
Minimizing Potential Energy in
Constrained Physical Systems and

Applications to Graph Drawing

Bachelor Thesis of

Christian Schnorr

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Henning Meyerhenke

Advisor: Dr. Tamara Mchedlidze

Time Period: December 1st, 2016 – March 30th, 2017

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Acknowledgements

Throughout multiple years and lectures, Prof. Dr. Dorothea Wagner got me obsessed with
theoretical computer science and graph theory in particular. Thank you for introducing
me to such a fascinating field, and for now giving me the opportunity to write my bachelor
thesis at your institute.

I would also like to thank my advisor, Dr. Tamara Mchedlidze, for her great support in the
form of many suggestions and hours of helpful discussions; and especially for responding to
my late-night emails when I was in desperate need of some input.

My thanks also go to all of my proofreaders for helping me make this thesis the best it could
be. Specifically, I would like to thank Florian Heininger for many hours of physics-related
discussions, and Johannes Hubert for always having a sympathetic ear.

Last but by no means least, I would like to express my sincere gratitude to my parents
and grandparents for their unfailing support and encouragement, despite my own limited
devotion to staying in touch at times.

I am forever grateful for all of your support.

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, March 30th, 2017

iii

Abstract

Over time, physical systems converge to stable equilibrium states in which their
potential energy is at a local minimum. For systems that are not subject to constraints,
force-directed algorithms can be used to find equilibrium positions. However, many
systems are subject to constraints, restricting the movement of particles in the system.
We propose an alternative method to minimize potential energy and thereby find
stable equilibrium positions, that can be used for constrained systems.

We then demonstrate how this can be applied in the field of graph drawing. Here
the constraints appear in the form of multiple incident edges being drawn using a
single circular arc.

Deutsche Zusammenfassung

Physikalische Systeme konvergieren mit der Zeit gegen einen stabilen Gleichgewichts-
zustand, in dem die potentielle Energie des Systems ein lokales Minimum annimmt.
In Systemen, die keinen Zwangsbedingungen unterworfen sind, können sogenannte
Force-Directed Algorithmen verwendet werden, um Gleichgewichtszustände zu finden.
Viele Systeme sind jedoch Zwangsbedingungen unterworfen, die die Bewegungsfreiheit
der Partikel im System einschränken. Wir stellen eine alternative Methode zur Mini-
mierung der potentiellen Energie vor, die auch für solche Systeme benutzt werden
kann.

Wir zeigen anschließend, wie diese Methode im Bereich des Graphenzeichnens ange-
wendet werden kann. Die Zwangsbedingungen bestehen hierbei darin, dass mehrere
inzidente Kanten durch einen einzigen Kreisbogen gezeichnet werden sollen.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2

2 Generalized Coordinates 3

3 Minimizing Potential Energy 5
3.1 Force-Directed Algorithms . 6

3.1.1 Generalized Forces . 6
3.2 Explicit Energy Function . 8

3.2.1 Derivative-based Optimization . 8
3.2.2 Derivative-free Optimization . 8

4 Drawing Graphs with Circular Arcs 11
4.1 Existence of Drawings with Circular Arcs 12
4.2 Graph Decomposition . 15
4.3 Circular Arc Geometry . 17
4.4 Generalized Coordinates . 19
4.5 Transformation of Generalized Coordinates 21
4.6 Forces and Potential Energy . 23
4.7 Evaluation . 26

5 Future Work 29

Bibliography 31

vii

1. Introduction

In graph theory, a graph is an object consisting of a set of elements, called vertices, and
their pairwise relations, called edges, that are expressed as (unordered) pairs of vertices.
Graphs are used heavily for modeling routing problems, representing social networks, chip
design, and many other fields.

Visualizing graphs is a fundamental aspect in the field of graph drawing and information
visualization. A graph’s vertices are typically drawn as small circles, with its edges being
drawn as curves between their endpoints. When drawing graphs, one of the main goals is
making them easy to grasp.

A popular family of algorithms for drawing graphs are so-called force-directed algorithms.
In a force-directed algorithm, the graph is regarded as a particle system in which the
vertices are particles, and several forces are acting on said particles. One defines these
forces such that they act to bring the system into a stable equilibrium position in which
its implicitly defined potential energy is at a local minimum and the resulting drawing
has some desired features. Typically, one wants adjacent vertices to be close together,
with non-adjacent vertices being further apart from each other. The resulting drawings of
graphs are generally visually appealing and easy to grasp [Kob13].

1.1 Motivation
In traditional force-directed algorithms, the only features desired in equilibrium are that
adjacent vertices are close together and that non-adjacent vertices are further apart from
each other. Depending on what one wants to achieve when drawing a graph, one may have
additional features—or different features altogether—that make a good drawing. The
challenge then is to find appropriate restoring forces that act to put the system into a
state of equilibrium that exhibits said features. Some features in graph drawings may be
so indispensable that they pose hard constraints that have to be satisfied for the drawing
to be acceptable. These constraints effectively restrict the vertices’ movement, making
traditional force-directed algorithms (in which vertices can move freely in both dimensions)
inapplicable for finding a local energy minimum.

Schulz [Sch15] proposed that graph drawings with low visual complexity, i. e. drawings with
few geometric entities, are easy to perceive by the viewer. Instead of drawing vertices and
edges as their own geometric entity, Schulz aimed to draw multiple incident edges using a
single geometric entity; namely, a circular arc. Considering there may not exist a circular

1

1. Introduction

arc through four or more arbitrarily placed vertices, this form of hard constraint reduces
the number of degrees of freedom in the system.

This thesis serves to discuss an approach to minimizing the potential energy in systems
whose constraints reduce its number of degrees of freedom. We will also demonstrate how
this approach can be applied to creating drawings of graphs in which circular arcs are used
to draw multiple incident edges.

1.2 Related Work
In his research, Schulz dealt with the theoretical lower and upper bounds of the number of
required entities and provided an algorithm satisfying said bounds only for very specific
classes of graphs [Sch15]. Similar research has been performed for drawing multiple incident
edges using straight line segments [DESW07,DM14, IMS15].

Force-directed algorithms have already been used for drawing graphs with additional
features desired in equilibrium.

Chernobelskiy et al. [CCG+11], for example, studied so-called Lombardi drawings and
used a force-directed approach to optimize angular resolution by introducing a new set
of forces. Sugiyama and Misue [SM95] studied force-directed algorithms in which forces
exerted by a magnetic field are used to align edges in a certain direction. In both cases,
the additional desired feature is dispensable, and therefore only poses a soft constraint
affecting the quality of a drawing. Although nice to have, valid drawings can be produced
even if these constraints are violated.

Bertault [Ber99] designed a force-directed algorithm called PrEd that preserves edge crossing
from an initial layout. The additional desired feature here is indispensable and poses a
hard constraint that has to be satisfied for the resulting drawing to be acceptable. Even
though arbitrary displacements of the graph’s vertices might render some of its drawings
invalid, the additional constraint does not affect the number of degrees of freedom in the
system.

2

2. Generalized Coordinates

A particle system’s configuration encapsulates all positional information of said system, i. e.
the position of every particle in the system. Similarly, the configuration space of a system
models all of its possible configurations. For a system of n particles in two dimensions, we
can write the particles’ position vectors as

~ri =
(
xi

yi

)
∈ R2, i = 1, . . . , n.

