
Algorithms for crossing minimisation in
book drawings

Master Thesis
of

Jonathan Klawitter

At the Department of Informatics
Institute of Theoretical Informatics

Chair of Algorithmics I

Reviewer: Prof. Dr. Dorothea Wagner
Second reviewer: Priv.-Doz. Dr. Martin Nöllenburg
Advisor: Dr. Tamara Mchedlidze

Duration:: 23. October 2015 – 22. April 2016

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 20th April 2016

. .
(Jonathan Klawitter)

Abstract

A book with k pages consists of a line (the spine) and k half-planes (the pages), each with
the spine as boundary. In a k-page book drawing of a graph the vertices lie on the spine,
and each edge is drawn as arc in one page. The minimal number of edge crossings in a
k-page book drawing of a graph is called its k-page crossing number, which, in general,
is NP-hard to determine [BE14]. A book drawing can be described by an order of the
vertices on the spine and a distribution of the edges to pages. To compute book drawings,
we combine vertex order heuristics with edge distribution heuristics and create heuristics
that compute both simultaneously. We experimentally evaluate the performance of these
heuristics on a new test suite that is centred on di↵erent graph classes. It turns out that
our new heuristics produce drawings with fewer crossings for most of the tested graphs.
We further investigate the optimisation of book drawings with force-based approaches,
greedy and evolutionary algorithms as well as the successful combinations of the latter
two.

Zusammenfassung

Ein Buch (book) mit k Seiten besteht aus einer Geraden (dem Bund (spine)) und k Hal-
bebenen (den Seiten (pages)), die jeweils den Bund als Grenze haben. In einer k-seitigen
Buchzeichnung (k-page book drawing) eines Graphen wird jeder Knoten auf den Bund
und jede Kante als Kreisbogen auf eine Seite gezeichnet. Die minimale Anzahl von Kan-
tenkreuzungen in einer k-seitigen Buchzeichnung eines Graphen nennt man seine k-Seiten
Kreuzungszahl (k-page crossing number), welche im AllgemeinenNP-schwer zu bestimmen
ist [BE14]. Eine Buchzeichnung kann durch die Ordnung der Knoten auf dem Bund und
die Verteilung der Kanten auf die Seiten beschrieben werden. Um eine Buchzeichnung zu
erzeugen, kombinieren wir Heuristiken zum Bestimmen von Knotenordnungen und Kan-
tenverteilungen sowie neue Heuristiken, die beides simultan berechnen. Wir evaluieren
die Performanz dieser Heuristiken anhand einer neuen Testsammlung, welches auf ver-
schiedenen Graphklassen basiert. Wir konnten zeigen, dass unsere neuen Heuristiken für
die meisten der getesteten Graphen Zeichnungen mit weniger Kreuzungen erzeugen. Des
Weiteren betrachten wir die Optimierung von Graphzeichnungen mit kräftebasierten und
evolutionären Ansätzen, sowie Greedyalgorithmen und vielversprechende Kombinationen
selbiger.

v

Contents

1. Introduction 1
1.1. Book drawings and book embeddings . 1
1.2. Motivation . 3
1.3. Related work . 4
1.4. Outline . 6

2. The problem 7
2.1. Basic results . 7

2.1.1. Trees . 7
2.1.2. Biconnected components . 10
2.1.3. Outerplanar graphs . 10
2.1.4. Fixed vertex order . 11

2.2. NP-hardness . 12
2.2.1. Book embedding . 12
2.2.2. Crossing number . 13

2.3. Exact solution . 14
2.3.1. SAT . 14
2.3.2. Weighted MAX-SAT . 16

2.4. Counting crossings . 17
2.4.1. Counting and reporting . 17
2.4.2. Open edges sweep . 17
2.4.3. Transformation to two-layer cross counting 18
2.4.4. Evaluation . 19

3. Heuristic approaches 23
3.1. Vertex order heuristics . 23

3.1.1. Depth-first search . 24
3.1.2. Breath-first search . 24
3.1.3. Max-neighboring . 25
3.1.4. Connectivity . 25

3.2. Edge distribution heuristics . 27
3.2.1. Greedy . 27
3.2.2. Slope . 28
3.2.3. Ear decomposition . 29

3.3. Full drawing heuristics . 30

4. Evaluation of heuristics 33
4.1. Linear number of edges . 34

4.1.1. Experimental results . 34
4.2. Outerplanar graphs . 36
4.3. Cartesian product of cycles . 37

4.3.1. Experimental results . 38

vii

viii Contents

4.4. Planar graphs . 39
4.4.1. Finding Hamiltonian cycle . 40
4.4.2. Distributing perfectly . 41
4.4.3. Average number of crossings . 41

