all questions, e.g.:

does a measure fulfill specific desiderata on scaling?
scaling of algorithm’s runtime on specific graph family?
quality of algorithm sensitive to graph density?
. . .

⇒ targeted experiments using artificial instances necessary

some resources:
[Brandes et al.: Experiments on graph clustering algorithms, 2003]
[Delling et al.: Generating Significant Graph Clusterings, 2006]
[Gaertler et al.: PhD Thesis, 2007 (Unit-Test-oriented evaluations)]
[Görke and Staudt: A generator for dynamic clustered random graphs, 2009
download static & dynamic generators:
http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/index]
[Görke et al.: Computational aspects of lucidity-driven graph clustering, 2010]
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Artificial Test Instances . . .

The design of artificial test instances requires care!
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G(n,pin,pout)
. . . a simple model for random preclustered graphs

insert n isolated vertices

indisputably(?) scalable intra- and inter-cluster quality
scalable in size, generation algorithm very fast (O(m + n))
reference / ground truth to compare to
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G(n,pin,pout)
. . . a simple model for random preclustered graphs

partition V into random/controlled number of blocks

indisputably(?) scalable intra- and inter-cluster quality
scalable in size, generation algorithm very fast (O(m + n))
reference / ground truth to compare to
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G(n,pin,pout)
. . . a simple model for random preclustered graphs

intra-edges: build a cluster G (|Ci |, pin,i ) from each block i

indisputably(?) scalable intra- and inter-cluster quality
scalable in size, generation algorithm very fast (O(m + n))
reference / ground truth to compare to
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G(n,pin,pout)
. . . a simple model for random preclustered graphs

inter-edges: connect inter-cluster pairs with probability pout

indisputably(?) scalable intra- and inter-cluster quality
scalable in size, generation algorithm very fast (O(m + n))
reference / ground truth to compare to
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G(n,pin,pout)
. . . a simple model for random preclustered graphs

a random graph with a planted clustering

indisputably(?) scalable intra- and inter-cluster quality
scalable in size, generation algorithm very fast (O(m + n))
reference / ground truth to compare to
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Example Experimental Setup

generated reference clustering

inter-density

in
tr
a-
de
ns
it
y

[Görke et al.: Computational aspects of lucidity-driven graph clustering, 2010]
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Example Experimental Setup

modularity on reference clustering

inter-density

go
od

in
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a-
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ns
it
y

ba
d

(not applicable)

[Görke et al.: Computational aspects of lucidity-driven graph clustering, 2010]

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 87/150

systematic exp. evaluation: measure modularity vs. intuition
√

modularity as objective function for maximization:
greedy maxim. vs. established algorithms wrt. established measures

√



Example Experimental Setup

established quality measure max. is. inter-cl. conductance (mixc)

in
tr
a-
de
ns
it
y

inter-density

algo.: greedy modularity-max.

in
tr
a-
de
ns
it
y

inter-density

algo.: MCL (rand. walks, est.)

[Görke et al.: Computational aspects of lucidity-driven graph clustering, 2010]
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Paradigm of Clustering
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2 Formalization of Aims and Objectives
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4 Experimental Evaluation
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A Crucial Ingredient of AE

Algorithms

implement

design

experim
ent
an

al
yz

e

instances for experimental evaluation
“do we care enough about them?”
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Meaning of Experiments in AE

State properties of algorithms via experimental evaluation

Algorithm
theory:

asymptotic runtimes: worst/average case,
smoothed analysis
quality: optimality, diverse approximation
guarantees
outcomes on special families of instances

Do experimental evaluations in AE mirror this?
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Experiments in AE

Good, valuable evaluations require:
relevant experiments
controlled experiments
provable properties of test instances
behavior of algorithms on different generated instances
outcomes on special families of graphs

Postulation 1 more insights into characteristics of instances,
characteristics that affect behavior of algorithm

Postulation 2 suitable generated instances compulsive: hard,
variable outcome/properties, easy
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Pitfalls of Quality Indices

meaningful clustering of six-sided tu-
be with irregularities
coverage = 0.43

random split of a G(20, 1
2 ) random

graph
coverage = 0.66
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“A Good Graph Clustering”

Widespread quality function: modularity

mod(C) := cov(C) − E(cov(C))

=
# intra-cluster edges

|#edges| − 1
4|#edges|2

∑
C∈C

(∑
v∈C

deg(v)

