
An Efficient Generator for Large
Clustered Dynamic Random Networks

Bachelor Thesis of

Roland Kluge

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: Prof. Dr. rer. nat. Dorothea Wagner
Advisor: Dipl.-Inform. Andrea Schumm
Second advisor: Dr. rer. nat. Robert Görke

Duration: 1 May 2011 – 5 August 2011

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

iii

Danksagung

Meinen beiden Betreuern, Andrea Schumm und Robert Görke, gilt mein Dank dafür,
dass sie mir bei weit mehr als einer schwierigen Frage mit hilfreichen Hinweisen zur Seite
gestanden haben. Obwohl ihr Zeitplan stets gefüllt war, konnte ich mich jederzeit an sie
wenden, wenn es offene Punkte zu besprechen gab. Das Thema der Arbeit wurde von
ihnen ausgeschrieben und gefiel mir von der ersten Sekunde an.

Abschließend möchte ich meinen Eltern und meiner Freundin für die Mühen danken,
die sie mit dem Korrekturlesen und den zahlreichen Hinweisen auf sich genommen haben.
Was ihren Beitrag noch wertvoller macht, ist die Tatsache, dass sie alle in Bereichen tätig
sind, die fachlich gesehen weit von der theoretischen Informatik entfernt liegen.

Selbständigkeitserklärung

Hiermit versichere ich, dass die vorliegende Arbeit sowie der veröffentlichte Quelltext
meine eigene Arbeit sind. Arbeit anderer wurde durch Quellenverweise oder Nennung des
Autors (Quelltext) eindeutig kenntlich gemacht.

Statement of Authorship

I hereby declare that this document and the accompanying code have been composed
by myself and describe my own work, unless otherwise acknowledged in the text. It has
not been accepted in any previous application for a degree.

Karlsruhe, 5 August 2011

iii

v

Zusammenfassung

Dynamische Clusteralgorithmen sind ein hochgradig aktuelles Forschungsthe-
ma. Die immer wichtiger werdenden sozialen Netzwerke sind ein anschauliches
Beispiel für dynamische und geclusterte Strukturen:

Mitglieder sozialer Netzwerke bilden oft Gemeinschaften, die sich im Laufe
der Zeit in Größe und Anzahl verändern. Die eigentliche Beobachtungsgröße
hingegen sind oft einzig und alleine die Teilnehmer und deren Beziehungen
untereinander. Deren Wegfallen oder Entstehen sowie die Fluktuation von
Mitgliedern führen dazu, dass sich die Struktur der Gemeinschaft mit der Zeit
verändert.

Dynamische Clusteralgorithmen dienen dazu, diese sich wandelnden Struk-
turen zu erkennen, um weitere Auswertungsschritte (etwa gezielte Werbung
oder auch zu Planungszwecken) zu erleichtern. Allerdings stehen Referenz-
daten für derartige Szenarien leider nicht in dem Umfang zur Verfügung, wie
es zur Evaluierung von dynamischen Clusteralgorithmen wünschenswert und
nötig wäre.

Diese Bachelorarbeit stellt die theoretische Konzeption und Implementierung
eines Testdatengenerators vor, mit dessen Hilfe eine zeitlich und speichertech-
nisch effiziente Erzeugung von Zufallsgraphen möglich ist, die sowohl geclustert
als auch dynamisch sind. Die Leistung dieser Arbeit liegt darin, einen bereits
existierenden Generator abzulösen, der zwar zeitlich, nicht aber speichertech-
nisch hinreichend leistungsfähig ist, um große Netzwerke zu erzeugen.

Abstract

Algorithms for dynamic and clustered scenarios are of topical importance in
the clustering research community. Social networks which are illustrative real-
world examples of dynamic and clustered structures perpetually gain in impor-
tance.

Members of these networks constitute communities which evolve in size and
number. However, communities may not be directly recognizable for an ex-
ternal observer, for example if it comes to informal substructures of larger
communities. In these situations, the only measurable indicator are the mem-
bers’ relationships among each other. Over time the network evolves as new
acquaintances come to life and old ones are lost. Some members may even
leave the community, cutting all ties at once.

Dynamic clustering algorithms serve for detecting such communities in or-
der to allow further processing which may for example be personalized adver-
tisement or for planning purposes. Unfortunately, suitable reference data for
testing dynamic clustering algorithms is difficult to find and varies in quality.

This thesis describes the theoretical design and practical implementation
of a generator producing dynamic, clustered, and random networks which is
both space and time efficient. It’s fundamental achievement is the thorough
redevelopment of a previous generator resulting in an implementation with
dramatically smaller memory consumption and improved running time.

v

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Overview . 2

1.3 Preliminaries . 2

1.3.1 General Terms . 2

1.3.2 Bachmann-Landau Notation . 3

1.3.3 Graphs . 3

1.3.4 Clusters . 3

1.3.5 Graph and Clustering Adjacency . 4

1.4 The Dynamic, Clustered, and Random Scenario 4

1.4.1 Indices for the Quality of a Clustering 5

1.4.2 Random Graph Models . 6

1.4.3 The Model G(n, pin, pout) . 7

1.4.4 Dynamics . 9

1.5 Source and Target Tree Approach . 12

1.5.1 Randomized Binary Selection Tree . 13

1.5.2 Source and Target Trees . 15

1.5.3 Summary . 18

1.5.4 Requirements . 18

2 Cluster Tree Approach 21
2.1 Node and Edge Indices . 21

2.1.1 Node Indices . 21

2.1.2 Triangular Edge Indexing Scheme . 22

2.1.3 Global and Local Indices of Edges . 23

2.2 Fisher-Yates Shuffle . 23

2.2.1 Standard Fisher-Yates Shuffle . 23

2.2.2 Virtual Fisher-Yates Shuffle . 24

2.2.3 Dynamic Virtual Fisher-Yates Shuffle 26

2.2.4 Operations on the Dynamic Virtual Fisher-Yates Shuffle 28

2.2.5 Summary . 28

2.3 Edge Dynamics . 31

2.3.1 The Pseudo Cluster . 32

2.3.2 Selection Process in Detail . 34

2.3.3 Summarizing Example . 38

2.4 Node Dynamics . 40

2.4.1 Node Insertion . 40

2.4.2 Node Deletion . 41

2.5 Cluster Dynamics . 42

2.5.1 Expected Cluster Size . 42

2.5.2 Merging Clusters . 42

2.5.3 Splitting a Cluster . 43

vii

viii Contents

2.5.4 Summary of Cluster Operations . 44
2.6 Review of the Cluster Tree Approach . 44

3 Implementation 45
3.1 Implementation Notes . 45

3.1.1 Command Line Parameters . 45
3.1.2 Graph File Format . 49
3.1.3 The Difference between Theory and Practice 51

3.2 Exemplary Calls . 51
3.3 Compatibility with the DCRGenerator . 52
3.4 Evaluation . 52

3.4.1 Fixed Node Count . 53
3.4.2 Fixed Intra-Cluster Edge Probability 53
3.4.3 Summary . 53

4 Conclusion 57
4.1 Summary . 57

4.1.1 Space Efficiency . 58
4.1.2 Time Efficiency . 58

4.2 Outlook and Open Questions . 58

Appendix 61
A Algorithms . 61

Bibliography 65

Nomenclature 67

viii

1. Introduction

1.1. Motivation
The efficient analysis of large collections of data is one of today’s great challenges.

Whenever the amount of data exceeds a certain level it is not affordable to take every
single data set into consideration. In general, we are more interested in how far certain
subsets of the acquired data belong together in a logical, semantical or functional sense. An
established approach is to group data sets into so-called clusters and observe the resulting,
more coarse-grained structure.

We frequently encounter clustered data in almost all fields of science and everyday life:
Virtual and real social networks are divided into communities; market research strives to-
wards categorizing customers into groups in order to make them favorable offers; networks
of collaboration of actors, politicians or scientists1 can be sources of inspiration for new
theoretical models (see Section 1.4.2).

The broad variety of different types of data can often be mapped to one of the most
versatile tools computer scientists know: graphs. Entities are mapped to nodes and the
observed relationships to edges. However, having translated the data into a graph, it is
not so clear how to subdivide the data sets into clusters. In fact, no single answer to
this question exists but a broad variety of approaches has been proposed in the past.
Fortunato has published an overview of the most widely used clustering techniques which
also contains an appealing collection of illustrative real-world examples for clustered data
(see Section 2 in [10]).

Frequently, the networks under consideration evolve over time. Coming back to the
example of social networks, we observe that communities may split due to diverging in-
terests and other communities may coalesce if there are new common interests or projects
on which the members of the participating communities work together.

Even though real-world dynamic clustered instances with a reference clustering exist –
that is, we know the clustering of the data in advance – there are several reasons why
we are interested in generating artificial test data: First, we would like to produce graphs
with a set of predefined properties such as the distribution of node degrees or size of the
clusters, enabling us to examine the behavior on dynamic clustering algorithms under
almost arbitrary circumstances. Furthermore, large real-world instances are not numerous
and, in general, they are subject to certain restrictions which prohibit the independent
comparison of clustering algorithms or implementations thereof.2

1The Erdős number is popular in this context [15].
2Some years ago, similar problems existed in the route planning community where real-world road net-

works generally were subject to nondisclosure agreements. The online service OpenStreetMap [11] and

1

2 1. Introduction

Christian Staudt and Robert Görke implemented a random graph generator for the
described clustered and dynamic scenario. Their generator performs well in practice but
the size of the generated instances is limited by the memory consumption of the generator
which is constantly quadratic in the number of nodes. Realistic instances, however, are
sparse graphs, that is, the edge count is linear in the number of nodes. The objective of
this work is now to design and implement a generator which is able to produce significantly
larger test data instances than the preceding implementation, enabling the developers of
dynamic clustering algorithms to test the behavior with networks being of comparable size
as large real-world instances. Therefore, formally speaking, we want the new generator to
consume at most O(n+m) memory, where n is the number of nodes and m is the number
of edges, in comparison to O(n2) before.

1.2. Overview

The thesis is structured as follows: Chapter 1 is a collection of all information that is
fundamental for understanding the theory of the generator. Therefore, in Section 1.3, we
first clarify our notion of the terms and symbols appearing in this thesis. Based on these
definitions, Section 1.4 formalizes the scenario described colloquially above. Afterwards,
we take a closer look at the source and target tree approach being the theoretical concept
behind the previous generator in Section 1.5.

Having learnt about all necessary basics we present our cluster tree approach in Chap-
ter 2, which is the theoretical part of this thesis. Of course, we need to clarify first
what exactly caused the inadequate memory consumption of the existing generator. In
the course of this chapter we completely redesign the internal structure of the generator
starting with the indexing scheme for nodes and edges, proceeding with edge and node
operations and finishing with cluster operations.

Chapter 3, will describe the actual implementation. The implementation notes in Sec-
tion 3.1 are not a design document but can be rather read as a user manual comprising the
command line parameters and being followed by examples and compatibility issues con-
cerning the former generator. Section 3.4 closes the chapter with a small set of experiments
giving a sense of the generator’s performance.

Chapter 4 closes this work. The summary in Section 4.1 states whether we were able
to meet all requirements concerning space and time efficiency of the new generator. As in
every theoretical work answers to previous questions yield new questions. Some of them
are listed in Section 4.2.

Finally, we mention that a nomenclature can be found at the very end of this work which
contains all symbols appearing in this thesis.

1.3. Preliminaries

1.3.1. General Terms

Given a set S and an element e we abbreviate the operation S′ = S \{e} with S′ = S - e
and S′ = S ∪ {e} with S′ = S+ e.

For two sets A and B the unordered Cartesian product is defined as the set of all
unordered pairs with exactly one element from A and B: A ∗B =

{
{a, b} | a ∈ A, b ∈ B

}
.

For a given set S the set S = {S1, S2, . . . , Sn} is called a partitioning of S if the following
two properties hold:

• S covers S:
⋃n
i=1 Si = S.

• The Si are disjoint: ∀i, j = 1 . . . n, i 6= j : Si ∩ Sj = ∅.

the steadily growing community around it finally redeemed the researchers from this limitation.

2

1.3. Preliminaries 3

Suppose there exists a set of elements S and a function p : S → [0..1]. The probability
mass of S weighted with p is defined as: P (S, p) =

∑
e∈S p(e).

Given a discrete random variable X : S → N with S being the set of all possible out-
comes. The probability that X takes value xi is denoted with P [X=xi] and the expectation
value of X is E[X] =

∑
xi∈S xi · P [X=xi].

The conditional probability P [X=xi|Y=yj] is the probability that random variable X
takes value xi under the condition that Y is known to have value yi. Mathematically it is

defined as: P [X=xi|Y=yj] =
P [X=xi,Y=yj]

P [Y=yj]
.

The binomial coefficient
(
n
k

)
is the number of subsets containing k elements which can

be chosen from n distinct elements:
(
n
k

)
= n!

(n−k)!·k! .

The symbol ⊥ symbolizes an invalid pointer (null pointer). For example, it may be
returned by a hash table when there exists no entry for a given key. Setting an entry to
⊥ is equivalent to deleting this entry from the data structure.

1.3.2. Bachmann-Landau Notation
For given functions f, g : D → N we say that

• f grows asymptotically not faster than g (for short: f ∈ O(g)) if

∃c ∈ R,∃n0 ∈ N : ∀n ≥ n0 : f(n) ≤ c · g(n)

• f grows asymptotically as fast as g (for short: f ∈ Θ(g)) if

∃c1, c2 ∈ R, ∃n0 ∈ N : ∀n ≥ n0 : c1 · g(n) ≤ f(n) ≤ c2 · g(n)

1.3.3. Graphs
An undirected graph is defined as an ordered pair G = (V,E), where V is the set of nodes

and E is the set of edges. An edge e = {u, v} ∈ V ∗ V is an unordered pair of nodes from
V . The nodes u and v are called endpoints of e and e connects u and v. If {u, v} /∈ E, u
and v are unconnected. For {u, v} ∈ E we say that u and v are adjacent (shortly: u ∼ v)
and that e is incident to u and to v (shortly: e ∼ u, v). The neighborhood of node v is
the set of all adjacent nodes of v: N(v) = {u ∈ V | u ∼ v}.

The definition of E implies two properties of G: First, G does not contain edges which
have the same node as twofold endpoint, so-called loops. Second, there is at most one edge
connecting two distinct nodes in G. Graphs having these two properties are called simple.
If not otherwise stated, the size of the sets V and E is denoted with n = |V | and m = |E|,
respectively.

The degree of a node v is the number of nodes being adjacent to v: deg v = |N(v)|. If
deg v = 0 then v is called isolated.

A simple graph is called complete if each node has degree n− 1, implying that m =
(
n
2

)
.

Given a set V of nodes, the set of all possible undirected edges between nodes of V is
denoted with

(
V
2

)
= V ∗ V .

For a given graph G its complement graph Ḡ is defined as Ḡ = (V̄ = V, Ē =
(
V
2

)
\ E),

that is, Ḡ embodies the same set of nodes and all possible edges except for those which
exist in G. The pairs of nodes in Ē are called non-edges of G and m̄ := Ē.

Given a subset V ′ ⊆ V . The node induced subgraph G(V ′) = (V ′, E′) of G embodies all
edges between nodes of V ′: E(V ′) = E ∩ (V ′ ∗ V ′).
1.3.4. Clusters

A clustering C = {C1, C2, . . . , Ck} is a partitioning of V where each of the Ci is non-
empty implying that |C| ∈ O(|V |). If not defined otherwise, the variable k refers to the
number of clusters in C: k := |C|. The function c : V → C maps each node v to its cluster
C: c(v) = C :⇔ v ∈ C.

3

4 1. Introduction

For a cluster C the graph G(C) = (C,E(C)) is the node induced subgraph of C, where
E(C) are the intra-cluster edges of C. For e ∈ E(C) we use the abbreviation e ∈ C. m(C)

is the number of edges in G(C) and m̄(C) =
∣∣∣
(
V (C)

2

)
\ E(C)

∣∣∣ is the number of intra-cluster

non-edges of C. Edges having endpoints in two distinct clusters are called inter-cluster
edges. In a clustered graph each edge is either an inter-cluster or intra-cluster edge. A pair
of nodes {u, v} is called intra-cluster pair or inter-cluster pair if c(u) = c(v) or c(u) 6= c(v),
respectively.

Let v ∈ Ci where Ci ∈ C is a cluster. The intra-cluster neighborhood Nintra(v) of v is
the set of all nodes u in Ci which are adjacent to v: Nintra(v) = {u ∼ v | c(u) = c(v)}.
Similarly, the inter-cluster neighborhood Ninter(v) of v is: Ninter(v) = {u ∼ v | c(u) 6= c(v)}.