4.5. 1-planar graphs . 44
4.5.1. Experimental results . 44

4.6. K-trees . 46
4.6.1. Experimental results . 46

4.7. Hypercubes and t-ary d-cubes . 48
4.7.1. Experimental results . 48

4.8. Complete graphs . 49
4.9. Complete bipartite graphs . 51

4.9.1. Experimental results . 51
4.10. Quadratic number of edges . 52
4.11. Conclusion . 54

5. Optimisation 57
5.1. Greedy optimisation . 57

5.1.1. Greedy vertex order optimisation . 57
5.1.2. Greedy edge distribution optimisation 58
5.1.3. Greedy book drawing optimisation 58
5.1.4. Evaluation . 59

5.2. Evolutionary algorithms . 60
5.2.1. Mimicing evolution in nature . 60
5.2.2. Implementation . 62
5.2.3. Algorithms . 64

5.3. Evaluation of optimisation algorithms . 65
5.4. Force-based optimisation . 67

5.4.1. Mean & median iteration vertex order 67
5.4.2. Force-based edge distribution . 69

5.5. Further approaches . 71
5.5.1. Graph partitioning & clustering . 71
5.5.2. Maximal independent set . 72

6. Summary and outlook 73

Bibliography 76

Appendix 89
A. Graph generation . 89

A.1. Trees . 89
A.2. Outerplanar graphs . 89
A.3. Maximal planar graphs . 89
A.4. Hamiltonian planar graphs . 90
A.5. 1-planar graphs . 90
A.6. K-trees . 91
A.7. Random graphs . 91
A.8. Shu✏ing . 91

B. Further experiment results . 91
B.1. 1-planar graphs . 91
B.2. Hypercubes and t-ary d-cubes . 92
B.3. Random graphs . 92

C. Tools and machines . 93

viii

1. Introduction

In this thesis we evaluate heuristics and optimisation algorithms for the NP -hard problem
of crossing minimisation in book drawings. We start with basic definitions and then proceed
with our research question and related work. At the end of the chapter we give an overview
of this thesis.

1.1. Book drawings and book embeddings

We draw undirected graphs into topological structures fittingly called books. They can be
defined as follows.

Definition 1.1. For k � 1, a k-page book, or a book with k pages, consists of a line in
three dimensional space (the spine) and k half-planes (the pages) bounded by this line.

Less formal, a book consist solely of a spine with attached pages. A graph is drawn into a
book by representing its vertices as distinct points on the spine and drawing each edge as
a circular arc in exactly one page. In Figure 1.1 a graph with eight vertices is drawn into
a book with four pages.

page 1

page 2

page 3

page 4

spine1 8

Figure 1.1.: A 4-page book drawing of a graph, where vertices (from 1 to 8) are placed on
the spine (shown twice) and edges are distributed to pages. Pages 1 and 2 are
crossing-free, whereas the edges in page 3 and 4 produce several crossings.

We note that we can turn around the book, meaning reverse the order of the vertices,
and still have a proper book drawing. Furthermore, the numbering of the pages has
no further relevance. The drawing stays combinatorially and topologically equivalent.
Another feature of book drawings becomes apparent, if we transform them into circular
drawings by bending the spine into a cycle, as shown in Figure 1.2. Here, vertices are

1

2 1. Introduction

placed on a circle and edges are drawn as chords. If we cut the circle at a di↵erent position
than where we joined the ends of the spine, we get a new drawing with rotated order of the
vertices. This is also illustrated in Figure 1.2. To represent pages in circular drawings the
edges are assigned to layers or are drawn in di↵erent colours. Figure 1.3 depicts the 4-page
book from Figure 1.1 as circular drawing. Throughout this thesis, we will call the order
(respectively circular order) of the vertices, vertex order, and the assignment of edges to
pages, edge distribution. Joining these insights, we can now define the book drawings from
the combinatorial point of view.

Figure 1.2.: The 1-page book drawing on the left is converted into a circular drawing. The
latter is then cut between two other vertices to obtain a book drawing with
rotated spine.

page 1 page 2 page 3 page 4

1
8

Figure 1.3.: A circular drawing of the book drawing in Figure 1.1, where the pages are
represented by the colours of the edges.