)2

“In practice, values [. . . ] from about 0.3 to 0.7. Higher values are rare.”
[Girvan & Newman ’04]

“. . . in practice [. . . ] a value above about 0.3 is a good indicator of
significant community structure . . . ”
[Newman et al. ’04]
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Archon of Benchmark Graphs
. . . one of roughly a dozen real-world instances:
Zachary’s Karate Club
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modularity:
reality (shapes) & heuristic (col.) & optimum (boxes) ≈ 0.4

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 94/150



Archon of Benchmark Graphs
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But [Reichard & Bornhold ’08]: E(modularity) ≈ 0.42 > 0.4 !
(in an Erdős-Rényi model)
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Large Networks

Example results of ORCA on webgraphs
(ORCA Reduction and ContrAction-based Clustering
[Delling et al.: ORCA Reduction and ContrAction Graph Clustering, 2009]

Instance n/m Algorithm clusters icc perf. cov. mod.
cnr-
2000

325 556 local greedy 242 0.8571 0.9799 0.9971 0.9130
5 565 376 ORCA 110 0.0002 0.9632 0.9427 0.8567

eu-
2005

862 664 local greedy 326 0.7668 0.9643 0.9708 0.9376
32 778 307 ORCA 217 0.0002 0.9458 0.7965 0.7014

in-2004 1 382 908 local greedy 1004 0.0000 0.9931 0.9234 0.9094
27 560 318 ORCA 740 0.0002 0.9877 0.9503 0.9288

uk-
2002

18 520 486 local greedy 6280 0.0000 0.9981 0.5693 0.5671
529 444 599 ORCA 66595 0.0000 0.9995 0.8758 0.8749

⇒With size, sparseness gets the upper hand

“Modularity tends to 1 for practical instances” [Good et al. 09]
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Graph Partitioning

Established benchmark library: “Walshaw’s test set”
(Walshaw gathered instances from existing evaluations)

Good, since: well known, accepted
good comparability with other methods
easy access, immediate usability

Downside: ! contains other peoples’ handpicked instances
⇒ probably “good” instances. . .
⇒ bias? representative?

Own
experience:

traditional network analysis
⇒ no good characterization
social networks⇒ bad runtime & cuts
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Sensor Networks

Topics:

minimum energy communication
localization (without gps)
interference minimization
efficient data collection at sink node
. . .

problem for research: real experimental setups rare
⇒ simulations, random instances

random instances: distribution of sensor nodes in plane
parameters: |V |, transmission radius⇒ average degree
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Sensor Network Simulations
Bad: “real randomness not nice”: smaller holes⇒ better results!

1 place nodes on grid
2 slightly perturb

1 place nodes uniformly at
random

⇒ no big holes
⇒ method works

⇒ harder challenges
for method

Other researchers copy to compete . . .

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 98/150



Random Planar Graphs

Some generators in the literature:

CHT 3 from LEDA
Delaunay from LEDA
Node insertion from LEDA
Node expansion [Krug 08]

Edge-on-off Markov chain [Denise et al. 07]

Boltzmann sampler [Fusy 07]

Equivalent? Biased?
“Does the choice impact my experiments?”

3Convex Hull Triangulation
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Random Planar Graphs
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Yes, it matters!

algorithm:
K-VERTEXCOVER FPT

measure:
reduction by 0,1,2-kernelization
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Concluding Claim

In algorithm engineering we need more
test instances with provable properties,
(hard, variable outcome/properties, easy, etc.)
leading to. . .
controlled experiments

insights on outcomes on special families, or at least. . .
on behavior of algorithms on different generated instances

insights into characteristics of instances, characteristics that affect
behavior of algorithm
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Structure
1 Introduction

Scenario: Network Analysis
Paradigm of Clustering
Example Applications

2 Formalization of Aims and Objectives
Objective Functions

3 Algorithmic Approaches
Greedy Merge
Local Moving and Multilevel
Clustering with Minimum-Cut Tree
Integer Linear Programs
Other Algorithmic Approaches

4 Experimental Evaluation
The Role of Test Data in Algorithm Engineering
Comparing Clusterings

5 Dynamic Graph Clustering
Online Dynamic Clustering
Offline Dynamic Clustering

6 Appendix
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Three Paradigms

1 Quality-based: comparison by quality index
⇒ structurally different clusterings may be of same quality

2 Set-based: distance depends only on partition of V
long history in data mining
⇒ independent of graph structure

3 Graph-based: distance depends on partitioning of nodes and
structure of graph
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Comparing Graph Clusterings