Intra-cluster degree and inter-cluster degree of v are defined as the size of the respective
neighborhood: degintra(v) = |Nintra(v)| and deginter(v) = |Ninter(v)|. Therefore, we see
that N(v) = Nintra(v) ∪Ninter(v) and deg v = degintra(v) + deginter(v).

If there exists only a single cluster or if each cluster contains only one node, that is
|C| ∈ {1, n}, C is called a trivial clustering of G.

The set of all intra-cluster edges is called Eintra =
⋃k
i=1E(Ci) and mintra = |Eintra|.

Conversely, the set of all intra-cluster non-edges is called Ēintra =
⋃k
i=1

((
Ci
2

)
\ E(Ci)

)

where m̄intra = |Ēintra|.
For inter-cluster edges we introduce Einter = E \ Eintra and minter = |Einter|. The set of

all inter-cluster non-edges is defined as Ēinter = Ē\Ēintra the count of which is abbreviated
with m̄inter = |Ēinter|.

Given two clusters Ci, Cj . The set of inter-cluster edges between Ci and Cj is E(Ci, Cj) =
{u ∼ v | u ∈ Ci, v ∈ Cj} and m(Ci, Cj) := |E(Ci, Cj)|. The set of inter-cluster non-edges
is defined as Ē(Ci, Cj) = (Ci ∗ Cj) \ E(Ci, Cj) and m̄(Ci, Cj) := |Ē(Ci, Cj)|.

1.3.5. Graph and Clustering Adjacency

The graphs G = (V,E), G′ = (V ′, E′) are adjacent (shortly: G ∼ G′) if any one of the
following graph operations transforms G into G′

• node insertion: V ′ = V + v, v /∈ V

• node deletion: V ′ = V - v, v ∈ V

• edge insertion: E′ = E+ e, e ∈ Ē

• edge deletion: E′ = E - e, e ∈ E

Note that adjacency is a symmetric relation.

We define the following cluster operations:

• merge two clusters: C′ =
(
C -Cx -Cy

)
+C ′z where Cx, Cy ∈ C and C ′z = Cx ∪ Cy

• split a cluster: C′ =
(
C -Cx

)
+C ′y +C ′z where Cx ∈ C and Cx = C ′y ∪ C ′z

When clusters C1, C2 are merged into one cluster C3, the operation is abbreviated with
(C1, C2) → C3. Conversely, for the case of splitting cluster C1 into C2 and C3 we write:
C1 → (C2, C3).

1.4. The Dynamic, Clustered, and Random Scenario
We now possess an adequate vocabulary for describing dynamic, clustered random

graphs. The following sections introduce some basics in the field of clustering and random
graph models. Towards the end of this section we will formalize the graph model (Sec-
tion 1.4.3) and give a theoretical definition of a random graph generator (Section 1.4.4).

4

1.4. The Dynamic, Clustered, and Random Scenario 5

1.4.1. Indices for the Quality of a Clustering

Over time several criteria have been suggested which could be used to evaluate whether
for a graph G = (V,E) the partitioning C = {C1, C2, . . . , Ck} of V is a good clustering.

Coverage

Intuitively, one might consider a clustering C of G to be “good” if the number of intra-
cluster edges contributes a large fraction of all edges of G. This ratio is called coverage [4]
of C:

cov(C) =
mintra

m

Unfortunately, an obvious drawback is observable: If |C| = 1 the resulting coverage is 1
and if |C| = n we obtain cov(C) = 0. Thus neither the maximum nor the minimum value
for the coverage can be taken as measure of quality for the clustering.

Performance

The coverage approach focuses on the number of existing edges but it does not prune a
clustering if it is sparse, that is, if there are also many intra-cluster non-edges. The index
performance [19] takes this into account: The sum of intra-cluster edges and inter-cluster
non-edges is related to the maximum number of edges.

perf(C) =
mintra + m̄inter(

n
2

)

This measure prunes clusterings which are relatively coarse and it favors clusterings
which possess many intra-cluster edges and only a few inter-cluster edges.

Intra-Cluster Density vs. Inter-Cluster Sparsity

Another criterion for deciding on the quality of a given clustering is the so-called intra-
cluster density vs. inter-cluster sparsity paradigm.

No formalized, commonly accepted definition of this criterion exists, so that we give
a rather intuitive one: Roughly speaking, the paradigm states that C ⊆ V is a cluster,
if the fraction of the number of existing intra-cluster edges to the number of all possible
intra-cluster edges is much larger than the fraction of the number of existing inter-cluster
edges to the number of all possible inter-cluster edges.

To make this clearer, we assume that for a certain node v ∈ C two values d and s exist,
where

d =
degintra

n(C)− 1

s =
deginter

n− n(C)

According to the density vs. sparsity paradigm, d must in average be (much) larger than
s in order to recognize C as a cluster. Note that this is not an exact definition but shall
summarize the rather long description above.

5

6 1. Introduction

Other indices

We only present the unweighted version of the quality criteria as weighting is of no
importance in our scenario. Görke additionally summarizes definitions for weighted graphs
[14]. A wide range of other quality indices for graph clusterings exist. Common measures
are described in [5]. For the sake of completeness we mention modularity [17] and inter-
cluster conductance [6].

1.4.2. Random Graph Models

Random graph models can be used for characterizing the results of a random graph
generation process. Such models state certain probabilistic properties of the generated
graphs which can be as ordinary as “Each graph contains exactly n nodes and m edges”
but there also exist non-trivial statements, for example about the average node degree or
the expected maximal size and count of connected components.

The meaning of the terms process and graph model is sometimes not clearly separated:
A process takes parameters and generates a graph whereas a model points out properties
of a certain class of graphs which are generated by a process. Therefore, many algorithms
generating graphs of the same model may exist.

Some graph models bear a descriptive name and a concise one which only emphasizes the
necessary parameters, for example Gilbert’s model is a synonym for G(n, p); this model
takes two parameters n and p. For small-world networks and preferential attachment
model, the authors of the original publications did not define a concise name so that we
introduced it for clarifying what parameters the specific model takes.

Gilbert’s Model G(n, p)

Gilbert’s model [13], also called G(n, p), is a widely used model for creating random
graphs with n nodes3. For two nodes u and v the probability that edge e = {u, v}
exists in a graph G generated with G(n, p) is p. The expected degree of a node v is
E[deg v] = p · (n− 1).

A way to generate graphs using G(n, p) is to initialize the n nodes and, afterwards, to
draw for all

(
n
2

)
edges whether each of them exists or not. Clearly, this takes time O(n2).

Batagelj and Brandes showed how to dramatically reduce the running time to O(n+m),
where m is the number of edges created (see Section II.A. in [2]).

Erdős-Rényi Model G(n,m)

Generators adhering to the Erdős-Rényi model [7] which is also called G(n,m) generate
graphs with exactly n nodes and m edges. Not considering isomorphisms, each graph
fulfilling these constraints is equally likely to be created.

A naive approach for generating a graph with G(n,m) is to draw m edges from the set
of all possible

(
V
2

)
edges. If the drawn edge already exists, another one is tried until a

non-edge is found. Clearly, the expected running time of a single edge selection increases in
the course of the process because drawing an existing edge becomes increasingly probable.
Batagelj and Brandes suggest two efficient implementations of G(n,m) and present exper-
imental results [2]. In the course of discussing the second implementation they introduce
the virtual Fisher-Yates shuffle, a data structure which allows for at most two trials per
drawn edge. As we will see in Section 2.2 this data structure may also prove useful in our
work.

Small-World Networks

The small-world phenomenon first stated by Stanlay Milgram [16] has emerged to great
popularity not only in science but also in public. A similar description of this phenomenon
is the “six degrees of separation”: According to this theory, most people on the world are
connected with each other via at most six acquaintances. For some communities such as

3Some publications also claim that both models, G(n, p) and G(n,m), are called Erdős-Rényi model.

6

1.4. The Dynamic, Clustered, and Random Scenario 7

mathematicians (Erdős number [15]) and actors (“six degrees of Kevin Bacon”), this theory
has been analyzed on the basis of collaboration graphs.

In graph theory Watts and Strogatz proposed an approach on how to generate so-called
small-world networks [20]. In principle the generation process of a small-world network
deterministically initializes a graph G0 with n nodes which are spread regularly over a
circle and each node is connected to its k closest neighbors. The distance to a neighbor is
measured in hops which have to be performed on the circumference in order to reach that
neighbor.

The process now iterates k times over all nodes in a (counter-)clockwise order and decides
for each node v whether and, if yes, in how far each incident edge e = {u, v} is rewired,
that is whether the adjacent node u shall be substituted with another node u′. If edge
{v, u′} already exists, e remains untouched. p is the probability that an edge is rewired.

Watts and Strogatz use two measures for characterizing the resulting graphs: The first
one is the characteristic path length L(p) which is the average minimal distance of any
two nodes. The second one is the clustering coefficient C(p) which is the average of the
completeness of the neighborhood N(v) of each node v. The completeness of N(v) is the
number of existing edges in the node induced subgraph G(N(v)) = (N(v), E′) related
to the maximum number of edges within G(N(v)): C(p) = avgv∈V

(
|E′|/(|N(v)|

2)
)
. The key

observation is that the characteristic path length L(p) sharply decreases if p differs slightly
from 0 and that C(p) stays almost constant for the respective values of p.

Characteristic path length L(p) and completeness of the neighborhood C(p) can be seen
as the characteristic properties of the small-world graph model G(L,C).

In a real-world scenario, where the nodes represent persons and edges acquaintances, this
yields a small “degree of separation” (low L(p)) while the community structure is preserved
(high C(p)). Following these observations this type of graphs is called small-world network.

Preferential Attachment

Gilbert’s model, the Erdős-Rényi model and small-world model share one property: The
degree of most nodes is quite close to the arithmetic mean in all three models.

A random graph model which does not share this property is called preferential attach-
ment and has been first published by Barabási and Albert [1] and refined by Bollobás et
al. [3].

This random model follows a power law and it can be abbreviated as G(n, γ). Formally
speaking, the probability of node v having k neighbors adheres to P [deg v = ν] ∝ ν−γ for
some constant γ, that is the probability of high degrees ν decreases exponentially in ν.

The motivation of this model bases upon an observation in self-organizing networks such
as social networks: If a new person joins the network and if he/she may choose to establish
a certain amount of relationships with other members, he/she will probably choose one
or more of those (few) participants that already maintain a relatively large amount of
relations – and therefore are “important” in some way.

A graph consistent with the preferential attachment model can be produced by the fol-
lowing strategy: Nodes v are gradually added to the existing network and are immediately
connected to k neighbors. The probability that a node u is chosen as new adjacency of v
is proportional to deg u.

1.4.3. The Model G(n, pin, pout)
Our objective is to create clusterings that are detectable using the paradigm of intra-

cluster density vs. inter-cluster sparsity. A suitable random graph model for this criterion
is G(n, pin, pout); it is derived directly from G(n, p) and has been proposed in [5] and [12].

The parameter n of the model denotes the fixed number of nodes. pin and pout are the
edge probabilities for intra-cluster and inter-cluster edges, respectively. pout is a single
value, whereas pin is a list of size k, the cluster count: pin =

(
pin(C1), . . . , pin(Ck)

)
. For

7

8 1. Introduction

two nodes u and v the probability for edge e = {u, v} to exist in a graph created with
G(n, pin, pout) is called edge probability p(u, v) (also: p(e)) where

p(u, v) =

{
pin(Ci) u, v ∈ Ci
pout otherwise

Note that the concept of edge probabilities is similar to the definition of the sparsity
vs. density paradigm. We call the clustering C = {C1, C2, . . . , Ck} the ground truth because
converging towards this clustering is the long-term objective of all graph operations.

Node Degrees

As for Gilbert’s model we describe here how we can use the edge probabilities to calculate
the expected intra- and inter-cluster node degrees. The expected intra-cluster node degree
degintra(Ci) within cluster Ci can be found when considering the generation of G(C) as
Gilbert’s model with parameters n(Ci) and pin(Ci) and we obtain:

E[degintra(Ci)] = pin · (n(Ci)− 1).

For the inter-cluster node degree deginter, the definition is slightly different: As all nodes
v ∈ Ci within cluster Ci have uniform expected deginter(v), this value is abbreviated with
deginter(Ci). The process of establishing inter-cluster links of v is similar to the one used
for creating the intra-cluster adjacencies. Iterating over all nodes u ∈ V \Ci outside of Ci,
we create an edge {u, v} with probability pout.

E[deginter(Ci)] = pout · (n− n(Ci))

E[deginter] = E[
1

n

∑

v∈V
deginter(v)]

=
1

n

∑

v∈V
E[deginter(v)]

=
1

n

∑

v∈V
pout · (n− n(c(v)))

=
1

n

k∑

i=1

n(Ci) · pout(n− n(Ci))

=
pout

n

k∑

i=1

n(Ci)(n− n(Ci))

The probabilities pout and pin should be chosen such that pout � pin(Ci) because the
possible number of inter-cluster adjacencies of a node v is much larger than the number of
possible intra-cluster adjacencies. Therefore, a change in pout has a larger impact on the
inter-cluster node degree than does a similar change to one of the pin values.

Cluster Sizes

The sizes of the k clusters are not defined by the input parameters of the G(n, pin, pout)
model. A sensible suggestion made in [12] and [5] is to choose a node’s cluster uniformly
at random which entails a binomial distribution of the cluster sizes around the mean value
n
k .

Furthermore we may introduce a coefficient β which skews the binomial distribution as
follows: Each cluster Ci is assigned to an equidistant subinterval

[
i−1
k , ik

)
of [0, 1). When

searching for a cluster to add a new node to we draw an integer i ∈ [0, k−1]. Now, we add

8

1.4. The Dynamic, Clustered, and Random Scenario 9

the node to the cluster which is assigned to the surrounding interval of
(
i
k

)β
where β = 1

in the unskewed case. If β > 1 then the result of the exponentiation is always smaller than
the base which causes clusters Ci with relatively small indices i to receive more nodes in
comparison to those with relatively indices.

1.4.4. Dynamics
Up to now we did neither include time dependency into our scenario nor did we clarify

what we exactly talk about when using the term generator.

Interface of the Generator

A generator of dynamic clustered random graphs is an algorithm which receives the
following parameters:

• n: number of nodes of the initial instance

• pin =
{
pin(C1), . . . , pin(Ck)

}
, implying cluster count k

• pout: inter-cluster edge probability

• tmax: number of time steps

• pω: probability of a cluster operation

• pµ: probability of a split operation (1− pµ: probability of a merge operation)

• pχ: probability of an edge operation (1− pχ: probability of a node operation)

• pν : probability of adding a node (1− pν : probability of removing a node)

The output of the algorithm is a list of pairs: S = (Gt,Rt), indexed with the time steps
t = 0 . . . tmax where

• Gt = (Vt, Et) is a graph

• Rt is the clustering which is considered to be recognizable by an observer (reference
clustering)

and G0 is called the initial instance. Finally, we claim that the Gt are adjacent: ∀t =
1 . . . T : Gt ∼ Gt−1, that is, exactly one node or edge is added or deleted per time step. Note
that deleting a node entails deleting its adjacencies and thus a node operation normally
implies several edge operations.

Internals Structure of the Generator

Figure 1.1 depicts the detailed generation process. For all further considerations we
adhere to this diagram so that it may provide for useful orientation. Robert Görke and
Christian Staudt provided the diagram.

We see that there is one procedure which has not been explained, yet: ws(PE , PĒ).
This function is called a weighted selection (see Algorithm 1). It takes two weights and
non-deterministically determines whether the element associated with the first weight is
to be selected. Otherwise, the second element is to be chosen. The probability of selecting
a specific element is proportional to its associated weight compared to the sum of both
weights.

In our generator the weighted selection is responsible of steering the edge count to-
wards the expected value: PE and PĒ are the probability masses of E weighted with
1− p(u, v), {u, v} ∈ E and Ē weighted with p(u, v), {u, v} ∈ Ē:

PE =
∑

{u,v}∈E

(1− p(u, v)) (1.4.1)

PĒ =
∑

{u,v}∈Ē

p(u, v) (1.4.2)

9

10 1. Introduction

Start

t = t+1

Stop

generate initial
graph

remove
node &
incident
edges

add node

pχ

pν

add edge remove
edge

select node
at random

n

y

select 2
clusters

select
cluster

2 clusters
availablecluster available

mergesplit

select
edge

select
node pair

pω

pµ

t = tmax

ws(PE, PĒ)

Figure 1.1.: Decision tree of the dynamic graph generator: Rhombi are decisions and rect-
angles are subprocedure calls.