If all particles can move freely in both dimensions, i. e. all ~ri can be chosen arbitrarily,
the system has m = 2n degrees of freedom. In many scenarios, however, the system is
subject to constraints, restricting the movement of particles by introducing dependencies
between the particles’ positions. If one were to pick arbitrary positions ~ri, one might end
up violating some of these constraints. For now, let us assume constraints to depend only
on the particles’ positions and to be of the form

f(~r1, . . . , ~rn) !≡ 0. (2.1)

In theoretical physics, constraints of this form are known as holonomic constraints. The
number of degrees of freedom in a constrained particle system is reduced by independent
holonomic constraints [HT94]. Other forms of constraints may not necessarily decrease the
number of degrees of freedom in the system.

Generalized coordinates are independent variables uniquely determining a constrained
system’s configuration that implicitly satisfy all of the system’s holonomic constraints.
Given a constrained particle system, one can find as many independent variables determining
its configuration as there are degrees of freedom in said system. The number of generalized
coordinates required to be able to describe all configurations satisfying the constraints is
equal to the number of degrees of freedom in the system; however, their concrete choice is
generally not uniquely determined [Mü16,Fli09].

Considering the generalized coordinates uniquely determine the system’s configuration,
each particle’s position can be written as a function of the generalized coordinates:

~ri = ~ri(q1, . . . , qm) ∈ R2

Note that for unconstrained particle systems, one could choose Cartesian coordinates
(xi, yi) ∈ R2 as generalized coordinates, but is in no way forced to do so.

3

2. Generalized Coordinates

Example: Mechanical Pendulum

A mechanical pendulum is a weight hanging from a pivot point by a rigid rod of length l,
allowing it to swing. Due to the rod being rigid, the weight’s movement is restricted to a
circle of radius l around the pivot point. When choosing the coordinate system such that
the origin lies in the pivot point, we can express this restriction and dependency between
the weight’s x and y coordinates as

f(x, y) = x2 + y2 − l2 !≡ 0. (2.2)

x

−y

'

l

Figure 2.1: A mechanical pendulum.

Introducing a single generalized coordinate ϕ determining the angular position of the
weight relative to the vertical axis allows us to get rid of both x and y, as they can now be
written as a function of ϕ:

~r =
(
x
y

)
=
(

l · sin(ϕ)
−l · cos(ϕ)

)
With only one generalized coordinate ϕ, we can now express exactly those configurations
that satisfy Equation (2.2).

4

3. Minimizing Potential Energy

Potential energy is the capacity for doing work which results only from a system’s configu-
ration, i. e. its particles’ positions. Recall that we can express all particle positions ~ri as a
function of the generalized coordinates; hence the potential energy U , too, is a function of
the generalized coordinates. In the following, we shall assume the potential energy function
to be continuous and locally differentiable.

In conservative systems, mechanical energy is conserved, which is equivalent to the work
done by a force being independent of its trajectory. Therefore we can write the forces in
terms of the potential energy as

~Fi := −∂U
∂~ri

. (3.1)

The forces ~Fi are defined such that the potential energy U is equal to the work one must do
against the forces to transfer an arbitrary constant reference configuration into the current
configuration; hence the negative sign. As a result, the forces are always directed towards
a lower energy level and therefore act to reduce the system’s potential energy [Nav12].

A particle is said to be in mechanical equilibrium if there is no net force on said particle.
Similarly, a particle system is in mechanical equilibrium if the net force on all its particles
is zero [Ore79]. Using Equation (3.1), we find that a system is in equilibrium if and only if
the gradient ∇U is zero for its current configuration. For (local) minima of the potential
energy, the system is said to be in stable equilibria.

Recall that the forces ~Fi are defined to act to reduce the system’s potential energy. If a
system has been displaced from an equilibrium configuration, said forces consequently act
to return the system to equilibrium and are therefore called restoring forces.

Oftentimes a system has multiple stable equilibria in which algorithms looking to mini-
mize the system’s potential energy can get stuck. It is a challenging problem to find a
configuration in which the system’s energy reaches a global minimum.

5

3. Minimizing Potential Energy

3.1 Force-Directed Algorithms

As the name suggests, force-directed algorithms define forces between pairs of particles,
based on their relative positions, and use these forces to iteratively move the particles,
attempting to minimize the system’s implicitly defined potential energy [Kob13]. These
forces are defined such that they are restoring forces, i. e. they point towards equilibrium.

Using the formula for physical work, we can define the potential energy of a configuration
as the work one must do against the restoring forces to transfer an arbitrary constant
reference configuration into the current configuration.

U :=
∫
−~Fres(~r) d~r (3.2)

For a spring, one could choose the reference configuration such that the spring is relaxed;
for two charged particles, one might choose a reference configuration in which they are
infinitely far apart. Note that since we are dealing with conservative systems, the concrete
trajectory between the endpoints does not matter.

Applying Equation (3.2) to each force allows us to calculate the system’s total potential
energy without ever explicitly defining it. Equation (3.2) also shows that giving in to a
restoring force, i. e. moving a particle by an infinitesimal distance in the direction of the
restoring force, decreases the implicitly defined potential energy. Note that there potentially
are multiple forces acting on the same particle; therefore one must first calculate the net
force acting on each particle as the (vector) sum of the individual restoring forces, and
thereby find the direction in which the particles need to be moved in order to reduce the
system’s potential energy.

When displacing each particle by an infinitesimal distance in the direction of the net force
acting on it, it is evident that local energy minima can not be overcome. Depending on the
initial configuration, it may not be possible to reach a global energy minimum. Although
infinitesimal displacements are not possible in practice, force-directed algorithms with
larger displacements generally yield good results [Kob13].

3.1.1 Generalized Forces

Forces do not act on (generalized) coordinates; they act on the particles whose positions
are determined by the generalized coordinates. Depending on the constraints the system is
subject to, a movement in the direction of the restoring forces may or may not be possible.
If it is, one must find the adjustment that needs to be made to the generalized coordinates
that results in the desired change in particle positions. Considering the positions ~ri are
functions of the generalized coordinates q := (q1, . . . , qm), we can use the restoring forces
to find the so-called generalized forces acting on the generalized coordinates [Fit11]:

Qj :=
n∑

i=1

~Fi ·
∂~ri

∂qj
, j = 1, . . . ,m (3.3)

(3.1)= − ∂U

∂qj
(3.4)

Note that the products Qj · qj always have the dimension of work. Hence the generalized
forces do not necessarily have the dimension of force and instead depend on the dimensions
of their corresponding generalized coordinates.

6

3.1. Force-Directed Algorithms

Feasibility

Both generalized coordinates and generalized forces are scalar quantities. The sign of
a generalized force Qj still indicates in which direction its corresponding generalized
coordinate qj needs to be adjusted for it to result in the desired change in particle positions,
which in turn reduces the system’s potential energy. Whether or not it is feasible to use the
signs of the generalized forces as a hint to the direction in which to adjust the generalized
coordinates very much depends on the complexity of the ~ri(q1, . . . , qm) and their partial
derivatives with respect to the generalized coordinates qj .

Note that if the system is not subject to any constraints and one uses Cartesian coordinates
as the generalized coordinates, the generalized forces essentially become a resolution of
the restoring forces into their x and y components, yielding the traditional force-directed
algorithms for systems without constraints.