C1 C′1 C2 C′2
“Are the two left-hand clusterings less similar than those on the right?”
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. . . how set-based measures fail intuition



Augmenting Set-based
Measurements 1/3

Counting Pairs:

compare co-classification of all pairs of nodes
example: Rand (’71) index

instead of all node pairs⇒ use only connected pairs

R(C, C′) := 1− ntog,tog + nsep,sep
1
2 |N|(|N| − 1)

; 1− etog,tog + esep,sep

|E |

ntog,tog = number of pairs of nodes that are together in C and together in C′,
nsep,sep analogous,
etog,tog = number of edges that are intra for C and for C′,
esep,sep analogous

(will be used later when clustering dynamic graphs)
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Augmenting Set-based
Measurements 2/3

Maximum Overlap:

match clusters
example: normalized van Dongen (’00) index

⇒ weight nodes by their degrees

NVD(C, C′) := 1 − 1
2n

∑

Ci∈C
max
C′

j ∈C′
mij︸︷︷︸
;md

ij

− 1
2n

∑

C′
j ∈C′

max
Ci∈C

mij︸︷︷︸
;md

ij

with mij = |Ci ∩ C′j |, where Ci ∈ C and C′j ∈ C′ (so-called confusion matrix)
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Augmenting Set-based
Measurements 3/3

Information Theory:

”what do you know about C′ if C is given?”
example: Fred and Jain (’03) index

⇒ weight probabilities by sum of node degrees

FJ (C, C′) :=
2I(C, C′)

H(C) +H(C′)
Node-Entropy ; Edge-Entropy

for all augmentations:
G regular⇒ graph-based ∼= set-based

(see [Delling at al.: Engineering comparators for graph clusterings, 2008] for
definitions)
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Editing Set Difference: Def.

Definition (Editing Set Difference)
Let the Editing Sets of G, C and of G, C′ be FC ,FC′

ESD(C, C′) :=
|FC4FC′ |
|FC ∪ FC′ |

= 1− |FC ∩ FC′ |
|FC ∪ FC′ |

where 4 denotes the geometric difference between two sets
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Editing Set Difference: Example

two
clusterings

their
editing sets

difference:
1− 3

10 = 0.7
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Real-World Graphs

. . . nice and necessary, but what about systematic insights?
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Apparent Behavior

High-degree nodes have more influence
Cutting many edges ; higher difference

. . . average / practical / large-scale behavior?

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 110/150



Formalizing Postulations

The measure shall be sensitive to the graph structure:
Good vs. Random Clustering:

DIST(good cl., random cl.) ≈ big

DIST(good cl., random cl.) ≤ DIST(excellent cl., random cl.)

Perturbation:
DIST(good cl., ∆good cl.) > DIST(∆good cl., ∆∆good cl.)
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Experimental Setup

good generated
ref. clustering

bad generated
ref. clustering

Graph Gscalable
via ρ

Systematic evaluation with random preclustered graphs:
random graphs of parameterized structure
implanted community structure with tunable significance ρ
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Experimental Setup

good generated
ref. clustering

bad generated
ref. clustering

Graph G

random
Clustering

good
Clustering

scalable
via ρ

testing Good vs. Random Clustering by:
C : implanted (good) clustering
CR : random clustering, same graph amd parameters
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Experimental Setup

good generated
ref. clustering

bad generated
ref. clustering

Graph G

random
Clustering

good
Clustering

worse
Clustering

∆

scalable
via ρ

testing Perturbation by:
C : implanted (good) clustering
∆C : locally worsen clustering by moving nodes
(max. dec. of quality (modularity), 0 – 500 moved nodes
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∆C : locally worsen clustering by moving nodes
(max. dec. of quality (modularity), 0 – 500 moved nodes
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Good vs. Rand. Clustering, C vs. CR
set-based measures fail postulations
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Good vs. Rand. Clustering, C vs. CR
some graph-based measures comply
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Perturbation of Good Clustering

set-based vs. graph-based
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Perturbation of Decent Clustering
set-based vs. graph-based
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Summary on Comparators

many well known measures for comparing set partitions
point sets 6= graphs⇒ edges are neglected!
should not be used for graph clusterings!