Definition 1.2. A k-page book drawing of a graph G = (V,E) is defined by a vertex
order, a circular order of its vertices V , and an edge distribution, a map of its edges E to
k pages.

Similar to planar drawings, there can also be crossings of edges in book drawings. We
say two edges uv and xy cross if their arcs (respectively chords) cross. See for example
again Figures 1.1 and 1.3 where pages 3 and 4 contain crossings. These are in fact the
same crossings, since the transformation described above preserves them. We further
observe that a crossing is only possible between non-incident edges and if their end vertices
alternate. Hence, we get the following definition for crossings in book drawings.

Definition 1.3. In a book drawing of a graph G = (V,E), two of its edges uv, xy 2 E
cross if they are on the same page and their endpoints alternate in the vertex order.

A planar embedding of a graph G is defined as a planar drawing of G without crossings.
A book embedding of a graph is defined in the same way in terms of its book drawing.

Definition 1.4. A k-page book embedding of a graph G is a k-page book drawing of G
without crossings.

2

1.2. Motivation 3

So from now on and throughout this thesis let k be the number of pages. Furthermore,
let G = (V,E) be a graph with n = |V | vertices V and m = |E| edges E.

Planar graphs are by definition the only graphs that have planar embeddings. For any
other graph G the minimal number of crossings possible in a planar drawing of G is called
the crossing number cr(G) of G. In book drawings, on the other hand, we can increase the
number of pages and place each edge on its own page to remove any crossings. However,
this takes the concept of pages ad absurdum. We are more interested in the minimal
number of pages required to find a book embedding of G.

Definition 1.5. The pagenumber pn(G) (or book thickness or stack number) of a graph
G is the smallest k such that G has a k-page book embedding.

We will use the term pagenumber of G for pn(G). The term book thickness is a generali-
sation of the concept of the graph invariant thickness, which denotes the minimal number
of planar graphs into which the edges of a graph can be partitioned. The term stack num-
ber originates from the analogy between a k-page book embedding and a realisation of a
permutation with k stacks.

Finally, we define, similar to the crossing number cr(G), the minimal number of crossings
possible with a fixed number of pages.

Definition 1.6. The k-page crossing number crk(G) of a graph G is the smallest
number of crossings possible in a k-page book drawing of G.

Rephrasing the definition of pagenumber with regard to the k-page crossing number, a
graph G has pagenumber k if this is the smallest k for which crk(G) = 0.

The pagenumber and the k-page crossing number yield the problems of determining these
numbers for any given graph as well as finding one of the best possible book drawings.

Definition 1.7. The k-page crossing minimisation problem is the problem of finding
a book drawing of a given graph G with crk(G) many crossings.

Definition 1.8. The book embedding problem is the problem of finding a k-page book
embedding of a given graph G with k = pn(G).

We note that these problems can also be defined as decision problems. However, both prob-
lems are NP-hard in general, and thus, we will be more interested in heuristic approaches
to minimise the number of crossings. We will discuss the computational complexity more
detailed in Section 2.2.

1.2. Motivation

The main goal of this thesis is to establish fundamental knowledge about the k-page
crossing minimisation problem, in particular to design and evaluate algorithms for it. In
the following we discuss the motivation for that as well as for the di↵erent aspects we will
consider.

In the computational challenge of the 23th International Symposium on Graph Drawing
& Network Visualization, in 2015, the task was to minimise the number of crossings in
k-page book drawings of ten graphs within one hour. In a practical course at the Karlsruhe
Institute of Technology in summer semester 2015, preceding this thesis, we investigated
and implemented algorithms for the k-page crossing minimisation problem in order to
participate in this challenge. In doing so, we noticed that book embeddings received

3

4 1. Introduction

way more attention in the literature than book drawings. Hence, for this thesis, we got
motivated to summarize known results about algorithms for book drawings. We are in
particular interested in knowledge necessary for the design and evaluation of new heuristics,
i.e. algorithms that compute a new book drawing, as well as optimisation algorithms.