Forces in Equilibrium

In constrained systems, the constraints implicitly define so-called constraining forces which
act perpendicularly to the allowed movement to keep all constraints satisfied [Fli09]. These
forces need to be taken into account for the net force on all particles to be zero in equilibrium
configurations.

Back in the example of a mechanical pendulum, the only exterior force is the gravitational
force; and it acts on the pendulum regardless of its position. The net force on the weight
only becomes zero in equilibrium when taking the implicit constraining force of the rigid
rod into account.

7

3. Minimizing Potential Energy

3.2 Explicit Energy Function
Sometimes the restoring forces result in equilibria that do not quite exhibit the desired
features, or it is not clear how to choose the restoring forces at all. By instead explicitly
assigning each configuration a potential energy, one can easily specify which features are
desirable in equilibrium, and which are not. One does not need to provide the restoring
forces, i. e. a direction towards equilibrium—a generic optimization algorithm will figure
that out.

Let us assume that all generalized coordinates qj can be (reversibly) transformed to be
real-valued. Then we can collect all generalized coordinates in a real-valued vector and
write the potential energy function as

U ′ : Rm → R ∪ {∞}.

For invalid configurations, e. g. if two charged particles coincide, we shall use an infinite
potential energy instead of leaving the function undefined. The potential energy function
U ′ can then be minimized without any background knowledge of the problem, such as the
restoring forces in the system.

3.2.1 Derivative-based Optimization

Many optimization methods require information about partial derivatives of the function
to be optimized. These include finding an extremum analytically, but also many numerical
optimization techniques such as Newton’s method, coordinate descent methods, and
conjugate gradient methods. For small systems these methods may be an option; but for
larger systems, it is generally infeasible to obtain accurate derivative information.

3.2.2 Derivative-free Optimization

Due to the lack of accurate derivative information, methods that only evaluate function
values are often better-suited to minimize the potential energy in larger systems. We shall
discuss a simple algorithm in this category in greater detail.

Hill Climbing

Hill climbing is a numeric optimization algorithm that iteratively improves the quality
of its solution by adjusting one dimension at a time. In each iteration, the algorithm
attempts to adjust a single dimension of its current state and accepts that change if and
only if it results in an improvement in value space. This process is repeated until the
maximum number of iterations has been performed, or until no further improvements can
be found [RN10]. There are three major drawbacks of hill climbing:

1. Local Optima: The algorithm cannot escape a local optimum since adjustments are
only accepted if they improve the function evaluation, and may therefore not reach a
global optimum.

2. Ridges and Alleys: Considering the algorithm adjusts one dimension at a time, the
search tends to zig-zag in non-axis-aligned ridges or alleys, taking an unreasonable
amount of time to ascend the ridge or descend the alley.

3. Plateaux: A plateau is an area in which the value function is essentially flat. Depending
on the concrete implementation, the algorithm will either not make any improvements
at all, or conduct a random walk.

8

3.2. Explicit Energy Function

Popular variants of hill climbing include evaluating multiple neighboring states and contin-
uing with the best, and adaptive step sizes for each dimension that change throughout the
algorithm. Algorithm 3.1 shows a possible implementation of adaptive hill climbing.

Algorithm 3.1: Adaptive Hill Climbing for Minimization

Input: number of iterations n,
value function f : Rm → R,
start configuration ~x0 ∈ Rm

Output: ~xn with f(~xn) ≤ f(~x0)

1 acceleration← 1.25
2 steps← (1, . . . , 1)
3
4 for i ∈ 1 . . . n do
5 ~xi ← ~xi−1
6
7 for j ∈ 1 . . .m do
8 ~xi,j ← ~xi−1
9 factor← acceleration−1

10
11 for k ∈ −1 . . . 1 do
12 ~xi,+j,k ← ~xi−1 + ej · stepsj · accelerationk

13 ~xi,−j,k ← ~xi−1 − ej · stepsj · accelerationk

14
15 if f(~xi,k,+j) < f(~xi,j) then
16 ~xi,j ← ~xi,k,+j

17 factor← accelerationk

18
19 if f(~xi,k,−j) < f(~xi,j) then
20 ~xi,j ← ~xi,k,−j

21 factor← accelerationk

22
23 stepsj ← factor · stepsj

24
25 if f(~xi,j) < f(~xi) then
26 ~xi ← ~xi,j

27
28 return ~xn

Considering hill climbing adjusts one dimension at a time, for it to converge to a (local)
minimum, it should be started from a valid configuration, i. e. from one with finite po-
tential energy. Unlike most randomized optimization algorithms, hill climbing has decent
intermediate states, allowing for proper visualization of the optimization process.

9

4. Drawing Graphs with Circular Arcs

In the style of Schulz [Sch15], we shall now apply the concepts from Chapters 2 to 3
to create drawings of graphs with low visual complexity by drawing multiple incident
edges using a single circular arc. The algorithms presented in this chapter allow us to
create drawings of arbitrary connected and simple graphs. Potential edge crossings will be
disregarded as they are unavoidable in nonplanar graphs and minimizing the number of
edge crossings is generally NP-hard.

Let Π = {P1, . . . , Pk} be a set of edge-disjoint paths that may have vertices in common.
We shall denote the entirety of vertices and edges of paths P ∈ Π by V (Π) and E(Π),
respectively:

V (Π) := V (P1) ∪ . . . ∪ V (Pk)
E(Π) := E(P1)] . . .] E(Pk)

Given a graph G = (V,E), a drawing of G with circular arcs is a drawing of G in which
every edge e ∈ E is drawn as a circular arc Γe, such that (i) no vertices coincide, (ii) no
edges overlap, and (iii) no edge intersects vertices other than its endpoints. For the purpose
of working with circular arcs only, we shall consider straight line segments to be circular
arcs with infinite radius and complete circles to be circular arcs, too.

Similarly, given a set of edge-disjoint paths Π = {P1, . . . , Pk}, a drawing of Π with circular
arcs is a drawing of the graph G := (V (Π), E(Π)) with circular arcs, such that the edges
of each path P ∈ Π form a single circular arc ΓP . Note that this does not violate above
condition of every edge being drawn as a circular arc, since subdividing a circular arc yields
other, though smaller, circular arcs. The fact that edges may not overlap implies that the
order of vertices on ΓP must be as indicated by P .

The definition of a drawing of Π with circular arcs—and therefore Π itself— implicitly
defines the constraints a drawing of Π is subject to. Note that only the constraints of all
vertices v ∈ V (P) on a path P ∈ Π lying on the same circular arc ΓP can be expressed as
holonomic constraints. The constraints of said vertices having the correct order on ΓP , no
vertices coinciding, no edges overlapping, and no edge intersecting vertices other than its
endpoints can not be expressed as holonomic constraints. These constraints do not reduce
the number of degrees of freedom in the drawing—they simply render some drawings
invalid, but need to be accounted for nonetheless.

11

4. Drawing Graphs with Circular Arcs

4.1 Existence of Drawings with Circular Arcs
For an arbitrary set of edge-disjoint paths Π = {P1, . . . , Pk} the existence of a drawing of
Π with circular arcs is not guaranteed.