systematic augmentation of many existing measures
design of a new measure: Editing Set Difference ESD
recommended: ESD, graph-based (adjusted) Rand

evaluation on real-world networks
systematic evaluation of behavior⇒ feasibility

[Delling at al.: Engineering comparators for graph clusterings, 2008]
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Structure
1 Introduction

Scenario: Network Analysis
Paradigm of Clustering
Example Applications

2 Formalization of Aims and Objectives
Objective Functions

3 Algorithmic Approaches
Greedy Merge
Local Moving and Multilevel
Clustering with Minimum-Cut Tree
Integer Linear Programs
Other Algorithmic Approaches

4 Experimental Evaluation
The Role of Test Data in Algorithm Engineering
Comparing Clusterings

5 Dynamic Graph Clustering
Online Dynamic Clustering
Offline Dynamic Clustering

6 Appendix
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A Dynamic Network

Walter

Dave

Trudy

Alice

Bob
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Example Applications
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The Update Problem

G

Given: graph G,

technique T ,⇒ clustering C
Then: modification ∆,⇒ graph G′, T ⇒ clustering C′(G′)
Question: Is there a shortcut ?
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Online Dynamic Graph Clustering

Dynamic Instances
changing networks with evolving group structure

⇓
Dynamic Approach
update previous clustering reacting to changes in the graph

G G′∆

C(G) C′(G′)A
TT

Clustering update problem

Criteria
speed
quality
smooth transitions
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Complexity of Optimization

Generally NP-hard if static problem is hard
⇒ generally NP-hard.

e.g., modularity:

Theorem
MODOPT is NP-hard [Brandes et al. 2008]

⇓
Corollary
DYNMODOPT is NP-hard [Görke et al. 2010]

idea for reduction: incrementally find static optimum with an efficient
dynamic algorithm
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Heuristics Based on Locality
Dynamic modularity -maximization without provable quality

Changes in the graph invalidate:
affected clusters

⇒ update of clustering

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 124/150



Heuristics Based on Locality
Dynamic modularity -maximization without provable quality

Changes in the graph invalidate:
affected clusters

⇒ update of clustering

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 124/150



Heuristics Based on Locality
Dynamic modularity -maximization without provable quality

Changes in the graph invalidate:
affected clusters

⇒ update of clustering

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 124/150



Heuristics Based on Locality
Dynamic modularity -maximization without provable quality

Changes in the graph invalidate:
affected clusters

⇒ update of clustering

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 124/150



Heuristics Based on Locality
Dynamic modularity -maximization without provable quality

Changes in the graph invalidate:
local area: 1-hop neighborhood

⇒ update of clustering
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Heuristics Based on Locality
Dynamic modularity -maximization without provable quality

Changes in the graph invalidate:
local area: 2-hop neighborhood

⇒ update of clustering
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Prep Strategies

locality assumption
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Local Heuristic in Bigger Context

motivation: local changes⇒ local consequences,

”revolutions“ rare in practice

hope: small changes⇒ smooth transitions
small search space⇒ fast
local optimization⇒ quality ?
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Prep Strategies: Concept

prep strategy S
reacts to changes
prepares half-finished
preclustering C̃
passes C̃ on to algorithm

strategies based, e.g., on
limited local search
backtracking the dendrogram

S

∆(Gt−1, Gt)

A
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Prep Strategy BT: Illustration

dendrogram current clustering

Prep Strategy Backtrack
Backtrack Global’s merges according to heuristic rules
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Measuring Smoothness

Distance measures based on: counting pairs
maximum overlap
information theory

Example: Rand-distance
“compare co-classification of all pairs of nodes”

R(C, C′) := 1− ntog,tog + nsep,sep
1
2 |N|(|N| − 1)︸ ︷︷ ︸

; 1− etog,tog + esep,sep

|E |︸ ︷︷ ︸
(Rand, set-based) (graph-based Rand3)

3[Delling et al.: Engineering comparators for graph clustering, 2008]
Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 129/150



Measuring Smoothness

Distance measures based on: counting pairs
maximum overlap
information theory

Example: Rand-distance

“compare co-classification of all pairs of nodes”

R(C, C′) := 1− ntog,tog + nsep,sep
1
2 |N|(|N| − 1)︸ ︷︷ ︸

; 1− etog,tog + esep,sep

|E |︸ ︷︷ ︸
(Rand, set-based) (graph-based Rand3)