10

1.4. The Dynamic, Clustered, and Random Scenario 11

Algorithm 1: Weighted selection among two elements

Input : ω1,ω2: weights of the two elements
Output : c: whether to select the first element
// Draw real number uniformly at random from the interval [0, ω1 + ω2)
r ← randomReal (ω1 + ω2)
if r < ω1 then

c← true
else

c← false

Both probability masses are equal in the expected case and edge insertions are as probable
as edge deletions. If there exist fewer edges than expected the probability mass of all
non-edges PĒ is larger than PE and the generator tends to insert an edge rather than
removing one.

The subsequent paragraphs deal with open questions which may arise from defining
the generator in the above way. Most of the points have quite a fine-grained scope but
they have to be mentioned anyway. For the first reading, the reader may skip directly to
Section 1.5.4 where we summarize the resulting requirements which the generator has to
meet.

Selecting Clusters for Cluster Operations

One question is whether we are restricted in the selection of clusters for split and merge
operations. In fact, we are not: Our model makes no assumptions about the size distribu-
tion of clusters and, consequently, each cluster may be selected with uniform probability.
The only restriction we put on the clusters for a new cluster operation is that the do not
want the clusters to be already participating in another operation. This restriction allows
us to clearly separate the operations from one another. As we defined clusters to be non-
empty, a cluster participating in a split operation additionally has to contain at least two
nodes.

Calculating new Values for pin
When we trigger a merge or split operation we have to calculate pinvalues for the re-

sulting cluster(s). We could use the following strategy:

• For a merge operation (C1, C2)→ C3 we define the new intra-cluster edge probability
to be the arithmetic mean of pin(C1) and pin(C2): pin(C3) := 1

2

(
pin(C1) + pin(C2)

)
.

• For a split operation C1 → (C2, C3) the clusters C2 and C3 inherit the old value of
pin: pin(C2) := pin(C3) := pin(C1).

However, these rules lead to an unfavorable steady equalization of the pin values. Görke
and Staudt suggested to use a Gaussian distribution N(µ, σ2) to draw the next pinwhere
µ and σ are the arithmetic mean and the standard deviation of the original pinvalues (see
“Splitting and Merging Clusters” in [18]).

Reference Clustering

We have seen that the generation process is divided into time steps which are again
subdivided into two parts: In the first part, the ground truth clustering of the graph is
(potentially) modified without affecting the edges and nodes of the graph. An outside
observer, who is only aware of edges and nodes, can by no means detect this change in the
clustering. For this reason we introduce the reference clustering R which is the clustering
which we deem recognizable by a clustering algorithm.

When performing a cluster operation the results will be written immediately into the
ground truth but we postpone applying the operation to the reference clustering until we
assume that the results may be seen by the clustering algorithm.

11

12 1. Introduction

Completeness of Cluster Operations

We need to clarify when and how we determine whether a certain operation is consid-
ered to be complete and can be applied to the reference clustering. We may check for
completeness after every graph operation or after each iteration and we use the observed
inter-cluster edge count between the initial (merge) or resulting (split) clusters of the op-
eration. As each cluster takes part in at most one operation at a time, we may measure
the completeness of each running cluster operation separately. Our decision is based on a
predefined threshold θ for the completeness.

For the operations (C1, C2) → C3 (merge) and C3 → (C1, C2) (split), we define the
constants a and b as follows:

a := n(C1) · n(C2) · pout

b := n(C1) · n(C2) · pin(C3)

where a is the expected number of inter-cluster edges between clusters C1 and C2 when
C1 and C2 constitute different clusters and b is the expected number of intra-cluster edges
between C1 and C2 when both are subsets of cluster C3.

In each time step we count the number of edges m(C1, C2) between C1 and C2 and
determine if the evolution of the original cluster(s) to the desired cluster(s) has made
enough progress in order to consider the operation to be complete. At the beginning of a
merge operation, the expected value of m(C1, C2) is a = n(C1) · n(C2) · pout because C1

and C2 are different clusters. C1 and C2 coalesce and therefore the generation process now
pushes m(C1, C2) towards b = n(C1) · n(C2) · pin(C3). For a split operation, the generator
will decrease m(C1, C2) over time converging towards value a.

complete((C1, C2)→ C3) =

{
true if m(C1, C2) ≥ θ · b+ (1− θ) · a
false otherwise

complete(C3 → (C1, C2)) =

{
true if m(C1, C2) ≤ θ · a+ (1− θ) · b
false otherwise

The tuning parameter θ determines how strict the decision is: If θ = 1 then the operation
is only considered complete if m(C1, C2) perfectly matches or exceeds the expected value.
Vice versa, for θ = 0, the operation almost will immediately be considered to be complete
in the expected case. It needs to be mentioned that choosing θ to be 1 is not sensible at
all as it may take a long time for the edge count to exactly match the expected value.

Several cluster operations can finish at the same time. Note that, theoretically, a new
cluster operation can be initiated in each time step. Indeed, the probability pω which
steers the frequency of cluster operations is relatively small in real use cases.

Selecting Nodes and Edges for Graph Operations

We have to determine how to select a certain edge or node for graph operations. When
it comes to removing a node, we argue that nodes shall be chosen uniformly at random
from V . Note that none of the prerequisites of the G(n, pin, pout) model prevents us from
proceeding in this way. Edges shall be selected with a probability proportional to p(u, v)
(insert) and 1 − p(u, v) (remove), where u, v are the endpoints of the edge under consid-
eration. This follows directly from the definition of pin and pout (see Section 1.4.3).

1.5. Source and Target Tree Approach
This section presents the original approach for implementing the subprocedures in the

decision tree depicted in Figure 1.1. This approach has been published in two documents:

12

1.5. Source and Target Tree Approach 13

[18] and Section 4.2 of [14]. For the sake of simplicity we will always refer to the former
publication. The whole approach is based upon a data structure similar to an ordinary
binary tree which is described first before we proceed to the actual implementation of the
graph and cluster operations.

1.5.1. Randomized Binary Selection Tree

Contrary to the introduced convention, n denotes the number of elements stored in the
tree within this section.

An augmented binary selection tree stores elements from a weighted set S =
{

(e, ω)i
}

where ω ∈ R is the weight associated with element e. For each element e we create a
tree node oe = (e, ω, `, r), where ` and r are pointers to the left and right child nodes,
respectively. Leaf nodes have ` = r =⊥. We assume that there exists an implicit parent
pointer parent(o) and height h(o) for each tree node. For the root tree node r we define:
parent(r) = r and h(r) = 0. Figure 1.2 illustrates the structure of the tree. The tree

` r

e, ω
parent(`) parent(r)

h(o)

h(o) + 1

o = (e, ω, `, r)

Figure 1.2.: Schematic view of a tree node o = (e, ωe, `, r)

offers element insertion, deletion, weighted selection, and weight update. Each node has an
accumulated weight which is defined as follows:

Definition 1 (Accumulated Weight). The accumulated weight of tree node o = (e, ω, `, r)
is defined as:

weight(o) =

{
0 o =⊥
ω + weight(`) + weight(r) otherwise

We precalculate weight(o) for all nodes o and update it if the tree changes. Essentially,
the binary tree is an ordinary weighted binary tree which has been augmented with an
accumulated weight. Like a binary tree the data structure still has size O(n). We will see
that the costs for insert and delete are not affected by the augmentation.

Find Operation

Contrary to binary search trees the proposed binary tree is not used for deterministically
retrieving certain elements. Therefore, we need not implement a find operation. We either
access tree nodes by means of their associated element (e. g. when we have to update the
weight of a tree node) or the tree supplies us with a pointer to a certain node (e. g. when
we randomly select a tree node).

Selection

Algorithm 2 implements the select operation for the binary selection tree: We choose
a real number d in the interval of [0,weight(root)) and descend the tree always making
sure that we are in the leftmost subtree the weight of which is larger than d. It is for this
reason that we need to correct d when descending into the right subtree. When we finally
arrive at a node for which we find weight(`) ≤ d < weight(`) + ω we have arrived at the
desired node and return it.

13

14 1. Introduction

Algorithm 2: select operation for the binary selection tree

Input : ρ: the root of the tree, ∆: a real number in [0,weight(ρ))
Output : e: the selected element
o = (e, ω, `, r)← ρ
while ∆ /∈ [weight(`),weight(`) + ω) do

if ∆ < weight(`) then
o← `

else
o← r
∆← ∆− weight(`)− weight(r)

Weight Update

The weight ω of an element e may change and we need to update the tree, recalculating
the accumulated weight for all nodes on the path from o to the root r. As the length
of all root to node paths is in O(log n), the update operations for node o takes time
Θ(h(o)) ⊆ O(log n). Algorithm 3 implements the update operation.

Algorithm 3: update operation for the binary selection tree

Input : e: element, ωnew: new weight
o = (e, ωold, `, r)
p = parent(o)
∆← ωnew − ωold

// parent(p) = p⇔ p is root

repeat
o.ω ← o.ω + ∆
o← p
p← parent(o)

until p = o

Insertion

Inserting an element (e, ω) into the tree, we create a new tree node o = (e, ω,⊥,⊥). A
tree node p with minimal height h(p) and at least one unassigned child pointer becomes
the parent of o: parent(o)← p.

Of course, we have to run the update operation with parameters o and weight(o) = ω.
The running time for the insert operations is O(log n).

Deletion

Deleting an existing tree node o from the tree a leaf node b with maximal height h(b) is
selected and replaces o in the tree, that is, all pointers of o are copied to b and the child
pointer in parent(o) is replaced with b.

Afterwards, the update operation is run for b and the former parent of b. The running
time for the delete operations is O(log n).

Example: select operation

After describing all operations the binary tree supports we give a small example of a
select operation in Figure 1.3. The figure illustrates the last but one step during the select
procedure. Each edge is labeled with the accumulated weight of the subtree below it and
each tree node is labeled with its weight ω.

• We start at root node
1

and choose an offset in the interval [0, 5.4): In this case
∆ = 3.8.

14

1.5. Source and Target Tree Approach 15

1

2 3

4 5 6 7

8 9 10 11 12 13
0.1 0.1 1.0 0.3

0.20.4

0.1

0.9

0.8

0.20.1

0.7 0.5

0.1 0.1 1.0 0.3 0.7 0.5

1.3 0.2

2.32.2

1.50.6

5.4

∆=0.7

ω

weight

Figure 1.3.: Possible choice for initial offset ∆ which leads to a selection of node 6

• The first comparison yields false but for the second comparison we find 3.8 ≥ 3.1 =
2.2 + 0.9 and therefore we descend into the right subtree adjusting the offset to:
∆ = 3.8− 3.1 = 0.7.

• Arriving now at node
3

it holds that 0.7 < 1.3 and we descend into the left subtree
not modifying the offset: ∆ = 0.7.

• The current situation is depicted in Figure 1.3: We have now reached node
6

and
it neither holds that 0.7 < 0.7 nor that 0.7 ≥ 0.8. For this reason, the current node
is the result of the select operation.

1.5.2. Source and Target Trees

The binary selection tree is the only data structure which is required in order to un-
derstand Görke’s and Staudt’s approach. We will see that we can perform all graph and
cluster operations using a certain set of augmented binary trees.

The data structure consists of so-called source and target trees which are divided into
data structures for the insert operation and for the delete operation. We describe the data
structure for deleting edges first and we will see that the corresponding one for inserting
edges can be defined analogously: We need to be able to choose from the set of edges E.
There exists one source-tree of deletion T containing all nodes from V and each node u is
additionally associated with a target tree of deletion T (u) representing the neighborhood
of u. Therewith all edges are covered twice by the target trees as illustrated in Figure 1.4.

The weights for nodes in the source tree and target trees of insertion are defined as
follows:

ω(u) =
∑

v∈N(u)

(1− p(u, v)) weight in T (1.5.1)

ωu(v) = 1− p(u, v) weight in T (u) (1.5.2)

We see that the tree nodes in the source tree are weighted with the probability mass of all
weights in the respective target tree and notice the similarity of (1.5.1) and (1.4.1).

Having defined the source and target trees for insertion we see that we can implement
the data structure for inserting edges in exactly the same way using source and target
trees of insertion this time: The source tree of insertion T̄ again contains the nodes of V
and the target tree of insertion T̄ (u) represents the neighborhood N̄(u) of u in Ḡ which

15

16 1. Introduction

T

u

T (u)

v
v

u

T (v)

ω(u)

ω(v)
ωu(v)

ωv(u)

Figure 1.4.: Schematic view of the source and target trees for insertion: The source tree
of deletion T represents a graph with 6 nodes. We obtain the size of the
neighborhoods of u and v from their associated target trees deletion: |Nu| = 2
and |Nv| = 3.

contains all potential adjacencies of u which do not exist in G. For the weights of the tree
nodes we find:

ω̄(u) =
∑

v∈N̄(u)

p(u, v) weight in T̄ (1.5.3)

ω̄u(v) = p(u, v) weight in T̄ (u) (1.5.4)

and see that the probability mass (1.4.2) corresponds to (1.5.3).

Edge Deletion

Having defined the data structures selecting an edge for deletion is now straightforward:
First we select a node u from the source tree of deletion and afterwards we choose a node
v from the target tree of deletion T (u).

The edge e = {u, v} is deleted by removing v from the target tree of deletion T (u) and
by updating the weight of u in the source tree of deletion T . As we store each edge twice
we have to run the described operations in an analogous way for source node v and target
node u. Additionally, we have to make e available for selection in a future time step.
Therefore, v is added to the target tree of insertion T̄ (u) and the source tree of insertion
T̄ has to be updated. In order to create the second half of e we add u to T̄ (v) and update
the weight of the tree node belonging to v in the source tree.

Edge Insertion

Edge insertion is symmetric to edge deletion. The only difference is now, that we choose a
non-edge from the source and target trees of insertion. All other operations are analogous.

Node Deletion

When deleting node v, we remove its target trees for deletion and insertion T (v), T̄ (v)
and its tree node in the source trees T, T̄ . Furthermore, for all nodes u ∈ N(v) we remove
v from the target tree of deletion Tu and for all nodes u ∈ N̄(v) we delete v from the target
tree of insertion T̄ (u) updating the weights of all affected nodes in both source trees. The
operation runs in time Θ(n) if deleting a single tree node takes constant time because the
number of elements in T (v) and T̄ (v) always sums up to n.

Node Insertion

Inserting node v, we add a new tree node to T, T̄ and initialize T (v) with the empty set
and T̄ (v) with all nodes from V \ v as v is isolated in the beginning. This operation runs
in time Θ(n). The running time is dominated by initializing the target tree of insertion.

16

1.5. Source and Target Tree Approach 17

Merging Clusters

For a merge operation (C1, C2)→ C3 the edge probabilities for all intra-cluster edges of
C1 and C2 are modified as these edges are now intra-cluster edges.

Therefore, an update operation for the source tree node of each v ∈ C1 ∪ C2 becomes
necessary. Additionally, the weight of all intra-cluster edges of C3 has to be updated in the
target trees because not only the weight of edges connecting C1 and C2 changed but also
the intra-cluster edge probability pin(C3) differs from the original values pin(C1), pin(C2).
The operation takes time O((n(C1) +m(C1) + n(C2) +m(C2)) log n).

Splitting a Cluster

For the split operation C1 → (C2, C3), the edge probabilities for all intra-cluster edges of
C1 are modified and some former intra-cluster edges inside C1 are now inter-cluster edges
of C2 and C3. Therefore, an update operation for the source tree nodes and the whole
target trees of each v ∈ C becomes necessary. Further points mentioned for merge apply
accordingly causing a split operation to take time O((n(C1) +m(C1)) log n).

Example: Inserting an Edge

Before we come to a short evaluation of this approach we would like to give another
example illustrating the insert operation for edges. The figures of this example have been
provided by Robert Görke and Christian Staudt. For this example we accept the respective
weights of the tree nodes to be given. The graph to which the source tree belongs and a
more detailed form of this example can be found on page 18 of [18].

1

2

5 7

3

4 6

108 12119

1.2

1.8

2.3 1.9

2.3

1.2 1.7 1.9 1.2 2.7

1.3 1.3

1.2 1.7 1.9 1.2 2.7

1.34.1 5.4 4.0

7.211.8

20.8

(a) Selection of source node in the source tree T̄

1

2

5 7

3

4 10

8 9

0.7

0.1 0.1

0.70.3 0.1 0.7

2.10.5

0.7

0.7

0.1 0.1

0.1 0.1

0.1

0.1

2.7

(b) Selection of target node target tree T̄ (12)

Figure 1.5.: Example of source and target trees: The weight of tree nodes is located next
to the specific tree node (blue). Accumulated weights are placed next to the
edge located above the respective tree (red). The dashed (green) arrow depicts
the way which the algorithm takes for the given offset values.

As we already saw how the binary tree’s select operation works (see example in Sec-
tion 1.5.1) we do not describe the selection of edge {3, 12} in detail but only point out the
major steps:

• We start at the root of the source tree for insertion T̄ (Figure 1.5(a)).