A circle—or circular arc for that matter— is uniquely determined by three distinct points.
If two paths Pi 6= Pj were to have three or more vertices in common, the circular arcs used
to draw them would intersect in at least three points and would therefore overlap. However,
in Theorem 1 we show that the resulting necessary condition of two paths Pi 6= Pj having
at most two vertices in common is not sufficient in guaranteeing the existence of a (valid)
drawing of Π with circular arcs. We start by showing the following lemma:

Lemma 1. A drawing of Π with circular arcs in which edges touch in non-endpoints can
be transformed into a drawing of Π with circular arcs in which said edges either cross or
do not intersect at all.

Proof. When two edges touch in non-endpoints, then so do the paths they are part of and
the circular arcs used to draw these paths. Adjusting the curvature of one of said circular
arcs by an infinitesimal amount causes these circular arcs to either cross or to not intersect
at all.

Considering this adjustment does not alter the ordering of vertices on said circular arc, it
is only left to show that this adjustment can be performed such that the resulting circular
arc does not overlap other circular arcs, or intersect vertices not part of the respective path.
There’s a finite number of vertices and paths in a drawing of Π with circular arcs; hence
this adjustment can indeed be performed without violating any of the constraints imposed
by Π.

12

4.1. Existence of Drawings with Circular Arcs

Theorem 1. There exists a set of edge-disjoint paths Π in which any two paths have
at most two vertices in common, i. e. ∀i 6= j : |V (Pi) ∩ V (Pj)| ≤ 2, for which no (valid)
drawing with circular arcs exists.

Proof. An arrangement of pseudocircles is a finite list C = (c1, . . . , cn) of Jordan curves
in the plane, such that (i) every two curves intersect in at most two points, and (ii) if
two curves meet in a point, they cross in said point. Two arrangements are said to be
equivalent if there exists a homeomorphism from the plane onto itself that transforms one
of the arrangements into the other one. An arrangement of pseudocircles is said to be
circleable if it is equivalent to an arrangement of proper circles [KM14].

Linhart and Ortner [LO05] showed that the arrangement of pseudocircles in Figure 4.1 is
not circleable.

a

b c d e

f g h i j k

l

m

n o p q r s

t u v w

x

Figure 4.1: An arrangement of pseudocircles that is not circleable (left) and a derived
arrangement of pseudo circular arcs (right).

Let us choose a set of edge-disjoint paths Π = {P1, . . . , Pn} such that each path represents
one of the pseudocircles in Figure 4.1 and their shared vertices completely encode all of said
pseudocircles’ intersections with each other. A possible choice would be P1 = ihgbaekj (red),
P2 = pqrwxtno (yellow), P3 = mhcbftuo (green), P4 = lqvwsedj (blue), and P5 = iafmpxsl
(black).

Considering circular arcs are slices of complete circles and the arrangement of pseudocircles
in Figure 4.1 is not circleable, a drawing of Π with circular arcs in which no two circular
arcs touch in non-endpoints can not exist. Lemma 1 then shows that in fact, no drawing of
Π with circular arcs can exist at all.

13

4. Drawing Graphs with Circular Arcs

Theorem 1 shows that the trivial condition of two paths having at most two vertices in
common is not sufficient in guaranteeing the existence of a (valid) drawing of Π with circular
arcs. Let us now be a little more restrictive and instead consider an ordered sequence
of edge-disjoint paths Π = (P1, . . . , Pk) in which none of a path Pi’s internal vertices are
contained in an earlier path, i. e. a path Pj with j < i:

Vint(Pi) ∩ V (P1 ∪ . . . ∪ Pi−1) != ∅, i = 2 . . . k (4.1)

Theorem 2. An ordered sequence of edge-disjoint paths Π = (P1, . . . , Pk) fulfilling Equa-
tion (4.1) permits a drawing of Π with circular arcs.

Proof. We will provide a method to construct a drawing of Π with circular arcs by
sequentially drawing the paths P ∈ Π in their designated order.

Equation (4.1) ensures that, when drawing a path P = (v1, . . . , vn), its internal vertices
v2, . . . , vn−1 have not yet been drawn. Since the paths are edge-disjoint, its edges have not
yet been drawn either. In case an endpoint of P has not yet been drawn, we can assign it
an arbitrary position, as long as it is not on any of the circular arcs that have already been
drawn.

Considering there’s a finite number of vertices and edges, there exists a circular arc ΓP

between P ’s endpoints that neither intersects any of the vertices that have already been
drawn (other than said endpoints), nor overlaps any circular arc that has already been
drawn.

It is possible, however, for ΓP to intersect other circular arcs. Drawing one of P ’s internal
vertices on such an intersection would visually introduce new edges, rendering the drawing
of Π invalid. Considering a pair of non-overlapping circular arcs intersects in at most two
points, the number of points on ΓP on which we can not draw P ’s internal vertices is finite,
and there are infinitely many points left on which said vertices could be drawn without
rendering the drawing invalid. Therefore we can draw P ’s internal vertices, in order, on
the circular arc and thereby partition ΓP into smaller circular arcs Γe representing the
individual edges e ∈ E(P).

We have seen that an ordered sequence of edge-disjoint paths Π = (P1, . . . , Pk) fulfilling
Equation (4.1) permits a (greedy) drawing of Π with circular arcs. Therefore we shall also
refer to Π as a greedily realizable sequence of paths. Vertices v ∈ V (Π) shall be said to be
laid out by the first path, i. e. the path Pi ∈ Π with the lowest index i, in which they occur.
If v is internal to said path, it shall be called constrained (with respect to Π); otherwise,
it shall be called unconstrained (with respect to Π). The constrained and unconstrained
vertices form the sets Vc(Π) and Vu(Π), respectively. Obviously Vc(Π) ∩ Vu(Π) = ∅ and
Vc(Π) ∪ Vu(Π) = V (Π).

Note that there are definitely other properties guaranteeing the existence of a (valid)
drawing of Π with circular arcs—possibly even less restrictive ones. We use this one
because it suggests a straight-forward method to create a drawing, as illustrated in the
proof of Theorem 2.

14

4.2. Graph Decomposition

4.2 Graph Decomposition
In this section, we shall discuss a generic approach to decompose a connected and simple
graph into a non-trivial greedily realizable sequence of simple paths. We restrain ourselves
to connected graphs since paths can not contain isolated vertices. Besides, in a larger
graph, the connected components can—and should—be drawn individually. The graph
being simple allows it to be decomposed into simple paths, which will be a requirement in
a later section.

Algorithm 4.1 greedily assembles the paths one after the other. The vertices and edges
sets keep track of which vertices and edges have already been used and allow us to ensure
that the assembled paths both are edge-disjoint and fulfill Equation (4.1).