3[Delling et al.: Engineering comparators for graph clustering, 2008]
Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 129/150



Measuring Smoothness

Distance measures based on: counting pairs
maximum overlap
information theory

Example: Rand-distance
“compare co-classification of all pairs of nodes”

R(C, C′) := 1− ntog,tog + nsep,sep
1
2 |N|(|N| − 1)︸ ︷︷ ︸

; 1− etog,tog + esep,sep

|E |︸ ︷︷ ︸
(Rand, set-based) (graph-based Rand3)

3[Delling et al.: Engineering comparators for graph clustering, 2008]
Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 129/150



Dynamic Graph Instances

generator for dynamic clustered
random graphs
[Görke and Staudt: A generator for
dynamic clustered random graphs,
2009]

e-mail graph of KIT CompSci

arXiv collaboration graph

+1

-1

+1
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Dynamic Modularity-Clustering:
Smooth Transitions

0 500 1000 1500 2000

0.05
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0.25

distances between time steps
(graph-based Rand-distance)

stat. Alg1
stat. Alg2
dyn. Alg1 (Var. 2)

dyn. Alg2 and
dyn. Alg1 (Var. 1)

⇒ Dynamics yield smoother transitions

[Görke et al.: Modularity-driven clustering of dynamic graphs 2010]

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 131/150



Dynamic Modularity-Clustering:
Runtime

500 1000 1500 2000
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runtime per time step
(milliseconds, logarithmic y -axis)

stat. Alg2
stat. Alg1

dyn. Alg1 (Var. 1)

dyn. Alg2

dyn. Alg1 (Var. 2)

⇒ dynamics yield lower runtimes

[Görke et al.: Modularity-driven clustering of dynamic graphs 2010]
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Dynamic Modularity-Clustering:
Quality

500 1000 1500 2000

0.38

0.40

0.42

0.44

quality over time
(modularity)

dyn. Alg2
stat. Alg2
dyn. Alg1 (Var. 1)

dyn. Alg1 (Var. 2)

stat. Alg1

⇒ dynamics yield higher quality

[Görke et al.: Modularity-driven clustering of dynamic graphs 2010]
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Min-Cut Tree Clustering (Rep.)

t

α

1 original graph
2 star-center t , α

3 min-cut tree
4 delete center⇒ clustering
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Min-Cut Tree Clustering (Rep.)

t

1 original graph
2 star-center t , α
3 min-cut tree

4 delete center⇒ clustering

coined in [Gomory and Hu ’61]

simplified in [Gusfield ’90]

construction via (n − 1) max-flows
(variants e.g. Õ(mn) for unweighted)
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Min-Cut Tree Clustering (Rep.)

u

v

lightest
edge on
u-v-path

1 original graph
2 star-center t , α
3 min-cut tree

4 delete center⇒ clustering
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Min-Cut Tree Clustering (Rep.)
⇒ lightest u-v-cut
in graph

1 original graph
2 star-center t , α
3 min-cut tree

4 delete center⇒ clustering
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Min-Cut Tree Clustering (Rep.)

1 original graph
2 star-center t , α
3 min-cut tree
4 delete center⇒ clustering

quality guarantee: [Flake et al. ’04]

intra-cluster
expansion ≥ α ≥ inter-cluster

expansion∗
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Dynamizing the Clustering

new edge in graph affects u-v -path in tree

safe parts of the clustering reusable
Theorem: “starting here is feasible”
edge deletion affects off-path cuts analogously

[Hartmann et al.: Dynamic Graph Clustering Using Minimum-Cut Trees, 2009]
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Dynamizing the Clustering
a glimpse into retaining clusters and saving more effort
example: inter-cluster edge deletion ; check/correct old C

u
v

y

e

x

old min-x-y-cut

new min-x-y-cut

(off path) better new
min-x-y-cut

(t)

Lemma⇒ cut (gray) can be reshaped, retaining old cluster (red)
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Dynamizing the Clustering: Case 1

adjustments for all pairs of clusters:

vi vj

t

Ci
CjCi
Cj

vi is tree-reference vertex of Ci

check old cluster Ci in new graph ; new vi -t-cut separates vj , t
Lemma (last slide)⇒ cut can be reshaped, retaining Ci (black)

Lemma⇒ cut can be re-reshaped, swallowing Cj (red)