• We choose offset 12.7 and arrive at node 12. This is the source node of the edge to
be created. Note that the target tree of node 12 has the same weight as the tree
node 12.

• Inside the target tree for insertion T̄ (12) (Figure 1.5(b)) we choose the offset to be
1.3 and the select procedure returns node 3. Note that edge tree nodes of the target
tree have either weight 0.1 or 0.7 which can be identified as pout and pin(c(12)),
respectively.

17

18 1. Introduction

• We have finally found our next edge to insert: {3, 12}

As a next step – which is not depicted in the figures – we now have to remove node 3 from
T̄ (12) and node 12 from T̄ (3) (as the non-edge {3, 12} no longer exists) and we update the
weight of nodes 12 and 3 and the accumulated weight all of their ancestors, i. e. , nodes 6,
3 and 1, in T̄ .

In the original work it was proved that, if we choose values in the range of [0,weight(root))
uniformly at random, the probability of selecting a certain tree node is proportional to its
weight ω. We did not repeat the proof in this section but show an alternative represen-
tation of the above target tree in Figure 1.6 which immediately makes this claim evident.
This interval representation can be easily generated from the above target tree by running
a pre-order traversal, that is, arriving at a certain tree node we consider its weight ω first,
descend into the left and finally into the right child tree.

1 2 5 734 108 9

0.70.70.70.10.10.1 0.1 0.1 0.1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1
.3

2
.0

2
.7

Figure 1.6.: Subdivisioning of the interval [0, 2.7) corresponding to the target tree in the
Figure 1.5(b)

1.5.3. Summary
We have seen that the source and target tree approach is very elegant as one only needs

to know the binary selection tree in order to understand the functional principle. All graph
operations run efficiently in O(log n).

The major drawback of this approach is that it always needs memory of size Θ(n2)
because all possible

(
V
2

)
edges are permanently stored either in the target trees for insertion

or deletion. What may disturb us further is the logarithmic factor in the running time of
the cluster operations. In the next chapter of this work we describe a different approach
which redeems us of the space inefficiency.

1.5.4. Requirements
We summarize the requirements the new generator has to meet. From a functional point

of view, the data structure must offer the following operations:

Edge Operations :

• select a pair of unconnected nodes {u, v} ∈ Ē and insert the edge e = {u, v}
into E

• select and delete an existing edge e ∈ E

Node Operations :

• create a node v, select a cluster C for v and insert v into C

• inserting a node may be combined with connecting v to other nodes

• select and delete an existing node v ∈ V also removing all incident edges

Cluster Operations :

• select and split a cluster C, |C| ≥ 2

• select two clusters and merge them

We want to create random networks. To this end, the following requirements constrain
the dynamics with respect to selection probabilities.

18

1.5. Source and Target Tree Approach 19

• The decision which graph entity (node / edge) to insert or to delete is probabilistic.

• Starting with graph G, it must be possible to generate any adjacent graph G′ ∼ G.

• The probability for edge e = {u, v} to be inserted must be proportional to p(u, v) if
e /∈ Et or 0 else.

• The probability for edge e = {u, v} to be deleted must be proportional to 1− p(u, v)
if e ∈ Et or 0 else.

• The probability for nodes to be deleted must be uniform for all nodes.

The data structure should fulfill the following performance guarantees. Space efficiency
is the fundamental objective of this work. Concerning time guarantees the generator should
be at least as fast as the previous implementation.

• The data structure must have a size significantly smaller than O(n2) (ideally: O(n+
m) – space efficiency).

• Edge insertion and deletion must run in time O(log n) (ideally: O(1) – time effi-
ciency).

• Insertion and deletion of node v must run in time O(n) (ideally: O(deg(v)) – time
efficiency).

• Merging clusters C1, C2 should take at most time O(n(C1)+n(C2)+m(C1)+m(C2)+
k)

• Splitting cluster C should take at most time O(n(C) +m(C) + k)

19

2. Cluster Tree Approach

In the previous section it became obvious that the source and target tree approach is
limited by its space consumption: Even though we generally generate sparse graphs where
the number of edges m is in O(n) the source and target trees permanently store the
complete graph in memory, thus consuming memory Θ(n2).

One of the most important observations is that the binary selection tree is a data struc-
ture which is more powerful than it needs to be: We will see, that the generation process
can be reorganized such that it can profit from the regular structure of inter-cluster and
intra-cluster edge probabilities. We will adhere to the generation process as depicted in
Figure 1.1 – only the subprocedures will completely be reworked.

As this chapter is quite extensive it starts with a short overview of the following sections:

• Starting with the basics we explain first how nodes and edges are indexed in Sec-
tion 2.1.

• Afterwards, a general purpose data structure called Fisher-Yates shuffle is described
and enhanced with additional functionality (Section 2.2). This data structure will
be used for edge dynamics in the subsequent section.

• The following sections are organized by type of operation. The first one, Section 2.3,
deals with edge dynamics. As in the original approach edge dynamics are the most
critical part of the generator. Once implemented, the other operations are quite easy
to implement.

• Section 2.4 tackles node insertion and deletion, the so-called node dynamics.

• Section 2.5 finally describes cluster operations. in .

2.1. Node and Edge Indices
A well-designed scheme for indexing nodes and edges is the prerequisite of efficient graph

operations. We propose a scheme which is widely used for storing graphs. What comes
in handy is the fact that this scheme can be perfectly combined with the data structures
presented later in this chapter.

2.1.1. Node Indices

In the following, we assume that we have n nodes in the graph under consideration the
indices of which are running from 0 to n− 1. Inside of a ground truth cluster this index is
called the local index of a node. When a node is deleted from the a cluster, another node

21

22 2. Cluster Tree Approach

will be relabeled to fill the gap, thus keeping the index space continuous, that is, for each
integer i in the range of 0 to n−1 we find an existing node the index of which is i. For the
sake of simplicity we do not differentiate between the nodes and their indices whenever
this is possible.

For our clustered dynamic graph, each node also possesses a global index which unam-
biguously identifies the node during the whole generation process – we do not reuse indices
of deleted nodes! Nodes are inserted and deleted over time and thus the global index space
is not continuous.

There exist two functions1 which permit converting one index into the other:

• globalID(v) returns the global index of v.

• localID(v) returns the local index of v within its ground truth cluster

2.1.2. Triangular Edge Indexing Scheme

Since we only consider simple undirected graphs, only the left lower triangular submatrix
of the adjacency matrix is relevant for numbering edges. Edges are indexed by traversing
the submatrix line by line. The numbering scheme is illustrated by Figure 2.1. We see
that the diagonal axis is not indexed as the graph does not contain self-loops.

n− 1

0

0 n− 1

0

1 2

. . .

1

2

3 4 5

Figure 2.1.: Triangular indexing scheme

For given nodes u, v ∈ V, u < v the index e(u, v) of e = {u, v} can be determined as
follows:

e(u, v) =
u−1∑

k=0

k + v (2.1.1)

=
1

2
(u− 1)u+ v

1 For theoretical analysis we only consider the local index of a node within its ground truth cluster. Of
course, when implementing the generator we need to keep track of the node’s position within a potential
reference cluster and of its position in the pseudo cluster.

22

2.2. Fisher-Yates Shuffle 23

Vice versa, given the edge index e(u, v) the corresponding node indices u and v can be
found as follows:

u = 1 +

⌊
−1

2
+

√
1

4
+ 2 · e(u, v)

⌋

v = e(u, v)− 1

2
u(u− 1)

2.1.3. Global and Local Indices of Edges

The edge index of edge e = {u, v}, which unambiguously identifies the edge over the
whole generation process, can be obtained using the triangular indexing scheme from
above applied to the global indices of u and v, respectively. Assuming that globalID(u) >
globalID(v) we get:

globalID(e) =
1

2
globalID(u) · (globalID(u)− 1) + globalID(v).

2.2. Fisher-Yates Shuffle
Introducing the Fisher-Yates shuffle we prepare for the edge dynamics. The shuffle is a

versatile tool and so we dedicated a separate section to it even though the shuffle will only
be used when we consider the edge dynamics of the process in the next section. It has
first been introduced as a pen-and-paper method for creating randomly permuted subsets
from a given set of elements. We begin by describing the original data structure called the
standard Fisher-Yates shuffle in Section 2.2.1 which dates back to the year 1948. Even
though this version of the shuffle can be used without modifications in software but it
always needs a worst-case amount of memory which is proportional to the number of the
elements to choose from.

We must find a way to make the memory consumption proportional to the amount of
actually selected elements and as, a second step, the data structure needs to be adapted
in order to be able to also delete elements instead of always only adding them. The first
point has already been tackled by Batagelj and Brandes who called the modified shuffle a
virtual Fisher-Yates shuffle which is described in Section 2.2.2. The second point has been
solved in this work. As the new shuffle offers more “dynamic” behavior we called it the
dynamic virtual Fisher-Yates shuffle and show how the new method can be implemented
in Sections 2.2.3 and 2.2.4.

2.2.1. Standard Fisher-Yates Shuffle

The (standard) Fisher-Yates shuffle [9] was originally designed as an efficient data struc-
ture for creating random permutations of k elements out of n. Note that n denotes the
number of elements in the shuffle in the course of this section.

Fisher and Yates designed their algorithm to be carried out with pen and paper and
thus all n elements were stored in “memory”, that is, written down on a piece of paper.

In our imagination, we think of the shuffle as an array s. The array is divided into slots
which contain elements. The content of slot x can be addressed by means of the bracket
operator: s[x]. In our context elements are unsigned integers in the range of 0 to n − 1.
In the beginning, the elements shall be sorted in ascending order so that element x can be
found in slot x: s[x] = x. In this case we say that x is in place.

The state of the shuffle is fully determined by the array s and the border index i. This
index marks where we can find the selected and the unselected elements of the shuffle. The
elements which have already been selected are stored at indices smaller than i (left part)
and all element which may still be selected are stored at indices greater or equal to i (
(right part). Consequently, i = 0 in the beginning because no element has been selected,

23

24 2. Cluster Tree Approach

yet. For i < n the element s[i] is called border element and the border is the separation
of slot s[i] and s[i − 1]. The border element is undefined when all elements have already
been selected, i. e. , i = n. For the boundary cases where i = 0 and i = n the border
is located just before the first and just behind the last slot, respectively. Note that i is
always identical to the number of selected elements. The shuffle offers only one operation:
select. This operation draws an element from the set of unselected elements and adds it
to the set of selected elements. In the rest of this section we will assume that we are able
to select an element, that is, i < n.

The algorithm for deciding which element will be selected next can easily be understood:
In each step we randomly select an index r in the range of i, . . . , n−1 and swap this element
with the border element. Finally, we move the border one slot to the right. Algorithm 4
implements the functionality in pseudo code. Each loop iteration corresponds to a select
operation.

Algorithm 4: Standard Fisher-Yates Shuffle

Input : n: maximum number of elements to select from, k ≤ n: number of
elements to be selected

Output : s[0..k − 1]: selected elements
s = [0, 1, . . . , n− 1]: Array of Integer
for i← 0 to k − 1 do

// Draw integer uniformly at random from the set {i, i+ 1, . . . , n− 1}
r ← randomInt (i, n− 1)
swap (s[i],s[r])

Example

Before continuing with the first improvement concerning space consumption we give a
small example (Figure 2.2) Starting with a shuffle of size n = 5 a permutation of k = 3
integers shall be produced. We only describe the first step as the subsequent two selections
are analogous. During the first iteration, the border index is 0 and we choose j = 1
uniformly at random from the set {0, 1, 2, 3, 4}. The elements in slot 0 and 1 are swapped
causing element 0 to be located in slot 1 and vice versa. Finally the border moves one
slot to the right and the first selection is complete. After another two steps the resulting
three-element permutation is (1, 4, 2).

2.2.2. Virtual Fisher-Yates Shuffle

There are situation were we cannot afford to store all n elements in memory. This is
the case when n is large in comparison to the number k of elements which we actually will
draw. This situation can be tackled by means of a modification proposed by Batagelj and
Brandes which they called virtual Fisher-Yates shuffle [2]. An important observation is
that, generally speaking, most elements stay in place if k � n. So we only need to store
the “exceptions to the rule”.

We make the following two changes in comparison to the standard Fisher-Yates shuffle:

• The selected elements – those that are located in the left part of the standard Fisher-
Yates shuffle – are stored in memory, e. g. , in an unbounded array s of size i. This
allows for fast access to the generated permutation.

• The unselected elements only exist in memory as two integers i and n which define
the left and right border of the range to draw from and as a hash table which contains
the so-called replace pointers. These pointers mark the indices where an element is
not in place. Informally speaking, replace(x) = y can be expressed as “Element y is
now stored in slot x.” or “Element y replaces element x.”.

24

2.2. Fisher-Yates Shuffle 25

0

0 1 2 3 4

5

i j

(a) Initial state

0 5

1 0 2 3 4

i j

(b) One element selected

0 5

1 4 2 3 0

i, j

(c) Two elements selected

0 5

1 4 2 3 0

i

(d) Final state

Figure 2.2.: Example of standard Fisher-Yates shuffle: i is the border index, the bold line
is the border, and j is the index which has been drawn for the next select
operation

If we query the hash table for elements k that are still in place the hash table returns
replace(k) =⊥. When we now select a random index j, we first take a look at the replace
table for index j. If a replacement exists, that is, replace(j) 6=⊥, we select replace(j)
or otherwise we use j. There is one point to bear in mind: The border element may be
different from i because the border index may already have been selected in a previous
iteration. We therefore also have to take a look into the replace table for index i. In
any case we have to update the replace table for index j: replace(j) := s[i]. Algorithm 5
summarizes the procedure. It is an adapted version of ALG. 3 in [2].

Algorithm 5: Virtual Fisher-Yates Shuffle

Input : n: number of elements to select from, k ≤ n: number of elements to be
selected

Output : s[0..k − 1]: the selected elements
s: Unbounded Array of Integer
replace: Hash Table of Integer → Integer
for i← 0 to k − 1 do

// Draw integer uniformly at random from the set {i, i+ 1, . . . , n− 1}
j ← randomInt (i, n− 1)
if replace(j) 6=⊥ then

s[i]← replace(j)
else

s[i]← j

if replace(i) 6=⊥ then
replace(j)← replace(i)
replace(i) =⊥

else
replace(j)← i

Setting replace(i) to ⊥ is an optimization: As we only add elements over time and
never put one back into the set of selectable elements, the border index i is rising strictly
monotonic and so we can never draw index i again. As a consequence, the replacement of
i will never be used again – we can delete it and save memory.

25

26 2. Cluster Tree Approach

The general case where neither i nor j are in place, that is, replace(j) 6=⊥6= replace(i),
is illustrated in Figure 2.3. The figure contains two representations of the same cut-out of
a shuffle:

1. Explicit Notation: We depict the contents of each slot. In Figure 2.3(a) a is stored
at index i.

2. Pointer Notation: We can use unidirectional replace pointers. The arrow points
at the replacement of the index at the other end (see Figure 2.3(b)). The pointer
starting at index j denotes that element b is now stored at index j and is equivalent
to the entry replace(j) = b in the hash table.

From now on, we will only use the pointer notation which makes illustrations more concise.
Additionally, pointers are closer to the actual implementation.

0 i jab n
baij

border
(a) Explicit Notation using slots and elements

0 i jab n

replace(i) = a replace(j) = b

border
(b) Pointer Notation using replace pointers

Figure 2.3.: Virtual Fisher-Yates shuffle with two different types of representations

2.2.3. Dynamic Virtual Fisher-Yates Shuffle

One aspect which plays an important role for the original Fisher-Yates shuffle is the order
of the elements (e. g. 12345 and 21435 are distinct permutations of the same elements). In
our scenario, we do not care about the order in which the elements are drawn. Speaking
in stochastic terms, we are satisfied with combinations instead of permutations.

Consequently, we do not have to keep the original order of the selected elements, but we
can sort them at our convenience. The same applies for the right hand side of the shuffle:
Due to the fact that each element on this side is equally probable to be selected, we can
rearrange all elements which are not in place. For example, in Figure 2.3 we could swap a
and b by updating the replace pointers accordingly without spoiling the result.

In contrast to the standard and virtual Fisher-Yates shuffle, we make the replace pointer
bidirectional in order to allow element deletions. A pointer having endpoints x and y is
abbreviated with x ↔ y and its semantics is “x is stored in slot y and y is stored in slot
x”.