Algorithm 4.1: Graph Decomposition

Input: Connected and simple graph G
Output: Greedily realizable sequence of simple paths Π, such that V (Π) = V (G)

and E(Π) = E(G)

1 paths← ()
2 edges← ∅
3 vertices← ∅
4
5 foreach u ∈ V (G) do
6 foreach e = {u, v} ∈ E(G) do
7 ensure e /∈ edges else continue
8
9 path← (e)

10 head← v
11 edges← edges] {e}
12 vertices← vertices ∪ {u}
13
14 append:
15 while head /∈ vertices do
16 vertices← vertices] {head}
17
18 foreach f = {head, w} ∈ E(G) do
19 ensure f /∈ edges else continue
20 ensure w /∈ path.vertices else continue
21
22 path← path.append(f)
23 head← w
24 edges← edges] {f}
25
26 continue append
27 break
28 paths← paths.append(path)

29
30 return paths

15

4. Drawing Graphs with Circular Arcs

Correctness

After the loop in line 6, all edges incident to u are guaranteed to appear in a path. Because
this loop is executed for every vertex in the input graph G, all edges in the graph end up
being used. By definition the input graph is connected; hence every vertex is incident to at
least one edge, meaning that all vertices in the graph are used as well. Considering that
edges are only ever used to assemble the working path if they have not been used before, we
find that Π is a decomposition of the input graph, i. e. V (Π) = V (G) and E(Π) = E(G).

It remains to show that Π is a greedily realizable sequence of simple paths. Since the
input graph does not contain loops, a single edge always is a simple path. Single-edged
paths cannot possibly violate the requirements of a greedily realizable sequence of paths, as
they do not have any internal vertices that could have appeared in an earlier path. When
appending an edge to the working path, its current head would become an internal vertex.
This operation is only performed if the current head can become an internal vertex without
violating the requirements in Equation (4.1), i. e. if the current head has not been used
beforehand. The additional check in line 20 ensures that edges are only appended to the
working path if the resulting path would still be simple, i. e. if appending the edge would
not form a cycle. Therefore Π is indeed a greedily realizable sequence of simple paths.

Runtime

The two outermost loops iterate over all vertices and their incident edges. Considering an
edge is incident only to its endpoints, each edge is processed exactly twice here. When
implemented using an adjacency list, these loop conditions can be checked in Θ(|V |+ |E|).

The condition of the append loop in line 14 is checked Θ(|V |+ |E|) times as a result of the
containing loop being executed that many times; plus once whenever the algorithm jumps
back to the append label after appending an edge to the working path, which happens
O(|E|) times. Line 16 ensures that the loop’s body, however, is executed at most once
per vertex. Using the same argument as above, iterating over the incident edges of O(|V |)
vertices can be done in O(|V |+ |E|).

As a result, the entire algorithm can be executed in Θ(|V |+ |E|) when implemented using
an adjacency list.

Adaptation

The sole purpose of above algorithm is to show that it is relatively easy to decompose an
input graph G into a non-trivial greedily realizable sequence of paths Π using a greedy
algorithm. It does not intend to find a good decomposition—quality is a subjective
measurement and very much depends on what one wants to achieve when drawing the
graph.

Possible tweaks include the choice of vertices in line 5 or the choice of edges in line 6 and
line 18. It may even be an option to not greedily append edges as long as possible, and
instead start a new path earlier, especially in undirected graphs. In a directed graph, for
example, it would make sense to keep track of the number of unused incoming edges for
each vertex and pick a vertex with no unused incoming edges in line 5.

It may also be useful to let the user, who possibly has background knowledge about what
the graph represents, provide some paths that semantically make sense to emphasize by
drawing them as a single circular arc. The user-provided paths can then be completed to a
valid decomposition Π of the input graph.

16

4.3. Circular Arc Geometry

4.3 Circular Arc Geometry

A 3-tuple (P,Q, ϕ) uniquely determines a circular arc Γ(P,Q, ϕ). Here P,Q ∈ R2 are its
distinct endpoints, and ϕ ∈ (−180◦, 180◦) is the (signed) angle from the chord PQ to the
arc’s tangent in P .

Drawing a circular arc with ϕ > 0◦ starting in P requires a clockwise motion; hence those
arcs shall be called clockwise. Similarly, arcs shall be called counterclockwise for ϕ < 0◦. For
ϕ = 0◦ the arc degenerates into the straight line segment connecting P and Q. Figure 4.2
outlines important properties of a circular arc.

r r

l

T

M

h

'

Θ

QP
S

Figure 4.2: Geometry of a clockwise circular arc.

The central angle Θ is the (signed) angle which the arc subtends at the center of the circle.
For clockwise arcs the central angle is negative; for counterclockwise arcs it is positive:

Θ = −2ϕ

The arc height h is the (signed) perpendicular distance from the arc’s midpoint T to
the chord PQ connecting its endpoints. For clockwise arcs the arc height is positive; for
counterclockwise arcs it is negative. When cutting Γ in half, the circular arc Γ′ with chord
PT has Θ′ = Θ

2 and ϕ′ = ϕ
2 . Therefore we find ∠SPT = ϕ− ϕ

2 , and we can write the arc
height as

h = PS · tan(∠SPT) = 1
2PQ · tan

(
ϕ

2

)
.

The arc radius r and arc center M are, respectively, the radius and center of the circle
which the arc is a slice of. We find them to be

r(ϕ 6= 0◦) =
∣∣∣∣∣ PS

sin(ϕ)

∣∣∣∣∣ =
∣∣∣∣∣ PQ

2sin(ϕ)

∣∣∣∣∣
and

M(ϕ 6= 0◦) = P +R(ϕ− 90◦) ·
−−→
PQ

2sin(ϕ) ,

where R(ψ) is the matrix rotating a column vector by ψ in the counterclockwise direction.
Note that for ϕ = 0◦, both radius r and center M are undefined.

17

4. Drawing Graphs with Circular Arcs

The arc length l is the distance between the arc’s endpoints P and Q along the arc. It is a
portion of the respective circle’s circumference:

l(ϕ 6= 0◦) =
∣∣∣∣ Θ
360◦ · 2πr

∣∣∣∣ =
∣∣∣∣∣ ϕ

180◦ ·
π · PQ
sin(ϕ)

∣∣∣∣∣
For ϕ = 0◦, above equation for arc length l is undefined. We shall continuously extend it
to ϕ = 0◦ using the limit limϕ→0◦ :

l(ϕ = 0◦) := lim
ϕ→0◦

l(ϕ) = PQ

This extension also matches our intuition of the arc degenerating into a straight line segment
for ϕ→ 0◦.

18

4.4. Generalized Coordinates

4.4 Generalized Coordinates
Given a greedily realizable sequence of simple paths Π = (P1, . . . , Pk), we shall now choose
generalized coordinates such that the holonomic constraints defined by Π are implicitly
satisfied. The generalized coordinates introduced here require a circular arc’s endpoints to
differ and can therefore not be applied to paths whose endpoints coincide.

Besides its endpoints, a circular arc requires another generalized coordinate encoding its
curvature for it to be uniquely determined. This coordinate must be able to encode the
arc’s direction, i. e. whether it is drawn clockwise or counterclockwise. Considering two
circular arcs with the same angle ϕ, as introduced in the previous section, are guaranteed to
be similar, we shall use the angle ϕP ∈ (−180◦, 180◦) as a generalized coordinate encoding
the curvature of the circular arc ΓP .

Unconstrained vertices v ∈ Vu(Π) can move around arbitrarily and require two degrees of
freedom. We shall use Cartesian coordinates (xv, yv) ∈ R2 to represent their positions.

In contrast, constrained vertices v ∈ Vc(Π) can not move around arbitrarily—they are
each being laid out by a path P (v) and are restricted to move along the circular arc ΓP (v),
while also staying in the order indicated by P (v). We only have one degree of freedom
per vertex here: its relative progress along the arc. It can be encoded using a generalized
coordinate pv ∈ (0, 1) specifying the proportion of the subarc connecting P (v)’s tail and v
to the entire arc, as illustrated in Figure 4.3.