⇒ adjust cut to all other Cj
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Dynamizing the Clustering: Case 2

adjustments for all pairs of clusters:

vi vj

t

Ci
Cj

symmetric case: new vj -t-cut (gray) separates vi from t , after new vi -t-cut
(black) does not separate vj from t

Lemma⇒ reshape cut (red)

⇒ order affects speed, but lemma holds for all orders

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 137/150



Dynamizing the Clustering: Case 2

adjustments for all pairs of clusters:

vi vj

t

Ci
Cj
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Dynamizing the Clustering: Case 3

adjustments for all pairs of clusters:

vi
vj

t

Ci
Cj

both new cuts do not separate other vertex from t

folklore⇒ crossing min-cuts ; non-crossing (blue for vj ’s cut)
Lemma⇒ reshape to retain old cluster (red for vj ’s cut)

⇒ old cuts retained
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Dynamizing the Clustering

adjustments for all pairs of clusters:

vi vj

t

Ci
Cj

vi vj

t

Ci
Cj

vi
vj

t

Ci
Cj

adjust cuts to all other clusters Cj

old cuts retained or swallowed
order affects speed, but lemmata hold for all orders
similar arguments for intra-/inter-cluster addition/deletion

⇒ smoothness + speed
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Results of the Dynamization

instance: email network, 12 000 time steps
measurement: number of s-t-cut calculations (vs. static)

runtime saved > 90%

smooth transitions: minimal changes per step
(max. 2 cluster split)

continuity: old clustering valid?
⇒ confirmed via only 2 s-t-cuts

quality:
√
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Structure
1 Introduction

Scenario: Network Analysis
Paradigm of Clustering
Example Applications

2 Formalization of Aims and Objectives
Objective Functions

3 Algorithmic Approaches
Greedy Merge
Local Moving and Multilevel
Clustering with Minimum-Cut Tree
Integer Linear Programs
Other Algorithmic Approaches

4 Experimental Evaluation
The Role of Test Data in Algorithm Engineering
Comparing Clusterings

5 Dynamic Graph Clustering
Online Dynamic Clustering
Offline Dynamic Clustering

6 Appendix
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Clustering Graph Sequences

G0 G1 G2

Goals: 1 a clustering of each step
2 tracking clusters
3 smooth transitions
4 find critical changes

naı̈ve approach: comparison of unrelated, static clusterings

time-expanded clustering4: stack snapshots⇒ cluster⇒ evolution visible

4[Gaertler et al.: How to cluster an evolving graph, 2006]
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Time-Expanded Graph Clustering

Thomas Lengauer started career as a computer scientist (rectangles)
cooperations with biologists (ellipses)
. . . today a renown bioinformatician

1988 1992 1993 1996 1998
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Application: Email-Network [Görke: Diss.

2010]

email data
(KIT’s CompSci)

nodes = employee
edge = emails
36 months collected

vertical str. = month
horiz. str. = chair
color = clustering

⇒ colors in vertical strip
= current cooperations
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Application: Technological Trends

Patent Categories, Finland, interconnected via multi-category patents

break: from 1992 on telecommunications dominate
break: before: paper, pharmaceuticals, material sciences
break: later: paper forms new cluster
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Explicitly Bicriterial Formulations
1 Among all sequences ζ = (C0, . . . , Ctmax ) of clusterings of G with Ci (Gi )

optimal regarding quality, find the sequence ζsmooth that minimizes∑tmax
i=1 distance(Ci−1, Ci ).

2 Among all sequences ζ = (C0, . . . , Ctmax ) of clusterings of G with∑tmax
i=1 distance(Ci−1, Ci ) ≤ D, find the sequence ζgood that maximizes∑tmax
i=0 quality(Ci ).

3 Is there a sequence ζ = (C0, . . . , Ctmax ) of clusterings of G such that
∀i : quality(Ci ) ≥ α(Coptimal

i ) and ∀i ≥ 1 : distance(Ci−1, Ci ) ≤ β ?

4 Among all sequences ζ = (C0, . . . , Ctmax ) of clusterings of G find the
sequence ζbest which optimizes
α
∑tmax

i=0 quality(Ci ) + β
∑tmax

i=1 distance(Ci−1, Ci ).

5 . . .