As before, the shuffle is fully determined by the maximum element count n, the border
index i and the replace pointers. We define the size of a shuffle as the number of replace
pointers. For the further discussion we need to define the equivalence relation for dynamic
virtual Fisher-Yates shuffles:

26

2.2. Fisher-Yates Shuffle 27

Definition 2. For two dynamic virtual Fisher-Yates shuffles F1,F2 let S1, S2 be the sets
of selected elements and U1, U2 be the sets of unselected elements of F1 and F2, respec-
tively. We say that F1 is equivalent to F2 if both contain the same selected and unselected
elements:

F1 equivalent to F2 :⇔ S1 = S2 ∧ U1 = U2.

Note that unlike before we do not need any data structure explicitly storing the selected
elements. If we want to get the set of selected elements we simply iterate over all indices
x < i. Unless we find that replace(x) 6=⊥ we add x to our result set and otherwise
replace(x). For all further consideration, we suppose, that element access through the
replace pointers runs in expected constant time and that (pseudo-)random numbers can
be generated in constant time.

The fact that the order of elements within either part of the shuffle does not matter lets
us rearrange the shuffle such that it fulfills the following property:

Lemma 1 (Replace pointers span the border). Any Fisher-Yates shuffle can be rearranged
so that each replace pointer spans the border.

We say that a replace pointer a ↔ b spans the border, if a and b are on different sides
of the border: a < i ∧ b ≥ i or a ≥ i ∧ b > i.

Proof. Without loss of generality, suppose we have a shuffle as depicted in Figure 2.4
comprising the replace pointer a↔ b. Translating the pointer into prose we obtain that a
is stored in slot b and b is stored in slot a.

0 i a nb
border

Figure 2.4.: Initial state of dynamic Fisher-Yates shuffle

We immediately see that – in the sense of Definition 2 – this shuffle is equivalent to
Figure 2.5 where the contents of slot a and b have been swapped and a and b are in place.

0 i a nb
border

Figure 2.5.: Size-reduced dynamic Fisher-Yates shuffle

The same argumentation holds for the case when a and b are in the left part of the
shuffle.

Corollary 1. Each dynamic virtual Fisher-Yates shuffle can be rearranged such that there
are at most i replace pointers.

Proof. As we can rearrange the shuffle so that no replace pointer spans the border and as
by construction each index is pointed at by at most one replace pointer we find that the i
indices to the left of the border can be endpoints of at most i replace pointers.

This corollary is indeed quite useful as it states that we are able to transform an arbitrary
shuffle such that its size is O(#selected elements). The question is how we can keep the
shuffle space efficient while the shuffle is modified by select and delete operations.

27

28 2. Cluster Tree Approach

2.2.4. Operations on the Dynamic Virtual Fisher-Yates Shuffle

Four distinct cases exist for both operations and each case is depicted Figures 2.6 and 2.7
with an initial and a final state, respectively. They are sorted by the number of initial
replace pointers of the relevant indices i, j (for select) and i′, j (for delete). As before
index j is the index which has been drawn uniformly at random from all feasible indices.
Implementations of both procedures are straightforward and can be found in Algorithms 8
and 9 both of which are located in the appendix.

The time and size constraints for the select and delete operations are stated in Lemma 2.

Lemma 2 (delete and select for dynamic virtual Fisher-Yates shuffle). Selection and
deletion can be implemented in expected constant time keeping the size of the shuffle linear
in the number of selected elements.

Proof.

Running Time: For either operation, each possible case needs only at most a constant
number of pointer and arithmetic operations each of which runs in (expected) constant
time. Thus, delete and select run in overall expected constant time.

Memory: This part of the proof is based on Corollary 1. We argue that we perform
select and delete in a way that prevents replace pointers non spanning the border from
being created or retained.

Clearly, this is true for the empty shuffle as it contains no replace pointers. During an
operation the only replace pointers which are modified are the replace pointers for i, j (for
select) and i′, j (for delete). The case-by-case analysis in Figures 2.6 and 2.7 shows that
each replace pointer existing after the operation and ending at one of these indices spans
the border.

Example

Analogous to Section 2.2.1 we give an example of how the space efficient Fisher-Yates
shuffle works for the following parameters which are identical to the previous example
(Figure 2.8): We have a maximum number n = 5 of selectable elements and we will choose
k = 3 elements. The resulting three-element combination is {1, 2, 4}.

There are some aspects to mention about this example:

• As a reminder we argue that the only information actually held in memory are the
values i, n and the replace pointers which are depicted as double-ended arrows. The
memory consumption is proportional to the number of grey slots and we can see that
each grey slot to the left of the border has a corresponding grey slot on the right
side.

• The behavior of the shuffle differs from the standard Fisher-Yates shuffle for the first
time when selecting the second element (Figure 2.8(b)→ 2.8(c)): Index and element
1 are now on the left side of the border and so we may save one replace pointer by
rearranging 1 and 4 in order to move element 1 in place.

• Similarly, if we consider the third step (Figure 2.8(c) → 2.8(d)) we see that no new
replace pointer is required as element 2 stays in place.

2.2.5. Summary

In this section we learnt about the Fisher-Yates shuffle and two modifications thereof.
The Fisher-Yates shuffle is a data structure allowing for fast generation of permutations
/ combinations of n elements which are the integers 0, . . . , n − 1 in our scenario. This
implies that every element is equally probable to be selected.

The original standard Fisher-Yates shuffle produces permutations and needs space Θ(n),
where n is the maximum number of elements to select. The shuffle was designed to be

28

2.2. Fisher-Yates Shuffle 29

0 i j→ n

(a) Case 1: Initial state

0 i j n

(b) Case 1: Final state

0 i j→a n

(c) Case 2: Initial state

0 i j na

(d) Case 2: Final state

0 i j→ nb

(e) Case 3: Initial state

0 i j nb

(f) Case 3: Final state

0 i j→ nab

(g) Case 4: Initial state

0 i j nab

(h) Case 4: Final state

Figure 2.6.: Illustrative figures for select

29

30 2. Cluster Tree Approach

0 i′←j n

(a) Case 1: Initial state

0 i′j n

(b) Case 1: Final state

0 i′←j na

(c) Case 2: Initial state

0 i′j na

(d) Case 2: Final state

0 i′←j nb

(e) Case 3: Initial state

0 i′j nb

(f) Case 3: Final state

0 i′←j nba

(g) Case 4: Initial state

0 i′j nba

(h) Case 4: Final state

Figure 2.7.: Illustrative figures for delete

30

2.3. Edge Dynamics 31

0

0 1 2 3 4

5i j
(a) Initial state

0 5

1 0 2 3 4

i j
(b) One element selected

0 5

14 2 3 0

i, j
(c) Two elements selected

0 5

4 1 2 3 0

i
(d) Final state

Figure 2.8.: Example of dynamic virtual Fisher-Yates shuffle: i is the border index, the
bold line is the border, and j is the index which has been selected for the
insertion. Grey slots are endpoints of replace pointers.

used for creating permutations of all n elements and so the constant memory consumption
is acceptable.

The virtual Fisher-Yates shuffle is an improvement proposed by Batagelj and Brandes
in [2] which was meant for adapting the shuffle to the scenario where we only select a small
number k � n out of all possible elements. This approach uses a hash table storing the in-
dices at which we do not find the homonymous elements, the so-called replace pointers. The
total memory consumption of the virtual Fisher-Yates shuffle is O(#selected elements).
But still element deletion was not possible.

This limitation was removed by the modifications which we proposed: We basically use
the same approach as Batagelj and Brandes but we organized the replace pointers such
that they also support delete operations. Furthermore, through this modification we were
able to represent the whole shuffle using only the hash table and two integers.

2.3. Edge Dynamics
After the preliminary work of the previous sections we are finally equipped with all the

knowledge necessary to implement the actual operations. We start with edge operations
as this kind of operation is most challenging to implement.

It has been mentioned before that the binary selection tree as described in Section 1.5.1
is a powerful data structure which can even be used in a scenario where the weight of
each element is different. In our scenario, however, the quantity of distinct probabilities
is limited to pout and pin(Ci), Ci ∈ C as can also be observed when taking a look at the
target tree in the example for source and target trees in Section 1.5.2. This is where the
generator can profit greatly from the dynamic virtual Fisher-Yates shuffle described in the
previous section.

What may attenuate our hopes a little is the source tree of the same example: The
weights seem to be completely irregular. In fact we cannot erase this irregularity but it
can be limited to the relatively small set of clusters for which we will still use a binary
selection tree.

The overall process of selecting a feasible edge for our operation is now divided into two
steps:

1. We select a cluster, where the clusters are organized in two so-called cluster trees

31

32 2. Cluster Tree Approach

Γins,Γdel. These trees are similar to the previous source trees for insertion and
deletion. The name of our new approach stems from these trees.

2. We select our candidate within this cluster. This is done via a dynamic Fisher-Yates
shuffle, where each cluster possesses a corresponding shuffle.

The structure of an ordinary cluster C is depicted in Figure 2.9.

0 i
(
n(C)
2

)

C

E(C) Ē(C)

Figure 2.9.: Internal representation of edges in cluster C

The attentive reader has noticed an obvious problem arising from the first step of the
strategy: Graphs also contain inter-cluster edges which cannot be assigned to a single
cluster. For this reason, a new type of cluster is introduced in the following: the pseudo
cluster.

2.3.1. The Pseudo Cluster

The pseudo cluster is defined as follows:

Definition 3 (Pseudo Cluster). For a given clustered Graph G = (V,E) with clustering
C, the pseudo cluster C0 contains all nodes of G, C0 = V , and therewith G(C0) = G.

Clusters from the ground truth or reference clustering of G are called ordinary clusters
in order to stress the difference.

The pseudo cluster possesses a data structure of size O(minter) which separately stores
the inter-cluster edges Einter. In contrast to ordinary clusters it behaves differently from
ordinary clusters when it comes to inserting or deleting edges:

• For insert operations the pseudo cluster chooses uniformly at random among all
non-edges Ē which is the expected behavior.

• For delete operations, however, the choice is restricted to the set of inter-cluster
edges Einter.

This particularity will have to be taken into consideration when calculating the weight of
C0 for the cluster trees. The structure of the pseudo cluster is depicted in Figure 2.10.
For the implementation of the additional data structure, an unbounded array is suitable
because it allows for insertion, deletion and selection in amortized constant time as the
order of inter-cluster edges does not matter because all inter-cluster edges are of uniform
probability to be drawn.

Note that during insert we are now able to draw intra-cluster non-edges via C0 and via
the cluster containing the endpoints of the non-edge. The question may arise why we do
not avoid this ambiguity and allow only for inter-cluster non-edges to be selected during
insert. We will show what consequences this decision would have in the next but one
paragraph, but first we need to take a look at the indexing scheme for C0.

32

2.3. Edge Dynamics 33

0 i
(
n
2

)

Einter

C0

E, Ē
E Ē

Figure 2.10.: Internal representation of edges in cluster C0

Edge Indices within the Pseudo Cluster

At least for the insert operation, it is clear that any feasible edge can be selected within
the pseudo cluster. That is why the triangular indexing scheme from Section 2.1 can be
applied to C0 seamlessly.

The definition of C0 states that the delete operation works differently. This has no
influence on the indexing scheme because the additional data structure which stores Einter

contains only global indices of the inter-cluster edges.

Alternative Interface for Edge Selection

Suppose now, we had defined C0 to contain only the inter-cluster (non-)edges. The edge
indices can be defined similarly to the ordinary clusters, using an adjacency matrix as
depicted in Figure 2.11.

C1

C2

Ck

C1 C2 Ck

...

. . .

Figure 2.11.: Edge indices for alternative definition of C0. As no intra-cluster edges are
covered, the gray areas are not indexed.

The dark gray areas may not be selected as they represent the intra-cluster edges of
the corresponding clusters. Therefore, the triangular indexing scheme could no longer be
applied. Furthermore, node operations would be more tedious as the shape of the area
which includes valid edge indices (white area) would be no more regular but change with

33

34 2. Cluster Tree Approach

every node operation. To our mind this problem would be more difficult to face than
accepting an asymmetric interface.

2.3.2. Selection Process in Detail
Having cleared all open points, we now describe both steps in detail. Suppose we have

decided for either an edge insertion or deletion. We are obliged to select a feasible candidate
for this operation.

Step 1: Selecting the Cluster

For the former step, we will use binary selection trees as described in Section 1.5.1. The
tree nodes are ordinary clusters and the pseudo cluster. One tree, Γins, exists for insert and
another one, Γdel, for delete operations. For ordinary clusters Ci, i = 1 . . . k, the weights
ωins, ωdel of a cluster in the insertion and deletion tree are defined as

ωins(Ci) = m̄(Ci) · (pin(Ci)− pout)

ωdel(Ci) = m(Ci) · (1− pin(Ci))

We argue that pout ≤ pin(Ci) and therefore pin(Ci) − pout is still a probability and the
weight ωins for insertion is properly defined. The weight of C0 is defined as:

ωins(C0) = m̄(C0) · pout = m̄ · pout

ωdel(C0) = minter · (1− pout)

At this point it may not be clear why the weights are defined in exactly this way.
Lemma 3 will (at least) clarify why these definitions lead to the desired results. As an
intuition, we may say that we want to favor edges with relatively large edge probability
during insertion and thus ωins(C) should be “proportional” to pin. The reason for subtract-
ing pout in this term is that we may draw any intra-cluster non-edge also inside the pseudo
cluster which has to be reflected by a reduced weight of the cluster which contains the given
intra-cluster non-edge. Conversely, ωdel(C) should be “proportional” to 1 − p(u, v) as we
prefer deleting edges with small edge probability. Furthermore, during insert clusters with
a huge amount of intra-cluster non-edges should be favored over relatively dense clusters
which leads to the fact that ωins(C) is proportional to m̄(C). Once again, the analogous
argument applies for the deletion weight. The asymmetric behavior of the pseudo cluster
becomes visible when comparing ωins(C0) with ωdel: For a symmetric behavior, we would
expect the edge count m(C0) = m to appear in the latter weight and not the inter-cluster
edge count minter.

Step 2: Within a cluster

The next step is carried out on a Fisher-Yates shuffle belonging to the specific cluster.
Most of the work for the actual edge selection has been done by adapting the Fisher-Yates
shuffle in Section 2.2.3 in order to make it support the delete operation.

Each cluster Ci, i = 0, . . . , k possesses a virtual dynamic Fisher-Yates shuffle of its own.
The elements in the shuffle of cluster Ci are all possible local edge indices 0, . . . ,

(
n(Ci)

2

)
−1.

Edge Insertion The Fisher-Yates shuffle offers the select method for selecting an un-
selected element which corresponds directly to selecting a non-edge for insertion. As we
are able to draw the same intra-cluster non-edge inside the pseudo cluster and inside the
cluster containing the endpoints we have to be careful to keep the Fisher-Yates shuffles of
both clusters consistent.

Edge Deletion The situation is slightly different for edge deletions: Ordinary clusters
behave as for the insert operation. Each edge may be chosen for deletion and the delete
operation of the shuffle can directly be applied.

34

2.3. Edge Dynamics 35

Even though all edges from E are contained in C0 we assured that only the inter-cluster
edges can be accessed by the delete operation on C0. Therefore, delete does not select from
the set of all edge indices in C0 but only selects an entry in the additional data structure
as illustrated in Figure 2.12.

C1

C2

Ck

C1 C2 Ck

...

Einter
0 minterj

u′
v′

e = {u, v}

globalID
pseudoID

Figure 2.12.: Functional principle of delete in C0: j is the integer drawn uniformly at
random in the range of 0, . . . ,minter − 1 and u′, v′ are the local and u, v are
the global node indices of the endpoints of the selected edge. The white area
consists of the inter-cluster edges and dark gray areas contains all intra-cluster
edges.

Note, however, that the contents of the array labeled with Einter are global edge indices
this avoids relabeling when the local index of an edge changes. When edge e = {u, v}
is selected for deletion, its corresponding local indices within C0 have to be calculated in
order to remove the mapping from the Fisher-Yates shuffle.

Without loss of generality, the figure groups nodes by their corresponding clusters in
order to depict the areas of inter-cluster (white) and intra-cluster (gray) adjacencies. Es-
sentially, this indexing scheme is not the usual case as the indices of nodes within the same
cluster may be arbitrarily distributed.

Proportional Probabilities

It remains to show that we truly obtain proportional probabilities, that is, the probability
of a non-edge {u, v} to be inserted is proportional to to its edge probability p(u, v) and the
probability of an edge to be deleted is proportional to 1 − p(u, v). The following lemmas
may appear to be quite similar at first sight. However, due to asymmetric definitions of
the weight in Γins and Γdel, the proofs differ slightly.

Lemma 3. The insert operation selects an edge e = {u, v} with probability proportional
to p(u, v).

Proof. γi is the event that cluster Ci is selected and εe denotes the edge selection event
for e.