When comparing heuristics for a particular problem, there is the need for a clear evaluation
process. However, we observed the lack of systematic approaches in the literature to
evaluate the performance of heuristics for book drawings. Hence, one of our goals with
this thesis is to create a test suite for book drawing heuristics. We observed that in the
literature the choice of graph classes used for testing was neither motivated nor did it
seem particular reasonable. It is therefore one of our interest to investigate which graph
classes and graph properties are essential for the evaluation of heuristics of book drawings.
Furthermore, the k-page crossing minimisation problem was mostly considered only for
one or two pages. We are therefore also interested in the performance of heuristics for
di↵erent number of pages.

After the computation of a book drawing using a heuristic, the problem of optimising it
in terms of crossings arises. For this purpose general approaches like greedy optimisation
[BB05], evolutionary algorithms [HNS05, HSM07, BSV+08, SSS13] and neural networks
[HSM06, LRMCOdLLGM07, Wan08] have been proposed. We are therefore interested in
how much they were tailored to book drawings and how sophisticated they are. Further-
more, the question arises in what direction future work concerning optimisation should be
directed.

Furthermore, we observed that nearly all algorithms, both heuristics and optimisation
algorithms, proposed in the literature considered the vertex order and edge distribution
separately. Hence, we were motivated to find out whether it is possible to design algorithms
that consider both simultaneously and whether this would lead to better performances.

Before we outline how this thesis is structured and how we tackled this questions, we
present related work.

1.3. Related work

The first influential paper on book embeddings is by Bernhart and Kainen from 1979
[BK79]. They gave some first bounds for pagenumbers, described the graphs classes that
can be embedded in one and two pages, namely outerplanar and subhamiltonian planar
graphs, and determined the page number for complete graphs as well as some complete
bipartite graphs. In the following finding pagenumbers for di↵erent graph classes was given
a lot of attention. For example, the upper bound on the pagenumber of planar graphs
was gradually improved to nine, seven and finally to four [BS84, Hea84, Yan86, Yan89].
Determining whether the pagenumber of planar graphs is three or four is still ongoing
research [BKZ15]. This is also the case for other graph classes like, for example, 1-planar
graphs [BBKR15, ABK15], where the current best lower and upper bounds are four and
sixteen. Other considered graph classes are for example de Brujin and shu✏e-exchange
graphs [Obr93], Cayley graphs [TS06], generalize Petersen graphs [Mah13], hypercubes
and cube-like graphs [KHT89, Has09, TS10] and k-trees [GH01, DW07, DW09, VWY09].
There exist several overviews [DW04, Alh05] for these results. Bounds on the pagenumber
have been given with respect to n [BK79, McC12], to m [Mal94b, BS14, BS15] and to the
graph genus [HI92, Mal94a]. It was also considered to embed graphs in books with small
pagewidth, i.e. minimising the maximal number of edges cut by a line perpendicular to
the spine [Hea85, Hea87, CLR87, Stö88].

Circular drawings, defined like our circular drawings but with only one page, are also
related to book embeddings. Several algorithms have been proposed [Mä88, HS04, BB05,

4

1.3. Related work 5

ST06] for the objectives to reduce the number of crossings or the total edge length in these
drawings. In fact, most heuristics that we describe in Section 3.1 to compute a vertex
order are originally for these circular drawings. There are also algorithms which concern
readability and aesthetics of circular drawings [ST06, GK07, DNEH13].

For books with two pages the crossing number is of particular interest, since it gives an
upper bound to the planar crossing number cr. There are several heuristics proposed for
the problem with fixed spine [Cim02, Cim06, CM07], called the fixed linear crossing number
problem, as well as for the general case [HSV05, HSSV06, SSS13]. Genetic and evolutionary
algorithms as well as simulated annealing have been considered for crossing minimisation
in book drawings with one page [HNS05], two pages [HSM07, PMH07, BSV+08] and
any number of pages [SSS13]. Evolutionary algorithms have also been used to determine
pagenumbers [KRSZ02, SSG11]. Furthermore, neural networks have been proposed and
tested for crossing minimisation in books [HSM06, LRMCOdLLGM07, Wan08]. Extensive
evaluation of several algorithms has been done by Satsangi et al. [SSS13] and He et al.
[HSMV15]. Aside from finding good algorithms for the general case, there has also been
made e↵ort to compute crossing numbers for special graphs and k’s [HSSV06, HSM10,
AAFM+12, dKP12, dKPS13, dKPS14].

Along with the complexity of the two problems, we will also discuss the result by Bannister
and Eppstein [BE14] concerning fixed parameter tractable algorithms for the crossing
minimisation problem in the next chapter.