[Görke: An algorithmic walk from static to dynamic graph clustering, 2010]
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Explicitly Bicriterial ILP (generic)

set up a static ILP for each time step

link “neighboring” variables X t
u,v and X t+1

u,v ,
e.g., Z t

u,v = X t
u,v XOR X t+1

u,v

formulate smoothness by Z -variables
e.g., Rand index: dist(Ct ,Ct+1) := 1−

∑
u<v (1−Zuv (t))

1
2 n(n−1)

use quality / smoothness as constraint / objective
(some formulations do need quite some thought)

overview of many variables, constraints and objectives:
[Schumm et al.: Density-Constrained Graph Clustering, 2010, full technical
report version]
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Sum of Quality and Smoothness

new
cluster

G0 G1 G2

average static quality average smoothness

+
objective function

·β·α
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Explicitly Bicriterial Heuristic

new
cluster

G0 G1 G2

average static quality average smoothness

+
objective function

·β·α

?

Using, e.g., a local greedy heuristic, for each vertex move:
calculate gain in snapshot quality

calculate gain in smoothness
complications: (non-)sequential, contraction, refinement, being efficient
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Modularity-basiertes
Clustern von
dynamischen Graphen
im Offline-Fall, 2011]



Selected Summary of Lecture

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 148/150

Objective Functions

a formal foundation for the
informal paradigm of
intra-cluster density and
inter-cluster sparsity



Selected Summary of Lecture

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 148/150

Objective Functions

a formal foundation for the
informal paradigm of
intra-cluster density and
inter-cluster sparsity

Algorithmic Approaches

focus: interplay of measure and
greedy merge



Selected Summary of Lecture

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 148/150

Objective Functions

a formal foundation for the
informal paradigm of
intra-cluster density and
inter-cluster sparsity

Algorithmic Approaches

focus: interplay of measure and
greedy merge

Experiments

designing experiments
properly

test data in algorithm
engineering



Selected Summary of Lecture

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 148/150

Objective Functions

a formal foundation for the
informal paradigm of
intra-cluster density and
inter-cluster sparsity

Algorithmic Approaches

focus: interplay of measure and
greedy merge

Experiments

designing experiments
properly

test data in algorithm
engineering

Comparing Clusterings

crucial topic in clustering

showcase for experimentation



Selected Summary of Lecture

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 148/150

Objective Functions

a formal foundation for the
informal paradigm of
intra-cluster density and
inter-cluster sparsity

Algorithmic Approaches

focus: interplay of measure and
greedy merge

Experiments

designing experiments
properly

test data in algorithm
engineering

Comparing Clusterings

crucial topic in clustering

showcase for experimentation

Dynamic Clustering

formalization of aims

online and offline methods
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Core-Decomposition: Algorithm
Given: graph G
Wanted: coreness of each vertex

Algorithm: Core-Decomposition
compute degrees of all vertices

// O(max{m,n})

1

bin-sort vertices into bins B0 . . .Bmax deg

// O(n)

2

foreach v ∈ V in sorted order do

// n times

3

core(v)← deg(v)

// O(1)

4

foreach u ∈ N(v) do

// amortized m times

5

if deg(u) > deg(v) then

// O(1)

6

deg(u)← deg(u)− 1

// O(1)

7

move u to end of its preceding bin

// O(1), needs care

8

Complexity: O(max{m,n})
see, e.g., [Batagelj, Zaveršnik ’02, An O(m) Algorithm for Cores Decomposition of Networks]

or [Brandes, Erlebach (eds.) ’05, Network Analysis, Methodological Foundations]

Introduction Formalization of Aims and Objectives Algorithmic Approaches Experimental Evaluation Dynamic Graph Clustering Appendix

Dorothea Wagner – Algorithm Engineering for Graph Clustering Erice, Italy, 25. September – 3. October, 2011 150/150



Core-Decomposition: Algorithm
Given: graph G
Wanted: coreness of each vertex

Algorithm: Core-Decomposition
compute degrees of all vertices

// O(max{m,n})

1

bin-sort vertices into bins B0 . . .Bmax deg

// O(n)

2

foreach v ∈ V in sorted order do

// n times

3

core(v)← deg(v)

// O(1)

4

foreach u ∈ N(v) do

// amortized m times

5

if deg(u) > deg(v) then

// O(1)

6

deg(u)← deg(u)− 1

// O(1)

7

move u to end of its preceding bin

// O(1), needs care

8

Complexity: O(max{m,n})
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