(xa; ya) (xe; ye)

pb =
1
4

pc =
2
4

pd =
3
4

'P

Figure 4.3: Generalized coordinates for a single path P = abcde with equi-length edges.

19

4. Drawing Graphs with Circular Arcs

Collectively, the Θ(|V |+ |Π|) generalized coordinates uniquely determine all of the vertices’
positions ~rv and circular arcs ΓP . We shall write them as a 4-tuple qΠ = (x, y, ϕ, p), where

x : Vu(Π)→ R,
y : Vu(Π)→ R,
ϕ : Π → (−180◦, 180◦),
p : Vc(Π)→ (0, 1).

The generalized coordinates chosen here satisfy all holonomic constraints defined by Π, i. e.
all vertices v ∈ V (P) on a path P ∈ Π are guaranteed to lie on the same circular arc ΓP .

Recall that the configurations that can be expressed only depend on the constraints
implicitly satisfied by the choice of generalized coordinates, and that the number of
independent generalized coordinates equals the number of degrees of freedom in the system.
It is therefore not possible to use fewer generalized coordinates while satisfying the same
constraints without also excluding other configurations.

20

4.5. Transformation of Generalized Coordinates

4.5 Transformation of Generalized Coordinates
Although generalized coordinates qΠ are helpful as an internal representation that implicitly
satisfies the holonomic constraints, we will need to retrieve vertices’ positions ~rv and circular
arcs ΓP to eventually produce a drawing of the graph G := (V (Π), E(Π)).

In theory, we can write both the position vectors ~rv and circular arcs ΓP as an explicit
function of the generalized coordinates. However, these expressions get out of hand very
quickly when paths are nested within one another, i. e. a path’s internal vertex is an
endpoint of another path. Instead, we propose the following algorithm to perform the
transformation to position vectors sequentially:

Algorithm 4.2: Transformation of generalized coordinates

Input: Greedily realizable sequence of simple paths Π and corresponding
generalized coordinates qΠ = (x, y, ϕ, p), i. e.
x : Vu(Π)→ R,
y : Vu(Π)→ R,
ϕ : Π → (−180◦, 180◦),
p : Vc(Π)→ (0, 1)

Output: Positions ~r(v) and arcs Γ(P) for all vertices and paths in Π
1 Initialize ~r : V (Π)→ R2

2 Initialize Γ: Π→ CircularArc
3
4 foreach v ∈ Vu(Π) do
5 ~r(v)← (x(v), y(v))
6
7 foreach P = (v1, . . . , vn) ∈ Π do
8 arc← CircularArc(~r(v1), ~r(vn), ϕ(P))
9

10 foreach v ∈ (v2, . . . , vn−1) do
11 ~r(v)← arc.pointForProgress(p(v))
12
13 Γ(P)← arc
14
15 return (~r,Γ)

21

4. Drawing Graphs with Circular Arcs

Correctness

In lines 4 to 5, we determine the position vectors for unconstrained vertices v ∈ Vu(Π). For
those and only those the generalized coordinates x(v), y(v) are defined, and it is trivial to
assemble the vertices’ position vectors.

In lines 7 to 13, the position vectors of constrained vertices v ∈ Vc(Π) are determined.
When constructing a circular arc ΓP , we need to know its endpoints’ positions. If an
endpoint is unconstrained, then it had its position assigned already in lines 4 to 5. If
it is not, then it must be constrained, and by definition, it has appeared in an earlier
path in whose iteration it had its position assigned. Therefore the endpoints’ positions
are well-defined at the time of access in line 7. Considering a path’s internal vertices v
are constrained by Equation (4.1), the p(v) are well-defined, allowing us to compute the
vertices’ positions on ΓP . Equation (4.1) also guarantees that vertices do not appear as
internal vertices to any more paths once laid out, and therefore have a position assigned
only once.

Considering the position vectors are computed for both constrained and unconstrained
vertices, all vertices v ∈ V (Π) have their position assigned.

Runtime

The partition of V (Π) into Vu(Π) and Vc(Π) is implicitly given by the domain of x, y, and
p. Therefore lines 4 to 5 can be implemented in Θ(|Vu(Π)|). In lines 7 to 13, we construct a
circular arc for each path P ∈ Π and use it to compute the positions of P ’s internal vertices
in Θ(1) each. Considering each vertex v ∈ Vc(Π) has its position assigned once and once
only, lines 7 to 13 run in Θ(|Π|+ |Vc(Π)|), yielding a total runtime of Θ(|Π|+ |V (Π)|),
which is optimal.

Validity of Drawings

The drawing the algorithm produces is not necessarily a (valid) drawing of Π with circular
arcs. While the generalized coordinates implicitly satisfy the constraints of all vertices
on a path P lying on the same circular arc ΓP , they do not make any guarantees about
vertices not coinciding, edges not overlapping, or edges intersecting no vertices other than
their endpoints. Recall that if the order of vertices on ΓP is not as indicated by P , then
there inevitably are overlapping edges. These constraints will be dealt with in the following
section.

22

4.6. Forces and Potential Energy

4.6 Forces and Potential Energy
Let G = (V,E) be a connected and simple input graph. We have seen that one can
efficiently decompose G into a greedily realizable sequence of simple paths Π = (P1, . . . , Pk)
and choose generalized coordinates that implicitly satisfy the holonomic constraints defined
by Π.
For a configuration qΠ to yield a valid drawing of the graph, it is left to ensure that no
vertices coincide, that no edges overlap, and that no edge intersects any vertices other than
its endpoints. By assigning each configuration a potential energy that is finite if and only
if said constraints are satisfied, we can easily distinguish valid from invalid drawings. This
potential energy also serves as a measurement of the resulting drawing’s quality and can
be optimized to get better-looking drawings of G.
When drawing a graph, we want the vertices to be well spaced out with adjacent vertices
being close together. Defining both attractive and repulsive forces between each pair of
vertices is a standard procedure in many force-directed algorithms [Kob13] and can be
applied here as well. In a mechanical system, the forces would act on the vertices and move
them around to decrease the implicitly defined potential energy of the system.
In the following, ci ∈ (0,∞) are constants used to scale various physical quantities.

Vertex-Vertex Repulsion
Thinking of the vertices as charged particles pushing each other away allows us to space
them out. A repulsive force Frep based on Coulomb’s law attempts to push two vertices
away from each other. It is exerted along the line connecting the vertices, and its magnitude
depends on their distance d:

Frep(d) := c1 ·
1
d2

We can write the electric potential energy stored in such a pair of charged particles as

Urep(u, v) :=
d(u,v)∫
∞

−Frep(s) ds

= c1 ·
1

d(u, v) ,

where d(u, v) is the Euclidean distance of the vertices u and v’s positions. For d(u, v) = 0
the constraint of vertices not coinciding is violated, and we shall define Urep(u, v) :=∞.