The kind of book embeddings we consider are not the only known in the literature. One
variation for example are the so called topological book embeddings, where edges are allowed
to cross the spine [EM99, MS09, MS10, DGGL11, GLM+15]. Topological book embeddings
have already been considered by Bernhart and Kainen [BK79]. Another generalization of
book embeddings is due to Overbay [Ove98], who considered books with only one page
but a tree as spine instead of a single line.

k-page book embeddings are also known as k-stack layouts and the pagenumber as stack
number. This is due to the fact that book embeddings can be used to sort permutations
with stacks. Analogously, k-queue layouts (respectively k-arch layouts) can be defined as
drawings with vertices placed on a spine and non-nested (respectively non-disjoint) edges.
Dujmović and Wood [DW04] gave a survey on these layouts. Schaefer [Sch13a] gave a
broader survey on di↵erent crossings numbers.

Book drawings and especially book embeddings find multiple applications in di↵erent fields.
For example, Clote et al. [CDD+12] considered a connection between book embeddings
and RNA folding. Another use of book embeddings is due to Jacobson [Jac89]. He
described succinct data structures for graphs with bounded pagenumber based on their
book embeddings. Dujmović andWood [DW04] gave a long list of references to applications
like fault tolerant VLSI design, complexity theory, graph drawing, sorting permutations
and compact routing tables. McClintock [McC12] gave nice explanations for most of these
applications, including in addition optimised VLSI design. Another application is due
to Kainen [Kai90], who described the analogy of book embeddings and tra�c control at
a controlled intersection. More precisely, while the vertex order is given by the circular
order in which the lanes for cars and passengers arrive at the intersection, the phases of
the tra�c signals that prevent crossings lanes from interfering resemble the pages.

5

6 1. Introduction

1.4. Outline

We will start in Chapter 2 with an overview of the k-page crossing minimisation problem.
This will include some basic result, the computational complexity of the problem as well
as ways to solve it exactly. Furthermore, we will address the problem of counting crossings
in book drawings and propose a new fast algorithm for it.

In Chapter 3 we will look at heuristic approaches to compute book drawings. These
heuristics can be categorized as algorithms that compute only a vertex order, an edge dis-
tribution or a full book drawing. Especially the latter group has not really been considered
in the literature yet, instead mostly combinations of vertex order and edge distribution
heuristics have been used. We will discuss this problem and also propose new algorithms
for each of these groups. An evaluation of all these heuristics will be done in Chapter 4
based on results from experiments on random graphs of di↵erent densities as well as on
particular graph classes. In doing so, we will also introduce a test suite for the evaluation
of heuristics.

In Chapter 5 we will discuss optimisation algorithms for the k-page crossing minimisa-
tion problem. These are in particular force based and greedy approaches, evolutionary
algorithms as well as their combinations. Furthermore, experimental evaluation of these
algorithms will be presented. Beyond that, we discuss directions for future work concerning
optimisation algorithms.

In Chapter 6 we will summarize our findings, draw conclusions and give an outlook.

6

2. The problem

In this chapter we investigate the complexity of the book embedding and k-page crossing
minimisation problem. We will start with cases of these problems, where they are easy
to solve or their complexity can be reduced. In Section 2.1.4 we will show that when the
vertex order is fixed, these problems are equivalent to other well known problems. However,
as already mentioned, the problems are NP -hard in general. This will be addressed in
Section 2.2. After that, we investigate whether and when one may still try to solve the
problems exactly. We close the chapter with a problem that in turn is easy so solve. More
precisely, in Section 2.4 we consider algorithms to count the number of crossings of a book
drawing in a fast manner.

2.1. Basic results

It is su�cient to only consider simple graphs, i.e. graphs without loops and without multi-
edges. Loops can be embedded directly next to a vertex without interfering any other
edges. Multi-edges can be drawn parallel on the same page and thus would only multiply
the number of crossing of the underlying edge. Furthermore, it is easy to see that if a graph
consists of multiple connected components, these can be embedded in books separately.
Hence, throughout this thesis we only consider simple and connected graphs. Beyond that,
there are also graph classes that are easy to embed in books with only one page.

2.1.1. Trees

The graphs that have zero crossings in all of their book drawings are the stars. This is due
to the fact that two edges can only cross if they are not incident. Another class of graphs
that is easy to embed is the class of trees, as illustrated in Figure 2.1.