35

36 2. Cluster Tree Approach

General Observation: For the total weight of the insertion tree Γins we find:

k∑

j=0

ωins(Cj) = ωins(C0) +
k∑

j=1

ωins(Cj)

= m̄ · pout +
k∑

j=1

m̄(Cj) · (pin(Cj)− pout)

= (m̄inter + m̄intra︸ ︷︷ ︸
=
∑k
j=1 m̄(Cj)

) · pout +
k∑

j=1

m̄(Cj) · pin(Cj)−
k∑

j=1

m̄(Cj) · pout)

= m̄inter · pout +
k∑

j=1

m̄(Cj) · pin(Cj)

=
∑

{u,v}∈Ēinter

p(u, v) +
∑

{u,v}∈Ēintra

p(u, v)

=
∑

u6∼v
p(u, v)

The probability of an ordinary cluster Ci to be chosen in Γins is proportional to the weight
ωins(Ci):

p(γi) =
ωins(Ci)∑k
j=0 ωins(Cj)

=
ωins(Ci)∑
u6∼v p(u, v)

In step two, a Fisher-Yates shuffle is used and, once we are inside cluster Ci, the probability
for each edge e = {u, v} to be drawn is either 0 if e /∈ Ē(Ci) or otherwise

p(εe|γi) =
1

m̄(Ci)
,

which is independent of the edge probability p(u, v).
Intra-Cluster Edges: Remarkably, for an intra-cluster non-edge e ∈ Ē(Ci) there

exist two possible sequences of events which entail a selection of e: (γi, εe) and (γ0, εe).
Therefore, the selection probability of e is:

p(εe) = p(γi) · p(εe|γi) + p(γ0) · p(εe|γ0)

=
ωins(Ci)∑
u6∼v p(u, v)

· 1

m̄(Ci)
+

ωins(C0)∑
u6∼v p(u, v)

· 1

m̄

=
m̄(Ci)(pin(Ci)− pout)∑

u6∼v p(u, v)
· 1

m̄(Ci)
+

m̄ · pout∑
u6∼v p(u, v)

· 1

m̄

=
(pin(Ci)− pout) + pout∑

u6∼v p(u, v)

=
pin(Ci)∑
u6∼v p(u, v)

=
p(u, v)∑
u6∼v p(u, v)

36

2.3. Edge Dynamics 37

Inter-Cluster Edges: For an inter-cluster non-edge e ∈ Ēinter there exists only one
possible sequence of events after which e is selected: (γ0, εe). The selection probability of
e is:

p(εe) = p(γ0) · p(εe|γ0)

=
ωins(C0)∑
u6∼v p(u, v)

· 1

m̄

=
m̄ · pout∑
u6∼v p(u, v)

· 1

m̄

=
pout∑

u6∼v p(u, v)

=
p(u, v)∑
u6∼v p(u, v)

Lemma 4. The delete operation selects an edge e = {u, v} with probability proportional
to 1− p(u, v).

Proof. γi is the event that cluster Ci is selected and εe denotes the edge selection event
for e.

General Observation: For the total weight of the deletion tree Γdel we obtain:

k∑

j=0

ωdel(Cj) = ωdel(C0) +

k∑

j=1

ωdel(Cj)

= minter · (1− pout) +

k∑

j=1

m(Cj) · (1− pin(Cj))

=
∑

{u,v}∈Einter

(1− p(u, v)) +
∑

{u,v}∈Eintra

(1− p(u, v))

=
∑

u∼v
(1− p(u, v))

The probability of selecting cluster Ci in Γdel is proportional to the weight ωdel(Ci):

p(γi) =
ωdel(Ci)∑k
j=0 ωdel(Cj)

In step two, a Fisher-Yates shuffle is used and, once we are inside cluster Ci, the probability
for each edge e = {u, v} to be drawn is either 0 if e /∈ E(Ci) or otherwise

p(εe|γi) =

{
1

minter
i = 0

1
m(Ci)

otherwise

Note that p(εe|γi) distinguishes between ordinary and pseudo clusters.

Intra-Cluster Edges: An intra-cluster edge e ∈ E(Ci) can only be selected if its
containing cluster is chosen in Γdel and if afterwards e is drawn from the shuffle which

37

38 2. Cluster Tree Approach

is abbreviated with the following sequence of events: (γi, εe). Therefore, the selection
probability of e is:

p(εe) = p(γi) · p(εe|γi)

=
ωdel(Ci)∑

u∼v(1− p(u, v))
· 1

m(Ci)

=
m(Ci) · (1− pin(Ci))∑

u∼v(1− p(u, v))
· 1

m(Ci)

=
1− pin(Ci)∑
u∼v(1− p(u, v))

=
1− p(u, v)∑

u∼v(1− p(u, v))

Inter-Cluster Edges: For an inter-cluster edge e the following sequence of events is
the sole one which results in a selection of e: (γ0, εe). We obtain:

p(εe) = p(γ0) · p(εe|γ0)

=
ωdel(C0)∑

u∼v(1− p(u, v))
· 1

minter

=
minter · (1− pout)∑
u∼v(1− p(u, v))

· 1

minter

=
1− pout∑

u∼v(1− p(u, v))

=
1− p(u, v)∑

u∼v(1− p(u, v))

2.3.3. Summarizing Example

The whole selection process is depicted in Figure 2.13. This figure is an example for a
possible insert operation. The following list illustrates the sequence of decisions. For the
sake of simplicity clusters are not distinguished from their corresponding tree node, for
example ωins(Ci) is the weight of the tree node containing Ci and `i is the left child of that
tree node.

• Step 1: Cluster Tree

– ∆ ∈ [0,weight(C0)) is drawn uniformly at random.

– ∆ < weight(Cx): descend into left subtree

– ∆ ≥ weight(Cz) + ωins(Cx): descend into right subtree with offset ∆′ = ∆ −
(weight(Cz) + ωins(Cx)).

– weight(`y) ≤ ∆′ < weight(ry) + ω(Cz): tree node containing Cy is selected

• Step 2: Fisher-Yates shuffle

– j ∈ {i, . . . ,
(
n(Cy)

2

)
− 1} is drawn uniformly at random

– We find that replace(i) 6=⊥ and replace(j) 6=⊥ which is essentially the situation
depicted in Figure 2.6(g)

– Thus, the shuffle is reordered according to Figure 2.6(h).

The insertion of the new intra-cluster edge still has to be propagated to the pseudo cluster.

38

2.3. Edge Dynamics 39

C0

Cy

0
(
n(Cy)

2

)
i j

Step 1:
Cluster Tree

Step 2:
Fisher-Yates
shuffle

Cx

∆

b a

lx

ly ry

r0

︸ ︷︷ ︸︸ ︷︷ ︸
E(Cy) Ē(Cy)

Figure 2.13.: Functional principle of the cluster tree. The path taken by the insert opera-
tion is drawn as dashed arrow (green).

39

40 2. Cluster Tree Approach

2.4. Node Dynamics
In this section we will show how to implement the node operations. These operations

partly build upon the edge operations described in the previous section.

2.4.1. Node Insertion
Generally, a new node is added to its containing cluster and to the pseudo cluster. A

new local index is generated by appending a row to the adjacency matrix as is depicted in
Figure 2.14.

n′ − 1

0

0 n′ − 1

Figure 2.14.: Node insertion. n′ is the new number of nodes: n′ = n+ 1.

The following steps are necessary for inserting a node into G = (V,E):

1. Create new unique global node index v.

2. Select a cluster C which shall contain the new node v and add v to C: C ′ = C + v.
This entails resizing the Fisher-Yates shuffle of C. In our model we would like to
keep the initial distribution of cluster sizes so that the selection of a cluster has to
consider this.

3. Adjust the Fisher-Yates shuffle of the pseudo cluster C0.

We may assume that choosing a cluster for the new node takes time O(log k) as we can
organize the clusters in another binary tree where each cluster is weighted with its expected
size. Furthermore, changing the node count of a cluster changes maximum edges count of
C and of C0 and therefore, the cluster trees have to be updated needs time O(2 · log k).
All other operations run in constant time so that we get running time O(log k) for a node
insertion.

Creating Initial Adjacencies

After being added to the graph, a new node is isolated. This is a perfectly valid state
of the graph. The fact that the degree of the new node differs (significantly) from the
expected degree causes the generator to preferentially create adjacencies to the new node.
However, we might not be willing to wait until the generator has steered the degree of the
new node closer to the expected value and we decide to add edges by ourselves.

If we want to establish initial adjacencies of a new node v located in cluster C, we may
iterate over all nodes within C and for node u ∈ C − v the edge {u, v} is created with

40

2.4. Node Dynamics 41

probability pin(C). The same can be repeated for all nodes outside C, u ∈ V \C, creating
edges with probability pout. This naive approach takes time O(n).

The so-called geometric method can be used to reduce the running time to O(deg v). It
has been introduced by Fan et al. [8] and Batagelj and Brandes [2] used it for efficiently
generating graphs for Gilbert’s model G(n, p).

In Section 1.4.3 the expected degree of a node in the G(n, pin, pout) model has been
calculated and for the insert operation we obtain a running time of O(degintra(Ci) +
deginter + log k) which expands to

O
(
pin(Ci) · (n(Ci)− 1) +

pout

n

k∑

i=1

n(Ci)(n− n(Ci)) + log k

)

2.4.2. Node Deletion
Node insertion and deletion are quite similar. There is one additional point which needs

to be tackled: Deleting an arbitrary node u from cluster Ci results in a gap in the index
space of nodes and edges. This gap is depicted as light gray areas in Figure 2.15. We can
fill the gap by swapping the adjacencies of the last node vf (dark gray areas) into the gap
and relabel vf to the local index of u.

︷ ︸︸ ︷ ︷ ︸︸ ︷

u

vf

u

Figure 2.15.: Node deletion: light gray : invalidated adjacencies of u – dark gray : adjacen-
cies to be copied from vf – black field : edge {u, vf}

In this case, too, we have to update the cluster trees which costs O(2 · log k). The inter-
cluster edges of u are treated in the same way: We delete all incident edges in the pseudo
cluster and swap the last node wf of the pseudo cluster into the resulting gap. Finally,
the extra data structure containing only Einter must be updated. The running time for
deleting node u is

O(degintra u+ degintra vf︸ ︷︷ ︸
Ci

+ deg u+ degwf + deginter u︸ ︷︷ ︸
C0

+ 2 · log k).

It is rather annoying that the running time also depends on the degree of the completely
unrelated nodes vf and wf . At least, as we saw in Section 1.4.3 all nodes within a cluster
have the same expected degree, so that we find the expected running time

O(pin(Ci) · (n(Ci)− 1) + degwf + log k)

which is not fully satisfactory.

41

42 2. Cluster Tree Approach

2.5. Cluster Dynamics
As a third and last type cluster operations are described in this section. Besides the

description of the split and merge operation we need to take care of another point: When
inserting a node we search for a cluster which shall contain the new node. The data
structure supporting this decision has to be fast in order not to slow down this graph
operation. Section 2.5.1 describes an efficient data structure.

The section is followed by the description of the merge (Section 2.5.2) and split (Sec-
tion 2.5.3) operation. Additional detailed question that may arise during the reading of
this section are mostly answered in Section 1.4.4 which describes the internal structure of
the generator.

Without loss of generality we use the first cluster(s) of the ground truth for the opera-
tions. We work with these specific clusters rather than with unidentified ones as we could
not demonstrate parts of the operations otherwise.

2.5.1. Expected Cluster Size
In contrast to its actual size, the expected size of a cluster remains constant over its

lifetime. The expected size is set when a cluster is instantiated which takes place during
the creation of the initial instance or a cluster operation. A sensible choice for storing the
expected sizes would be a binary selection tree the tree nodes of which are the clusters
which are weighted by their expected size. This choice allows for cluster selection, insertion
and deletion to run in O(log k).

2.5.2. Merging Clusters
We consider the operation (C1, C2)→ Ck+1. Afterwards we need to relabel the last two

clusters in order to preserve a continuous range of indices. During the whole process, we
keep copies of the original clusters C1, C2. Algorithm 6 states the different steps which
need to be performed. Nevertheless, it is not a formal description but rather a high-level
overview of what has do be done.

Algorithm 6: merge operation

// Create and insert new clusters

Ck+1 ← C1 ∪ C2

C ← C − C1 − C2 + Ck+1

pin(Ck+1)← sample from current pin (see Section 1.4.4)

// Relabel nodes

foreach v ∈ C2 do localID(v) = n(C1) + localID(v)

create empty Fisher-Yates shuffle S for Ck+1

insert E(C1) into S
insert E(C2) into S
insert E(C1, C2) into S
// These edges are no longer inter-cluster edges

remove E(C1, C2) from Einter in C0

delete C1 and C2

calculate ωins(Ck+1) and ωdel(Ck+1)
insert Ck+1 into Γins

insert Ck+1 into Γdel

// Preserve continuous indices by relabeling Ck and Ck+1

C1 ← Ck
C2 ← Ck+1

42

2.5. Cluster Dynamics 43

Running Time

The node operations take

O(n(C1) + n(C2)).

Filling the Fisher-Yates shuffle with all intra-cluster edges and with edges between C1 and
C2 needs time

O(m(C1) +m(C2) +m(C1, C2)) expected .

Updating the former inter-cluster edges E(C1, C2) in C0 runs in

O(m(C1, C2)) amortized

Calculating and updating the weight of the tree nodes in Γins,Γdel can be accomplished in

O(m(C1) +m(C2) +m(C1, C2) + 2 log k)

In sum, the merge operation runs in expected time

O(n(C1) + n(C2) +m(C1) +m(C2) + log k).

2.5.3. Splitting a Cluster

As expected, the split operation is similar to the merge operation. For the split operation
C1 → (Ck+1, Ck+2) we initially create two new clusters Ck+1 and Ck+2 and decide on the
desired values for pin(Ci) and how the nodes of C1 are distributed onto Ck+1 and Ck+2.
Finally, Ck+2 has to be relabeled in order to fill the gap in the list of indices. Algorithm 7
gives a rather high-level overview of the necessary operations. Note that we have to
distribute the nodes of C1 onto Ck+1 and Ck+2. For this reason we have to sample the
expected size for each of the new clusters.

Algorithm 7: split operation

// Create and insert new clusters

sample expected cluster sizes of Ck+1, Ck+2 (see Section 2.5.1)
(Ck+1, Ck+2)← partition nodes of C1 according to expected sizes
C ← C − C1 + Ck+1 + Ck+2

pin(Ck+1)← sample from current pin (see Section 1.4.4)
pin(Ck+2)← sample from current pin

re-assign localID(v), v ∈ C1

create empty Fisher-Yates shuffles Sk+1,Sk+2 for Ck+1, Ck+2

insert Ek+1 = E(C) ∩ (V (Ck+1) ∗ V (Ck+1)) into Sk+1

insert Ek+2 = E(C) ∩ (V (Ck+2) ∗ V (Ck+2)) into Sk+2

insert E(Ck+1, Ck+2) into Einter in C0

delete C1

calculate ωins(Ck+1), ωins(Ck+2) and ωdel(Ck+1), ωdel(Ck+2)
insert Ck+1 into the Γins

insert Ck+2 into the Γdel

// Preserve continuous indices by relabeling Ck+2

C1 ← Ck+2

43

44 2. Cluster Tree Approach

Running Time

We obtain the overall running time in a similar way as for the merge operation:

O(n(C1) +m(C1) + log k) expected .

2.5.4. Summary of Cluster Operations
Cluster operations are the most extensive change we can make in the structure of the

graph. They need a long sequence of single steps. Due to complexity we gave “road
maps” for implementing cluster operations which also allowed us to derive the running
time constraints which can be formulated as:

O(n(C) +m(C) + log k) expected

where C is the largest one of the three clusters participating in the operation.

2.6. Review of the Cluster Tree Approach
We have now reached the end of this work’s theoretical part. In the course of this

chapter it became clear that the desired improvements in memory consumption can be
reached at the cost of increased complexity. It can be expected that this complexity will
lead to certain constant factors in the actual implementation.

Before proceeding from theory to practice we want to summarize this chapter. As in the
previous implementation of the generator the key point for performance improvements are
the edge operations. Therefore, this chapter started with this type of graph operation but
not before we introduced two data structures which have not been used in the previous
approach: the pseudo cluster and the dynamic virtual Fisher-Yates shuffle. After finishing
with the edge operations we could go ahead with the node operations which are rather easy
to design. Nonetheless, we had to be careful about necessary changes in the shuffle and
the pseudo cluster when operating upon nodes. Up to now, the running time of deleting
nodes is not fully satisfactory.

Finally, the cluster operations could use graph operations as a “black box”. Of course,
this type of operation has an enormous impact on the structure of the clustered graph.
During cluster operations rather technical questions appeared such as the way the sizes of
new clusters are sampled.