Vertex-Vertex Attraction
In order to keep adjacent vertices close together, we think of every edge as a virtual spring
attempting to restore its relaxed length k. Linear springs based on Hooke’s law have
shown to be too strong when adjacent vertices are far away from each other. Therefore
we shall use springs whose restoring forces Fatt are instead logarithmic in their relative
displacement:

Fatt(l) := −c2 · k · ln
(
l

k

)
The elastic potential energy stored in such a spring can be written as

Uatt(e) :=
l(Γe)∫
k

−Fatt(s) ds

= c2 · kl ·
(

ln
(
l

k

)
− 1

)
+ k2,

where Γe is the circular arc used to draw the edge e, and l(Γe) is its arc length.

23

4. Drawing Graphs with Circular Arcs

Overlapping Edges

Edges can overlap either within a single path or between two distinct paths. For each
path P ∈ Π we can define a potential energy that is zero if no edges e ∈ E(P) overlap each
other, and infinite otherwise:

Uord(P) :=
{

0 if edges e ∈ E(P) do not overlap
∞ otherwise

If edges within a path overlap, its internal vertices are not ordered correctly on the circular
arc ΓP . In the process of transferring vertices from being ordered correctly to being ordered
incorrectly, two vertices u 6= v must coincide, i. e. d(u, v) = 0, for which Urep(u, v) =∞.
Therefore Uord does not affect the continuity or local differentiability of the total energy
function. Overlapping edges of different paths will be dealt with in the next paragraph.

Vertex-Path Repulsion

Edges of different paths Pi 6= Pj can only overlap if the two circular arcs ΓPi , ΓPj overlap.
This case only occurs if at least one of the paths’ endpoints lies on the other arc. Since
the input graph G is simple, this is equivalent to a circular arc intersecting vertices its
respective path does not contain.

Therefore it is sufficient to ensure that vertices v only lie on those circular arcs ΓP where
they are part of the respective path, i. e. v ∈ V (P). For each path P ∈ Π and vertex
v /∈ V (P), we can define another potential energy that is finite if and only if v does not lie
on ΓP as

Uint(v, P) :=

c3 · 1
d(v,ΓP) if d(v,ΓP) 6= 0

∞ otherwise.

Here d(v,ΓP) is the minimum Euclidean distance from the vertex v’s position to any point
on the circular arc ΓP . Note that by defining the potential energy, the corresponding
restoring force is implicitly defined as well.

Total Potential Energy

Using the four components described above, we can now calculate the total potential energy
of the system determined by a configuration qΠ :

U(qΠ) :=
∑

{u,v}∈V 2

Urep(u, v) +
∑
e∈E

Uatt(e) +
∑
P∈Π

Uord(P) +
∑

v∈V,P∈Π
v /∈V (P)

Uint(v, P)

The summands—and therefore their sum, too—are finite if and only if all the constraints
defined by Π are satisfied. Thus we can easily tell whether or not a configuration yields a
(valid) drawing of Π with circular arcs by calculating the system’s total potential energy.
The energy function can be evaluated in O(|V |2 + |E|+ |V | · |Π|) time.

4.6.1 Minimizing Potential Energy

Considering an explicit function for the ~rv is not feasible as illustrated in Section 4.5,
closed-form expressions for the forces or the system’s total potential energy are not feasible
either. It is therefore not an option to use generalized forces to minimize the system’s

24

4.6. Forces and Potential Energy

potential energy; let alone to perform an analytical optimization. Instead, we shall resort
to a generic hill climbing algorithm to find a local energy minimum.

Since hill climbing generally works on real-valued functions of n variables, we need the
total energy function to be of the form U : Rn → R ∪ {∞}. The following bijective trans-
formations allow all generalized coordinates to be used as real numbers and vice versa:

(−180◦, 180◦) 3 ϕ 7→ c4 · tan
(
ϕ

2

)
∈ R

(0, 1) 3 p 7→ c5 · tan(π · (p− 0.5)) ∈ R

We can then collect all n generalized coordinates in a real-valued vector q ∈ Rn determining
the system’s configuration and evaluate its potential energy in O(|V |2 + |E|+ |V | · |Π|)
time.

For hill climbing to converge to a (local) energy minimum, it has to be able to reach
a configuration with finite energy by adjusting only a single dimension from its start
configuration. Better yet, it should start from a configuration with finite energy, i. e. a
configuration that fulfills all constraints and therefore yields a (valid) drawing of Π with
circular arcs. Theorem 2 shows that such a configuration exists and its proof suggests a
simple algorithm for finding one in O(|V |2 · |Π|) time.

Considering the potential energy assigned here is always positive, there exists an infimum
of the energy function and hill climbing is set to converge.

25

4. Drawing Graphs with Circular Arcs

4.7 Evaluation
Besides this written report, we have implemented the algorithms illustrated in Sections 4.1
to 4.6 in a Mac OS application written in Swift 3. It allows arbitrary input graphs and
greedily realizable sequences of paths to be loaded and modified. Unless specified, the
initial configuration of the drawing is generated randomly. The user can make manual
adjustments to the drawing, but can also use hill climbing to reduce the drawing’s energy
automatically. Drawings generated by the application can also be exported as vector
graphics.

The implementation is open source and can be found on GitHub:

https://github.com/jenox/bachelor-thesis/

4.7.1 Results

We tested the algorithms using random graphs of various orders and densities, which were
generated according to the Erdős–Rényi model [ER59,Gil59]. The constants in Section 4.6
were chosen as k = 100, c1 = 105, c2 = 1, c3 = 104, c4 = 10, and c5 = 10.

Figure 4.4 shows drawings of graphs with 10 vertices and different densities, each with
two different decompositions into greedily realizable sequences of paths: The drawings in
the upper row are based on the greedy graph decomposition illustrated in Algorithm 4.1,
whereas the drawings in the lower row were created using user-provided decompositions.

For user-provided graph decompositions, Figures 4.5 to 4.7 show the effect additional user
adjustments have. The drawings in the upper row were created only by hill climbing from
a randomly generated start configuration, whereas in the lower row, few user adjustments
have been made.

Figure 4.4: Drawings of graphs using decompositions provided by the user (bottom) and
greedily determined by Algorithm 4.1 (top).

26

https://github.com/jenox/bachelor-thesis/

4.7. Evaluation

Figure 4.5: Drawings of graphs with 10 vertices and 9/15/20/25 edges; each with (bottom)
and without (top) user adjustments.

Figure 4.6: Drawings of graphs with 15 vertices and 14/20/25/35 edges; each with (bottom)
and without (top) user adjustments.

27

4. Drawing Graphs with Circular Arcs

Figure 4.7: Drawings of graphs with 20 vertices and 19/30/40 edges; each with (bottom)
and without (top) user adjustments.

4.7.2 Conclusion

The algorithm works nicely with trees and other sparse graphs.

Due to the nature of hill climbing, the algorithm presented here is even more likely to get
stuck in local minima than traditional force-directed algorithms. These obstacles are fairly
obvious for sparse graphs though, and can easily be overcome using few user adjustments.
Even though in theory hill climbing is terribly inefficient, it is highly parallelizable and
generally well-suited due to the lack of accurate derivative information of the energy
function.

For dense input graphs, on the other hand, the algorithm does not produce satisfying
drawings. The hard constraints of vertices on some path P lying on the same circular arc
ΓP take away a lot of freedom in vertex movement that traditional force-directed algorithms
have. Possible ways to release tension in the drawing may be prohibited by the constraints,
generally yielding drawings with much higher energy values. Figure 4.4 shows that the
decomposition of the input graph G into a greedily realizable sequence of simple paths Π
is of the utmost importance here. It is very unlikely that a greedy graph decomposition as
illustrated in Algorithm 4.1 yields satisfying results.