Theorem 2.1. Every tree has pagenumber 1.

To find an embedding one can simply use a depth-first search on the tree and order the
vertices as they are visited. This strategy is actually used for arbitrary graphs by some
vertex order heuristics presented in Section 3.1. However, not all heuristics presented there
are able to embed trees in a 1-page book.

Moreover, consider a graph G with an attached tree T . By attached tree, we mean an
induced subgraph that is a tree and connected with the rest of the graph only via one cut

7

8 2. The problem

Figure 2.1.: A tree on the left and a circular drawing of it on the right.

vertex v. We can now draw G without T (except of course v) in a book and then in a
second step add an embedding of T starting at v, as depicted in Figure 2.2. Clearly T
does not produce any crossings. Moreover, this can be done for any attached tree.

Observation 2.2. Cutting of attached trees of a graph does not influence its minimal
number of crossings achievable in a k-page book drawing.

T1 T1

T2

T2

v1v2

v3 T3

v1

v2

v3

T3

Figure 2.2.: On the left, a graph with three attached trees Ti and a book drawing of it on
the right, showing that trees do not influence the rest if placed next to their
cut vertices vi.

As mentioned above, not all algorithms embed trees without crossings and thus also not
attached trees. Furthermore, crossings produced by trees can not always be resolved by
a greedy optimisation algorithm that takes vertices one by one and places them at the
position where the number of crossings gets reduced the most. This can indeed resolve
some crossings, however, in general the drawing can be of such kind that no improvement
is possible. In fact, the following theorem holds.

Theorem 2.3. A greedily optimised 1-page book drawing of a tree can still have O(n2)
crossing.

Proof. We prove this in two steps. First, we show that a drawing can contain crossings
unresolvable by greedy optimisation. Second, we give a construction to extend a tree, such
that all of its crossings are of this kind, enabling us to devise an example.

Consider the tree of Figure 2.3 where the edges uv and e cross each other. To resolve this
crossing, without loss of generality, either u or v has to be moved to the other side of e.
However, this clearly introduces two new crossings and thus greedy optimisation would
move neither of them. Moving any other vertex either increases the number of crossings
or does not alter the basic structure. Hence, greedy optimisation can not resolve this
crossing.

In general, consider a vertex v of degree d. If we attach d + 1 new leaves to v and place
them next to v on the spine, we bind v to its position. Doing this with all vertices of
the tree yields that no vertex can be moved without increasing the number of crossings.
We note that this construction only increases the number of edges by a constant factor.
Hence, applying this algorithm to an embedded tree with quadratically many crossings
yields an example. One such example is shown in Figure 2.4

8

2.1. Basic results 9

u

v
e

Figure 2.3.: A tree with a crossing that can not be resolved by greedy optimisation. Neither
u nor v can be moved over e, nor does moving any other vertex have any
helping e↵ect.

Figure 2.4.: The figure on the left indicates a construction to draw a path into a book with
quadratically many crossings. The path alternates across the first edge and
thus every edge crosses all except other edges except its incident ones. For a
path with n = 20 this yields the book drawing in the middle. How to add the
additional leaves to make the crossings unresolvable is shown on the right.

In the following experiment we tested how successful greedy optimisation can reduce the
number of crossings in drawings produced by one of the heuristics from Section 3.1. More
precisely, we first ran the vertex order heuristic conCro (which ranks good in the experi-
ments in Chapter 3) on 1000 random trees with 10 to 200 vertices and afterwards greedy
optimisation on the resulting book drawings. The diagram in Figure 2.5 shows the average
number of crossings before and after the optimisation as well as the percentage of crossings
resolved on average. We can observe that greedy optimisation could indeed not resolve all
crossings, in fact for trees with 60 vertices not even 50%.

0%

25%

50%

75%

100%

0
2
4
6
8

10
12
14
16

%
 c

ro
ss

in
gs

 re
so

lv
ed

av
g.

 #
 c

ro
ss

in
gs

n

conCro
conCro+go
resolved

Figure 2.5.: The average crossings on random trees produced by the vertex order heuristic
conCro before and after greedy optimisation. Also shown the percentage of
resolved crossings.

Hence, based on this experiment and the fact that reducing the problem size is in general a
good idea, we can conclude that when drawing graphs in books one should handle attached
trees separately.