44

3. Implementation

We now come to the actual implementation of the generator described in theory above.
The generator has been implemented in the widely used language Java. At first we make
notes about different aspects of the implementation. In the second part we give results of
the experimental evaluation. The generator is available at

http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen.

This site also contains information about how to download the generator.

3.1. Implementation Notes
This section consists of a set of different subtopics such as the specification of the

command line arguments or the file format.
Please note: This generator is not meant for selling purposes and therefore does not

fulfill industrial quality standards concerning stability against malformed inputs. Please
read through this section carefully.

3.1.1. Command Line Parameters
Table 3.1 provides an overview of the command line options which are accepted by

the generator. The formal grammar is given in Extended Backus-Naur form (EBNF).
Parameters preceded with a dash are called top-level parameters. All other parameters are
configuration parameters.

argument ::= "-h" | "-defaults" | "-g" configuration | "-f" infile

configuration ::= { keyval }

keyval ::= ikey "=" ival | dkey "=" dval | ilkey "=" ilist |

dlkey "=" dlist | skeyval | fkeyval | bkey "=" bval | verb | log

verb ::= "-v" | "-vv" | "-vvv"

log ::= "-l"

bkey ::= "binary"

bval ::= "true" | "false"

ikey ::= "n" | "t_max" | "k" | "eta

dkey ::= "p_out" | "p_mu" | "p_nu" | "p_omega" | "p_chi" |

"theta" | "beta" | "deg_in" | "deg_out""

ilkey ::= "deg_in_list" | "cl_sizes"

ilist ::= "[" ival { "," ival } "]"

dlkey ::= "p_in_list" | "deg_in_list"

dlist ::= "[" dval { "," dval } "]"

45

http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen

46 3. Implementation

fkeyval = "dir=" directory | "output=" outfile

skeyval ::= "p_in_new=" p_in_new_method

The following restrictions apply for the variables which could not be defined in the
grammar:

• directory is a valid directory name

• infile is the name of an existing file which contains a valid configuration on each
line

• outfile is a valid filename

• p_in_new_method is the name of a supported method for calculating new pin values
during a cluster operation. For mor information see Section 1.4.4. Supported values
are:

– GAUSSIAN for Gaussian distribution and

– MEAN for the arithmetic mean.

Table 3.1 gives an overview of the parameters with their respective domains.

The domains in the table only roughly restrict the range of possible values for each
parameter as it is most often too cumbersome and not necessary to define the domain in
an exact way. In some cases, the same information can be expressed with different (sets
of) parameters. The following paragraphs will describe in how far several characteristics
can be configured using different parameter sets.

Cluster Sizes

The expected size of the initial clusters can be set in the following ways:

• k,n:

The expected size of each cluster is equal to n
k .

• k,n and beta:

The clusters will have a skewed distribution where cluster Ci, i = 1, . . . , k has ex-
pected size β

√
n
k

• n, cl_sizes:

The latter parameter defines the relative distribution of nodes onto the clusters
(e. g. for n=15 and cl_sizes=[100,200] the clusters will have expected sizes {5, 10}).

• cl_sizes:

the elements of the list are directly interpreted as node counts by rounding the double
values down. Note that therefore all elements have to be greater or equal to one.

Node Degree and Edge Probability

The intra-cluster edge probability pin can be specified in several ways. Internally, a list
of pin is stored and will be passed to the generator. All other combinations of parameters
are converted into this list. If the parameters p_in_list or deg_in_list appear it is
necessary for those lists to have the length k where k can either be determined by cl_sizes

or directly via the parameter k.

1. p_in:

Each of the k clusters has the same intra-cluster edge probability pin.

46

3.1. Implementation Notes 47

Top Level Parameters

-h prints help
-v,-vv,-vvv activates verbose output with differ-

ent granularity
-l activates logging
-g parameters for a single graph follow
-f use each line of the following file a

separate configuration
-defaults print defaults

Configuration Parameters

Key Equiv. Domain Description

n n0 N initial node counter
cl_sizes Rk+ relative cluster sizes
k k N number of clusters
p_in pintra,0 [0, 1] intra-cluster edge probability
deg_in degintra,0 N expected intra-cluster degree

p_in_list pintra,0 [0, 1]k pin defined separately for each clus-
ter

deg_in_list degintra,0 Nk expected intra-cluster degree

p_out pout [0, 1] inter-cluster edge probability
deg_out deginter N expected inter-cluster degree
t_max tmax N number of time steps
p_chi pχ [0, 1] prop. of edge op. (1 − pχ: node

event)
p_nu pν [0, 1] prob. of insert (node op. has been

selected previously, 1− pν : delete))
p_omega pω [0, 1] prop. of cluster op.
p_mu pµ [0, 1] prob. of merge (cluster op. has been

selected previously, 1− pµ: split)
theta θ [0, 1] strictness for cluster completeness
beta β R biased selection coefficient
eta η N limit of batch size per time step
p_in_new {GAUSSIAN,MEAN} method for deriving new pin

dir String output directory
output String output file
binary {true,false} toggles (binary) output file genera-

tion

Table 3.1.: Command line parameters of the generator

47

48 3. Implementation

2. p_in_list:

The list is of size k and it specifies the intra-cluster edge probability for each cluster.

3. deg_in:

Each of the k clusters shall have the same expected intra-cluster degree E[degintra(Ci)].

4. deg_in_list:

The list is of size k and it specifies the expected intra-cluster degree E[degintra(Ci)]
for each single cluster.

What has been mentioned about intra-cluster edge probabilities analogously applies to the
inter-cluster edge probability pout and the corresponding inter-cluster node degree deginter:

1. p_out:

The inter-cluster edge probability pout. It has to be smaller than any single pin value.

2. deg_out:

The intra-cluster node degree deginter. The expected size of each cluster has to be
set in this case.

The formula for converting degintra(Ci) to pin and deginter to pout can be found in Sec-
tion 1.4.3. If the parsed values for deg_in or deg_out are too large for the given expected
sizes, the maximum value will be chosen, that is, pin = 1.0 or pout = 1.0, respectively. Note
that the latter case does not make sense and some care should be taken when choosing
values for degintra and deginter because a change to pout affects far more pairs of nodes than
does the same change to any of the pin.

Default values

The generator provides default settings for each of the parameters described in Table 3.1.
The default values can be retrieved by calling the generator with parameter -defaults.
The values have been chosen to create a small graph (n = 60, tmax = 100) with two clusters
of equal size (|Ci| = 30). In the expected case, the number of nodes stays constant over time
(pν = 0.5) and in half of the cases an edge operation is started (pχ = 0.5). Furthermore,
the generator always generates an output file in default mode (binary=true).

Verbosity and Logging

The generator will produce no textual output in the default configuration which is handy
if the generator is used within shell scripts. However, if you should be interested in more
information about the current progress, the generator offers different levels of verbosity
which can be activated with the switches -v, -vv and -vvv, where the different levels will
cause the following information to be printed:

• -v

– current argument set (useful for -f option),

– start and end time of the generation process

• -vv

– all information from level -v,

– progress in steps of 5%

• -vvv

– all information from level -vv,

48

3.1. Implementation Notes 49

– each operation (node, edge insertion and deletion, merge, split, check for com-
pleteness,. . .)

Moreover, the generator may also log information about the progress. Logging can be
activated by means of the switch -l which will cause the generator to produce a log file
labeled with the date and time when the generator was called. The generator will log all
available information which corresponds to verbosity level -vvv.

3.1.2. Graph File Format
Currently, only the binary GraphJ format is supported. For running performance tests

the generator can be configured to produce no output at all by setting binary=false.

GraphJ

We use the non-standardized, but practically well-proven binary file format GraphJ
proposed by Staudt and Görke for their dynamic random graph generator [18].

Each GraphJ file consists of a list of events with their respective opcodes and parameters.
The data types are primitive Java integers (int – 4 Bytes) for arguments and bytes (byte
– 1 Byte) for opcodes. The file is divided into two main parts for the different types of
operations: graph operations and cluster operations. Each part is subdivided into two
lists: The first list contains the opcodes and the second list contains the parameters for
the operations. The file structure is sketched in Table 3.2. The index g stands for graph
operations and c for cluster operations. The type of an operation is represented by an
opcode. Opcodes for graph operations are listed in Table 3.3 and opcodes for cluster
operations are listed in Table 3.4.

Data Type Count Description

int 1 og: length of opcode array for node/edge operations
int 1 pg: length of parameter array
byte og opcodes
int pg parameters to the opcodes
int 1 oc: length of opcode array for node/edge operations
int 1 pc: length of parameter array
byte oc opcodes
int pc parameters to the opcodes

Table 3.2.: GraphJ file structure

Node indices and cluster indices run from 1, and can be derived from the order of events:
create node for indexing the nodes and set cluster for indexing the clusters. This file format
allows for a parser which is shorter than 20 lines of code as Listing 3.1 illustrates. The
code has to be duplicated in order to parse the graph and cluster operations separately.

Operation Code Arg. 0 Arg. 1

create node u 1 C Cref

delete node u 2 u -
create edge {u, v} 3 u v
delete edge {u, v} 4 u v
set cluster of u 5 u C
set reference cluster of u 6 u Cref

next time step 7 - -

Table 3.3.: GraphJ opcodes for graph operations

49

50 3. Implementation

Operation Code Arg. 0 Arg. 1 Arg. 2

next step 0 – – –
merge (C1, C2)→ C3 1 C1 C2 C3

split C1 → (C2, C3) 2 C1 C2 C3

merge done (C1, C2)→ C3 3 C1 C2 C3

split done C1 → (C2, C3) 4 C1 C2 C3

Table 3.4.: GraphJ opcodes for cluster operations

F i l e f i l e = new F i l e (” f i l ename ”) ;
Fi le InputStream fStream = new Fi leInputStream (f i l e) ;
DataInputStream dataStream = new DataInputStream (fStream) ;

int opLength = dataStream . readInt () ;
int argsLength = dataStream . readInt () ;

ArrayList<Byte> opcodes = new ArrayList<Byte>(opLength) ;
ArrayList<Integer> args = new ArrayList<Integer >(argsLength) ;

for (int i = 0 ; i < opLength ; ++i)
{

opcodes . add (dataStream . readByte ()) ;
}

for (int i = 0 ; i < argsLength ; ++i)
{

args . add (dataStream . readInt ()) ;
}

.

Figure 3.1.: Code sample for parsing one part of a GraphJ file

50

3.2. Exemplary Calls 51

3.1.3. The Difference between Theory and Practice
As usual when implementing theoretical results, there are some practical issues which

needed not be considered in theory. The following lists some of these aspects:

• We represent undirected edges as a pair of directed edges. Concerning absolute value,
both parts of an edge {u, v} get the same global and local index. For the half-edge
where the start node has a smaller index than the target node we use a negative sign
in order to distinguish both parts.

• Each cluster possesses an own adjacency list which contains all of the intra-cluster
edges and the outgoing half of each inter-cluster edge.

• As a node may be part of two ordinary clusters, namely one ground truth and one
reference cluster, we need to keep track of its local index in both clusters. Therewith,
we get another index, the reference cluster index.

• Furthermore each node is also stored in the pseudo cluster which allows for fast
iteration over all nodes of the graph. This entails keeping track of another local
index for each node, the pseudo cluster index.

• Efficiency is often obtained at the cost of increasing complexity. This rule of thumb
also holds for the generator: For example, we needed to implement extra data struc-
tures for holding the clusters which are available for split and merge operations.
Keeping referential integrity upright is rather challenging as the number of such lists
increases.

• For efficiently measuring the completeness of a cluster operation we cached the inter-
cluster edge count m(C1, C2) of the participating pair of clusters as we could not
efficiently read this measure from any data structure. Moreover, the values a and b
also had to be adjusted if the node count of C1 or C2 changed.

3.2. Exemplary Calls
As a practical introduction to the generator we show a few exemplary calls. The gener-

ator can be started in several ways:

• ldcrgen.sh is a Bash script for Unixes

• ldcrgen.bat is a Windows batch script

• java -jar ldcrgen.jar is the platform independent but most verbose way

In the following we will only print the calls for the Bash script. Our first example will
cause the generator to produce a help message and quit.

. / ldc rgen . sh −h

After this functional test, we try to use the generator for productive work. A small, yet
usable graph can be obtained using the default parameters.

. / ldc rgen . sh −g

In the following, we assume that we want to generate a small graph with n = 100 nodes
which are in the expected case distributed uniformly onto k = 4 clusters. We define the
intra-cluster edge probabilities to be pin = (0.4, 0.5, 0.65, 0.7) and we want to have an
inter-edge probability of pout = 0.08. As we are not interested in the exact sequence of
events, we leave away the switches -v and -l. The given scenario can be generated as
follows:

. / ldc rgen . sh −g n=100 k=4 p i n l i s t = [0 . 4 , 0 . 5 , 0 . 6 5 , 0 . 7] p out =0.08

51

52 3. Implementation

3.3. Compatibility with the DCRGenerator
We list here the differences between the syntax of the previous generator and this gen-

erator.

output directory:

• previously: outDir

• now: dir

output file:

• previously: filename

• now: output

cluster sizes

• previously: D_s

• now: cl_sizes – Furthermore, this parameter may now also be used to deter-
mine the total node count n.

method for guessing new pin values

• previously: enp=true|false

• now: p_in_new=GAUSSIAN|MEAN – This is meant for future extensions by other
distributions.

list of pin values

• previously: p_inList

• now: p_in_list

Some parameters did not exist in the previous generator:

• deg_in: uniform intra-cluster node degree

• deg_out: inter-cluster node degree

• deg_in_list: individual intra-cluster node degree per cluster

The old generator also offered storing graphs in GraphML as this feature was used rather
seldom it was left away in the new generator.

3.4. Evaluation
The complexity of the generator makes it difficult to prove the stated guarantees con-

cerning running time and memory footprint by experimental evaluation. To our opinion,
it is most important that the generator performs well in everyday work. In order to give
the reader an idea of the expected time it takes to generate certain instances we made two
experiments:

1. Given a fixed number of nodes, how does the program behave when increasing pin

which corresponds to an increase in the number of edges?

2. Given a fixed intra-cluster edge probability pin how does the runtime behave when
we increase the node count n?

For each experiment we fitted a regression curve but we do not give the exact parameters
of the curve due to the reasons described above. Furthermore, apart from the default
settings, we used the following parameters:

52

3.4. Evaluation 53

• cluster count k: 15

• number of time steps tmax: 10000 (first experiment) and 1000 (second experiment)

• inter-cluster edge probability pout: 0.01

• The resulting graph was not written to a file: binary=false.

• remaining parameters: default values as listed in Section 3.1.1

The experiments were run on a machine with 16GB memory and a Dual-Core AMD
Opteron 2218 processor. We measured the time for 10 runs of each configuration and plot
the arithmetic mean.

3.4.1. Fixed Node Count
The first experiment was performed with three different values for n: 1000, 5000 and

10000. The results are depicted in Figure 3.2.
We see that the increase in running time is roughly linear in the expected edge count.

We cannot explain the time intercept which makes up most of the running time for the
first case where we only have few nodes.

3.4.2. Fixed Intra-Cluster Edge Probability
The experiment was performed with three different values for pin: 0.3, 0.6 and 0.9. The

results are depicted in Figure 3.3.
For a fixed intra-cluster edge probability we expect that the number of edge behaves

like Θ(n2). With some tolerance this expectation is met by the generator.

3.4.3. Summary
Even though we did not claim to proof any theoretical guarantee the experiments show

that the generator generates test data of appropriate size within a reasonable time.

53

54 3. Implementation

●

●

●

●

●
●

● ●

● ●
● ●

●

0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

p_in

tim
e[

s]

(a) n = 1000

●
●

●

●

●

●

●
●

●
●

●
●

●

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

p_in

tim
e[

s]

(b) n = 5000

●
●

●

●
●

●

●

●
● ●

●

●
●

0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

p_in

tim
e[

s]

(c) n = 10000

Figure 3.2.: First Experiment: Constant node count n and variable intra-cluster edge prob-
ability pin. Values are averaged over 10 runs.

54

3.4. Evaluation 55

● ● ● ● ● ● ● ● ●
●

●

●

●
●

●

●

●

●

5000 10000 15000 20000

0
10

20
30

40

number of nodes

tim
e[

s]

(a) pin = 0.3

● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

5000 10000 15000 20000

0
20

40
60

80

number of nodes

tim
e[

s]

(b) pin = 0.6

● ● ● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

●

5000 10000 15000 20000

0
50

10
0

15
0

number of nodes

tim
e[

s]

(c) pin = 0.9

Figure 3.3.: Second Experiment: Constant intra-cluster edge probability pin and variable
node count n. Values are averaged over 10 runs.

55

4. Conclusion

Concluding this work, we would like to summarize what has been achieved so far and what
can be subject to further research.