The choice of generalized coordinates in Section 4.4 and their transformation in Section 4.5
require the path decomposition to be a greedily realizable sequence of paths. As a result,
each vertex can be internal to at most one path, meaning that there are most |V | paths
that have internal vertices— the rest of the paths, which are Θ(|V |2) many for graphs with
Θ(|V |2) edges, are single-edged. Considering the main motivation for using circular arcs
to draw multiple incident edges in the first place was drawing graphs with few geometric
entities, the algorithms presented here fail for graphs with large dense components by
default.

28

5. Future Work

The results presented in Section 4.7 were somewhat dissatisfying for dense graphs. The
constraints the drawings are subject to play a significant role in this. Recall that the
decomposition of the input graph into a greedily realizable sequence of paths implicitly
defines said constraints; and that how these constraints are accounted for is irrelevant for the
quality of the drawings. Therefore the restrictive choice of precondition in Equation (4.1)
leaves much room for improvement.
We have also seen that, depending on how the input graph has been decomposed into paths,
the resulting drawings greatly differ in appeal. Possible future research may include finding
properties of decompositions that yield appealing drawings, and how such decompositions
can be found efficiently. A reference drawing of the graph may allow for a smart choice of
paths.
It is left to find out if additional features desired in equilibrium, such as better angular
resolution [CCG+11], are compatible with drawing multiple incident edges on the same
circular arc.
Although constrained systems are very common in physics, how relevant they really are to
graph drawing is yet to be determined.

Optimization-wise, there is still a lot of room for improvement.
The partial derivatives of the energy function with respect to the generalized coordinates
may be able to be approximated, allowing for a more natural convergence as all dimensions
can be adjusted at once. However, this would introduce other problems of traditional
force-directed algorithms, such as possible oscillation around an equilibrium point, or
(temporary) decreases in quality.
In systems where the restoring forces are explicitly defined, it may be an option to use a
hybrid approach, treating constrained and unconstrained vertices separately. Vertices that
can move freely in both dimensions could be displaced using a traditional force-directed
approach whereas vertices whose movement is constrained could still be managed by the
likes of hill climbing. This approach would be especially beneficial for systems with many
unconstrained vertices.
Other optimization techniques, such as genetic optimization algorithms, should also be
experimented with. The recombination of two individuals is non-trivial for graph drawings
[BBS96] but would allow for local energy minima to be overcome.

29

Bibliography

[BBS96] Jürgen Branke, Frank Bucher, and Hartmut Schmeck. Using genetic algorithms
for drawing undirected graphs. In The Third Nordic Workshop on Genetic
Algorithms and their Applications, pages 193–206, 1996.

[Ber99] François Bertault. A force-directed algorithm that preserves edge crossing
properties. In 7th International Symposium on Graph Drawing, pages 351–358,
1999.

[CCG+11] Roman Chernobelskiy, Kathryn I. Cunningham, Michael T. Goodrich,
Stephen G. Kobourov, and Lowell Trott. Force-directed Lombardi-style graph
drawing. In 19th International Symposium on Graph Drawing, pages 320–331,
2011.

[DESW07] Vida Dujmović, David Eppstein, Matthew Suderman, and David R. Wood.
Drawings of planar graphs with few slopes and segments. Computational
Geometry, 38(3):194–212, 2007.

[DM14] Stephane Durocher and Debajyoti Mondal. Drawing plane triangulations with
few segments. In Proceedings of the 26th Canadian Conference Computational
Geometry, pages 40–45, 2014.

[ER59] Paul Erdős and Alfréd Rényi. On random graphs I. Publicationes Mathematicae
Debrecen, 6:290–297, 1959.

[Fit11] Richard Fitzpatrick. Newtonian dynamics. http://farside.ph.utexas.edu/
teaching/336k/Newton.pdf, 2011. Lecture Notes. Accessed: 2017-03-01.

[Fli09] Torsten Fließbach. Mechanik: Lehrbuch zur Theoretischen Physik I. Spektrum
Akademischer Verlag, 6th edition, 2009.

[Gil59] Edgar Nelson Gilbert. Random graphs. Annals of Mathematical Statistics,
30(4):1141–1144, 1959.

[HT94] Marc Henneaux and Claudio Teitelboim. Quantization of Gauge Systems.
Princeton University Press, 1994.

[IMS15] Alexander Igamberdiev, Wouter Meulemans, and André Schulz. Drawing planar
cubic 3-connected graphs with few segments: Algorithms and experiments. In
23rd International Symposium on Graph Drawing and Network Visualization,
pages 113–124, 2015.

[KM14] Ross J. Kang and Tobias Müller. Arrangements of pseudocircles and circles.
Discrete & Computational Geometry, 51(4):896–925, 2014.

[Kob13] Stephen G. Kobourov. Force-directed drawing algorithms. In Roberto Tamassia,
editor, Handbook of Graph Drawing and Visualization, chapter 12, pages 383–
408. CRC Press, 1st edition, 2013.

31

http://farside.ph.utexas.edu/teaching/336k/Newton.pdf
http://farside.ph.utexas.edu/teaching/336k/Newton.pdf

Bibliography

[LO05] Johann Linhart and Ronald Ortner. An arrangement of pseudocircles not
realizable with circles. Contributions to Algebra and Geometry, 46(2):351–356,
2005.

[Mü16] Milada Margarete Mühlleitner. Moderne Physik für Informatiker. https://www.
itp.kit.edu/_media/courses/ss2016/mpfi/vlaktuell.pdf, 2016. Lecture
at Karlsruhe Institute of Technology. Accessed: 2016-09-18.

[Nav12] Carl Rod Nave. Hyperphysics: Potential energy. http://hyperphysics.
phy-astr.gsu.edu/hbase/pegrav.html, 2012. Accessed: 2017-03-01.

[Ore79] Jay Orear. Physics. MacMillan Publishing Company, 1979.

[RN10] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson, 3rd edition, 2010.

[Sch15] André Schulz. Drawing graphs with few arcs. Journal of Graph Algorithms
and Applications, 19(1):393–412, 2015.

[SM95] Kozo Sugiyama and Kazuo Misue. A simple and unified method for drawing
graphs: Magnetic-spring algorithm. In Proceedings of the DIMACS Interna-
tional Workshop ’94, pages 364–375, 1995.

32

https://www.itp.kit.edu/_media/courses/ss2016/mpfi/vlaktuell.pdf
https://www.itp.kit.edu/_media/courses/ss2016/mpfi/vlaktuell.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html
http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Generalized Coordinates
	3 Minimizing Potential Energy
	3.1 Force-Directed Algorithms
	3.1.1 Generalized Forces

	3.2 Explicit Energy Function
	3.2.1 Derivative-based Optimization
	3.2.2 Derivative-free Optimization

	4 Drawing Graphs with Circular Arcs
	4.1 Existence of Drawings with Circular Arcs
	4.2 Graph Decomposition
	4.3 Circular Arc Geometry
	4.4 Generalized Coordinates
	4.5 Transformation of Generalized Coordinates
	4.6 Forces and Potential Energy
	4.7 Evaluation

	5 Future Work
	Bibliography