9

10 2. The problem

2.1.2. Biconnected components

The idea to implement parts of a graph separately can be extended even further to bicon-
nected components. This has already been shown by Bernhart and Kainen [BK79] in their
early work.

Theorem 2.4 ([BK79]). The pagenumber of a graph is the maximal pagenumber of its
biconnected components.

Hence, when embedding a graph in a book one may first identify the graphs biconnected
components, embed each separately and then reassemble the resulting embeddings. As
Heath [Hea85] showed, disassembling and reassembling can be done in linear time. Ex-
tracting the biconnected components can be done with the depth-first search based algo-
rithm by Hopcroft and Tarjan [HT73]. Combining the book embeddings of the biconnected
components works straightforward and much like combining a graph and its attached trees.
Groneman [Gro15] described this in detail using a block-cut tree of the graph, which is
also illustrated in Figure 2.6.

B1

B3B2

B4

B5

B1

B3
B4

B5

B2
v2

v1

v3 B1

B3

B2

B4

v2

v1

v3

B5

v1

v2

v3

Figure 2.6.: Connected graph with three cut vertices, a corresponding block-cut tree and
resulting book embedding after reassembling the embeddings of the bicon-
nected components (as in [Gro15]).

Considering biconnected components separately is obviously not only beneficial for book
embeddings but also book drawings. In fact, only one of the vertex order heuristics pre-
sented later produces no crossings between biconnected components (if drawn in 1-page
books). Nevertheless, testing whether edges of di↵erent components can cross is clearly
overhead. Hence again, in order to reduce the size of the problems and to reduce the
number of crossings in book drawings produced by heuristics, it is advisable to consider
biconnected components separately.

2.1.3. Outerplanar graphs

A graph is outerplanar if it has an embedding in the plane such that all vertices are on
the same face, normally and without loss of generality on the unbounded face. It is called
maximal outerplanar if no edge can be added while preserving outerplanarity. All maximal
outerplanar graphs have exactly 2n� 3 edges. Outerplanar graphs take an important role
in book embeddings due to the following theorem.

Theorem 2.5 ([BK79]). A graph has pagenumber 1 if and only if it is outerplanar.

As illustrated in Figure 2.7, a proof is straightforward. With out loss of generality, we
can assume the graph is maximal outerplanar. Otherwise, we simply make it maximal,
embed it and finally remove previously added edges again. The maximality induces that
no vertex is incident to the outer face more than once. Hence, given a planar embedding
of the graph, we can derive a vertex order from the order of the vertices on the outer face.
Obviously, this yields a crossing-free circular drawing.

10

2.1. Basic results 11

Figure 2.7.: An outerplanar graph, the same made maximal and the induced circular
drawing.

Actually, this is the only way to achieve zero crossings for a maximal outerplanar graph.
This follows directly from the fact that every biconnected outerplanar graph has a unique
planar embedding (up to combinatorial equivalence) [Pat13].

Conclusion 2.6. A biconnected outerplanar graph is embedded with zero crossings in a
1-page book if and only if the vertex order is the order on the outer face of its planar
embedding.

Rephrasing Theorem 2.5 we get that a crossing-free page of a book embedding can contain
at most one outerplanar graph and 2n�3 edges. This directly yields that any graph needs
at least m

2n�3 pages. This lower bound was improved by Bernhart and Kainen [BK79], as
follows. We note that the edges of the enclosing cycle of the outerplanar graph can each
be in at most one page, which without loss of generality can be page 1. Consequently all
other pages can contain at most the inner edges of an outerplanar graph on n vertices and
thus at most n� 3 edges. Hence, we get the following result.

Conclusion 2.7 ([BK79]). The pagenumber of a graph with n vertices and m edges is at
least m�n

n�3 .

This bound is tight, for example, for complete graphs (see Theorem 4.11). Furthermore,
Bernhart and Kainen [BK79] derived from this observation bounds on the average degree
and the chromatic number of a graph with respect to its pagenumber.

2.1.4. Fixed vertex order

We now consider the k-page crossing minimisation problem when the vertex order is already
fixed. This might be due to separate computation of vertex order and edge distribution,
from the context of an application or because there is only one vertex order, which is the
case for complete graphs.