4.1. Summary

As a starting point, our objective was to generate test data for dynamic clustering
algorithms. We found our work upon the widely used intra-cluster density vs. inter-cluster
sparsity paradigm which is mirrored by the applied random graph model G(n, pin, pout).
Robert Görke and Christian Staudt previously implemented a generator producing test
data according to this model. Their generator is very elegant using only a few theoretical
concepts and it behaves well in practice for small and medium-sized graphs. However,
problems arise, when large and sparse test instances shall be created as the generator
always takes space Θ(n2). The problem can easily be illustrated comparing the behavior
of the old generator with the new one. Say we generate a dynamic graph with 10,000
nodes distributed evenly onto two clusters, an intra-cluster edge probability of pin = 0.1
resulting in an expected number of intra-cluster edges of 2 · pin ·

(
5000

2

)
≈ 2, 400, 000 which

is not too large a number. However, running both generators on a standard laptop with
2 GB of RAM assigned to the Java VM causes the old implementation to crash with an
OutOfMemoryError whereas our new implementation needs approximately 40 seconds to
generate the graph.

A fundamental observation is that the previous generator uses data structures which are
“too” powerful for our purposes. We recognized that an edge operation can be composed
of a weighted selection among the clusters and a uniform choice inside the cluster. For the
first part we reused the binary selection tree which was used for the previous source and
target tree approach. During this step we introduced the pseudo cluster which represents
the inter-cluster edges in the tree. The weights of the tree nodes had to be chosen carefully
in order to allow for proportional probabilities. Once, a cluster has been selected for an
operation the dynamic virtual Fisher-Yates shuffle carries out the uniform choice of the
affected (non-)edge. The shuffle allows for constant time element selection and deletion
where each element is equally probable to be selected. The Fisher-Yates shuffle as it
has originally been designed was only intended for inserting elements and needed space
proportional to the maximum number of elements which can be drawn. The latter point
being already solved by Batagelj and Brandes, we still needed to tackle the former one.
By enhancing the concept of replace pointers we were able to represent the whole shuffle
as a hash table and two integers. The design of the remaining operations was oriented at
implementation of the edge operations.

57

58 4. Conclusion

Nonetheless, a lot of care had to be taken in order to assert referential integrity of the
data structures in use which was one of the most challenging points during the implemen-
tation of the generator. Actually implementing the theoretical concepts helped to clarify
ambiguous formulations within the thesis. Both, the implementation by Görke and Staudt
and the new implementation are available at http://i11www.iti.uni-karlsruhe.de/

en/projects/spp1307/dyngen.
We conclude this summary by giving an overview of the theoretical guarantees for run-

ning time and space consumption. We argue that all requirements as stated in Section 1.5.4
could be fulfilled.

4.1.1. Space Efficiency
The data structures can be divided into the following parts where the corresponding

space consumption is given for each part:

• cluster trees Γins,Γdel: O(2 · (k + 1)) = O(k)

• cluster tree nodes for k ordinary clusters Ci:
∑k

i=1O(n(Ci) +m(Ci))

• cluster tree node for pseudo cluster C0: O(n+m)

As there are at most as many clusters as nodes this leads to a total memory consumption
of O(n+m+ k) which is equivalent to

O(n+m)

in comparison to O(n2) for the previous implementation.

4.1.2. Time Efficiency
Table 4.1 states the running time constraints for all cluster and graph operations. All

running time constraints are expected values as we internally work with hash tables and
unbounded arrays whereas the running times of the previous generator are deterministic.
Even though it was not our foremost objective, we could also improve the running time of
each single operation.

Operation New Implementation Previous Implementation

insert node v O((1 + deg v) · log k) O(n)
delete node v O(deg v+deg vf +degwf +log k) O(n)

edge insertion O(log k) O(log n)
edge deletion O(log k) O(log n)

split C → (C1, C2) O(n(C) +m(C) + log k) O((n(C) +m(C)) · log n)
merge (C1, C2)→ C O(n(C) +m(C) + log k) O((n(C) +m(C)) · log n)

Table 4.1.: Overview of running time guarantees: All bounds are expected values. vf , wf
are the last nodes of c(v) and the pseudo cluster, respectively.

4.2. Outlook and Open Questions
At the end of this section, we collect some open questions which arose during the work

on this thesis. As the open points are spread all over the work the following list is a loose
collection of ideas.

• During node deletion we choose a node uniformly at random from V because the
random graph model puts no constraints upon this kind of dynamics. Perhaps,
another approach could fit our intuition of “convergence” towards the desired ground

58

http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen
http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen

4.2. Outlook and Open Questions 59

truth in a better way: We assign a weight to each node v ∈ V (Ci) which represents
how much this node conforms to the ground truth, its “deviation” d(v). As an idea
the following metric could be used. It compares the number of inter-cluster and
intra-cluster adjacencies of a node to the respective expected value:

d(v) = ||Nintra(v)| − E[degintra(v)]|+ ||Ninter(v)| − E[deginter]|

• This generator has been implemented to generate graphs in the G(n, pin, pout) random
graph model. Generators for dynamic test data in other models which have been
described in Section 1.4.2 would be desirable. Maybe, some concepts of this generator
could be used for simplifying the design of these generators.

• In Section 2.4.2 we saw that during a node deletion, we have to hard-copy the
adjacencies of the last node in the cluster to their new positions in the Fisher-Yates
shuffle. This implies that the running time of deleting an arbitrary node always
depends on the degree of the last nodes of its cluster and the pseudo cluster. Perhaps
a more sophisticated implementation of the shuffle or a completely different approach
to the node operations might avoid this inconvenience.

• A similar problem occurs during cluster operations: Cluster operations currently
build the new Fisher-Yates shuffle from scratch and insert the adjacencies afterwards.
Perhaps, it might be possible to at least merge the shuffles. Solving this problem
would not improve the asymptotic bounds but could lead to a significantly faster
implementation of the cluster operations in practice.

• Finally, there is one theoretical aspect which could not be dealt with in the given
time: Up to now, even though it seems to be intuitively obvious, the generator
has not been formally proven to generate graphs according to G(n, pin, pout). As
previously mentioned a potential proof would be restricted to the implementation of
edge operations as the random graph model states no constraints concerning node
or cluster dynamics but presumes both to stay constant over time. An ansatz for
the proof could be to model the generation process as a Markov chain.

59

Appendix

A. Algorithms
There is pseudo code which is not essential for understanding the functional principle

of the described operations. For the sake of completeness we provide the procedures in
this section. The algorithms are not optimized with respect to compactness. They are
meant to mirror the different cases depicted in Figures 2.6 and 2.7. The select operation
is implemented in Algorithm 8 and the delete operation in Algorithm 9.

The hash table represents each bidirectional replace pointer as two entries. If element
j is still in place the hash table returns replace(j) =⊥. Setting replace(j) to ⊥ means
removing the corresponding mapping from the hash table.

The state of the shuffle is represented in an object-oriented way: select and delete shall
be methods of a class of which n, i and replace are attributes.

61

62 Appendix

Algorithm 8: select operation

Attributes: n : number of elements stored, i: border index, replace: Hash Table of
Integer → Integer storing the replace pointers

Output : s: the selected element
// Draw integer uniformly at random from the set {i, i+ 1, . . . , n− 1}
j ← randomInt (i, n− 1)
if i 6= j then

if replace(j) 6=⊥ then
b← replace(j)
if replace(i) 6=⊥ then

a← replace(i) // Case 4

replace(j)← a
replace(a)← j
replace(b)←⊥
replace(i)←⊥

else
replace(i)← j // Case 3

replace(j)← i
replace(b)←⊥

s← b
else

s← j
if replace(i) 6=⊥ then

a← replace(i) // Case 2

replace(a)← j
replace(j)← a
replace(i)←⊥

else
replace(i)← replace(j) // Case 1

replace(j)← replace(i)

else if replace(i) 6=⊥ then
s← replace(i) // Special Cases for i = j
replace(replace(i))←⊥
replace(i)←⊥

else
s← i

i← i+ 1

62

A. Algorithms 63

Algorithm 9: delete operation

Attributes: n : number of elements stored, i: border index, replace: Hash Table of
Integer → Integer storing the replace pointer

Output : d: the deleted element
i′ ← i− 1
// Draw integer uniformly at random from the set {0, 1, . . . , i′}
j ← randomInt (0, i′)
if i′ 6= j then

if replace(j) 6=⊥ then
b← replace(j)
d← b
if replace(i′) 6=⊥ then

a← replace(i′)
replace(j)← a // Case 4

replace(a)← j
replace(b)←⊥
replace(i′)←⊥

else
replace(i′)← j // Case 3

replace(j)↔ i
replace(b)←⊥

replace(i′)←⊥
else

d← j
if replace(i′) 6=⊥ then

a← replace(i′)
replace(a)← j // Case 2

replace(j)← a
replace(i′)←⊥

else
replace(i′)← j // Case 1

replace(j)← i′

else if replace(i′) 6=⊥ then
d← replace(i′) // Special Cases for i = j
replace(replace(i′))←⊥
replace(i′)←⊥

else
d← i′

i← i′

63

Bibliography

[1] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[2] V. Batagelj and Ulrik Brandes. Efficient Generation of Large Random Networks.
Physical Review E, 71(3):36113, 2005.

[3] Béla Bollobás, Oliver M. Riordan, Joel Spencer, and Gábor Tusnády. The Degree Se-
quence of a Scale-Free Random Graph Process. Randoms Structures and Algorithms,
18:279–290, 2001.

[4] Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Methodological Foun-
dations, volume 3418 of Lecture Notes in Computer Science. Springer, February 2005.

[5] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments on graph cluster-
ing algorithms. In Proceedings of the 11th European Symposium on Algorithms (ESA
´03) (LNCS 2832), ESA ´03, pages 568–579, 2003.

[6] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Engineering Graph Clustering:
Models and Experimental Evaluation. ACM Journal of Experimental Algorithmics,
12(1.1):1–26, 2007.

[7] P. Erdős and A. Rényi. On Random Graphs I. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

[8] C. T. Fan, Mervin E. Muller, and Ivan Rezucha. Development of sampling plans by
using sequential (item by item) selection techniques and digital computers. Journal
of the American Statistical Association, 57:387–402, 1967.

[9] Ronald Aylmer Fisher and Frank Yates. Statistical Tables for Biological, Agricultural
and Medical Research. Oliver and Boyd, London, 3rd edition, 1948.

[10] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75–174,
2009.

[11] OpenStreetMap Foundation. The OpenStreetMap Project. http://www.

openstreetmap.org/.

[12] Marco Gaertler, Robert Görke, and Dorothea Wagner. Significance-driven graph
clustering. In Proceedings of the 3rd international conference on Algorithmic Aspects
in Information and Management, AAIM ’07, pages 11–26, Berlin, Heidelberg, 2007.
Springer-Verlag.

[13] Horst Gilbert. Random Graphs. The Annals of Mathematical Statistics, 30:1141—-
1144, 1959.

[14] Robert Görke. An Algorithmic Walk from Static to Dynamic Graph Clustering. PhD
thesis, Karlsruhe Institute of Technology, 2010.

65

http://www.openstreetmap.org/
http://www.openstreetmap.org/

66 Bibliography

[15] Jerry Grossman. The Erdős Number Project. http://www.oakland.edu/enp.

[16] Stanley Milgram. The Small World Problem. Psychology Today, May:60—-67, 1967.

[17] Mark E. J. Newman and Michelle Girvan. Finding and evaluating community struc-
ture in networks. Physical Review E, 69(026113):1–16, 2004.

[18] Christian Staudt and Robert Görke. A generator of dynamic clustered random graphs.
Technical report, Karlsruhe Instistute of Technology, 2009.

[19] Stijn M. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, 2000.

[20] Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of ‘Small-World’
Networks. Nature, 393:440–442, 1998.

66

http://www.oakland.edu/enp

Nomenclature

A ∗B unordered Cartesian product, set of all unordered pairs containing
exactly one element from A and B

G ∼ G′ G and G′ are adjacent

(
V
2

)
all possible edges of a simple graph with node set V

(
n
k

)
binomial coefficient

⊥ invalid / null pointer, “no result found”

u ∼ v u and v are adjacent, {u, v} ∈ E

C =
{
C1, . . . , Ck

}
ground truth, current clustering

C (ordinary) cluster

c(v) cluster of node v

C0 pseudo cluster

deg v degree of node v ∈ V , deg v = degintra(v) + deginter(v) = |N(v)|

degintra(v), deginter(v) intra-cluster degree, inter-cluster degree of node v

Ē set of non-edges
(
V
2

)
\ E

E[X] expectation value of random variable X

E set of edges

E(C) intra-cluster edges of C

E(Ci, Cj), Ē(Ci, Cj) set of inter-cluster edges / non-edges between clusters Ci and Cj

Einter, Ēinter set of inter-cluster edges / non-edges

Eintra, Ēintra set of intra-cluster edges / non-edges

Ḡ = (V̄ , Ē) complement graph of G

G = (V,E) undirected, simple graph

G(V ′) = (V ′, E′) node induced subgraph of G = (V,E), V ′ ⊆ V

Γins,Γdel cluster trees for insertion and deletion

k number of clusters, |C|

m(C) number of intra-cluster edges of C

67

68 Bibliography

m(Ci, Cj), m̄(Ci, Cj) number of inter-cluster edges, inter-cluster non-edges between clus-
ters Ci and Cj

m, m̄ number of edges, number of non-edges

minter, m̄inter number of inter-cluster edges / non-edges

mintra, m̄intra number of intra-cluster edges / non-edges

n number of nodes, |V |

n(C) number of nodes contained in cluster C, |C|

N(v) neighborhood of node v, N(v) = Nintra(v) ∪Ninter(v)

Nintra(v), Ninter(v) intra-cluster neighborhood, inter-cluster neighborhood of node v

O(g) the class / set of all functions growing asymptotically no faster
than g

pin(C) intra-cluster edge probability for cluster C

pout intra-cluster edge probability

p(α) probability of event α

P (S, p) probability mass of set S weighted with function p : S → [0..1]

p(u, v) edge probability of e = {u, v}

R reference clustering

Θ(g) the class / set of all functions growing asymptotically as fast as g

T (u), T̄ (u) target tree of deletion / insertion belonging to node u

T, T̄ source tree of deletion / insertion

V set of nodes

ωins(C), ωdel(C) insertion and deletion weight of cluster C

68

	1 Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Preliminaries
	1.3.1 General Terms
	1.3.2 Bachmann-Landau Notation
	1.3.3 Graphs
	1.3.4 Clusters
	1.3.5 Graph and Clustering Adjacency

	1.4 The Dynamic, Clustered, and Random Scenario
	1.4.1 Indices for the Quality of a Clustering
	1.4.2 Random Graph Models
	1.4.3 The Model G(n,pin,pout)
	1.4.4 Dynamics

	1.5 Source and Target Tree Approach
	1.5.1 Randomized Binary Selection Tree
	1.5.2 Source and Target Trees
	1.5.3 Summary
	1.5.4 Requirements

	2 Cluster Tree Approach
	2.1 Node and Edge Indices
	2.1.1 Node Indices
	2.1.2 Triangular Edge Indexing Scheme
	2.1.3 Global and Local Indices of Edges

	2.2 Fisher-Yates Shuffle
	2.2.1 Standard Fisher-Yates Shuffle
	2.2.2 Virtual Fisher-Yates Shuffle
	2.2.3 Dynamic Virtual Fisher-Yates Shuffle
	2.2.4 Operations on the Dynamic Virtual Fisher-Yates Shuffle
	2.2.5 Summary

	2.3 Edge Dynamics
	2.3.1 The Pseudo Cluster
	2.3.2 Selection Process in Detail
	2.3.3 Summarizing Example

	2.4 Node Dynamics
	2.4.1 Node Insertion
	2.4.2 Node Deletion

	2.5 Cluster Dynamics
	2.5.1 Expected Cluster Size
	2.5.2 Merging Clusters
	2.5.3 Splitting a Cluster
	2.5.4 Summary of Cluster Operations

	2.6 Review of the Cluster Tree Approach

	3 Implementation
	3.1 Implementation Notes
	3.1.1 Command Line Parameters
	3.1.2 Graph File Format
	3.1.3 The Difference between Theory and Practice

	3.2 Exemplary Calls
	3.3 Compatibility with the DCRGenerator
	3.4 Evaluation
	3.4.1 Fixed Node Count
	3.4.2 Fixed Intra-Cluster Edge Probability
	3.4.3 Summary

	4 Conclusion
	4.1 Summary
	4.1.1 Space Efficiency
	4.1.2 Time Efficiency

	4.2 Outlook and Open Questions

	Appendix
	A Algorithms

	Bibliography
	Nomenclature