Consider a circular drawing of a graph G = (V,E) with fixed vertex order, where the
edges are drawn as chords. A circle graph is the intersection graph of chords in a circular
drawing, i.e. the vertices correspond to the chords and two vertices are adjacent if their
chords intersect. So for every graph with fixed vertex order we get a corresponding circle
graph. Then again, if two chords cross, it is possible that the corresponding edges of E in
the book drawing cross. Therefore, we say these edges are in conflict and call the circle
graph from now on edge conflict graph. An example is shown in Figure 2.8.

Definition 2.8. The edge conflict graph Gc of a graph G = (V,E) and given vertex
order is the circle graph of a circular drawing of G with the given vertex order.

We can now observe two things. The edges of G can be distributed to k pages without
crossings only if the edge conflict graph can be coloured properly with k colours. Further-
more, distributing the edges of G to k pages is equivalent to partitioning the vertices of

11

12 2. The problem

1

2

3

4

5

6

7

(2, 3)
(1, 4) (2, 6)

(3, 7)

(4, 5)
(6, 8)

(7, 8)

(1, 2)

8

page 1

page 2

1 8

Figure 2.8.: An ordered graph and its corresponding edge conflict graph.

Gc into k partitions. Avoiding crossing in the book drawing is then equivalent to placing
adjacent vertices of Gc in di↵erent partitions or, in other words, cut as many edges as pos-
sible. Latter problem is known as Max k-Cut. Figure 2.8 shows an example with k = 2.
As Chung et al [CLR87] and de Klerk et al. [dKPS13] have observed, these problems are
in fact equivalent:

Observation 2.9. For a graph G with fixed vertex order and the corresponding edge con-
flict graph Gc holds:

1. G admits a k-page book embedding if and only if Gc is k colourable [CLR87].

2. The k-page crossing number problem of G is equivalent to the Max k-Cut problem of
Gc [dKPS13].

From the point of view of algorithm engineering it is worth mentioning that the edges
between vertices consecutive in the vertex order can not be part of any crossing. These
are in Figure 2.8 the edges (1, 2), (2, 3), (4, 5) and (7, 8), which are all singletons in the
edge conflict graph. Consequently they can be placed on any page and ignored by the
algorithm when distributing the other edges.

To sum up, we have seen that graphs considered in the book embedding and the k-page
crossing number problem can be reduced to simple, biconnected graphs. Furthermore, in
a book embedding one page contains at most one outerplanar graphs or its inner edges,
respectively. Moreover, when the vertex order is fixed, the problems are equivalent to
colouring circle graphs and Max k-Cut on circle graphs, which we call edge conflict graphs.
We proceed now with results concerning the computational complexity.

2.2. NP-hardness

As mentioned before, the book embedding and the k-page crossing number problem are
both NP -hard in general. In this section we state the respective results.

2.2.1. Book embedding

We have seen that a graph has a 1-page book embedding if and only if it is outerplanar.
An embedding of a graph in a 2-page book is equivalent to a planar embedding with
the restriction that all vertices are collinear. Hence, a graph that has a 2-page book
embedding has to be planar. As Bernhart and Kainen [BK79] observed, this is however
not su�cient. The graph also has to be Hamiltonian or subhamiltonian, which is defined
as being subgraph of a Hamiltonian planar graph. We will see this graph class again in
Section 4.4. Figure 2.9 illustrates these conditions and why the following theorem holds.

Theorem 2.10 ([BK79]). A graph has pagenumber at most 2 if and only if it is planar
and subhamiltonian.

12

2.2. NP-hardness 13

Figure 2.9.: The (non-outerplanar) planar subhamiltonian graph K2,3, a two-page embed-
ding and then both embeddings with added Hamiltonian path.

However, Wigderson [Wig82] showed that deciding whether a maximal planar graph is
Hamiltonian is NP-complete. Thus, as a consequence we can draw the following conclu-
sion.

Conclusion 2.11 ([CLR87]). Deciding whether a graph admits a 2-page book embedding
is NP-complete.

If, however, a vertex order is predetermined or forced by a gadget graph (as proposed
by Schaefer [Sch13a]), the problem of finding a book embedding is, as mentioned above,
equivalent to colouring the corresponding edge conflict graph. This problem is also NP-
complete [GJMP80], at least for k � 4 [Ung88]. Unger [Ung92] claimed that it is solvable
for k = 3 in polynomial time.

Conclusion 2.12 ([CLR87]). Determining whether a graph with fixed vertex order admits
a k-page book embedding for k � 4 is NP -complete.

Consequently, the same holds when the vertex order is not known.

For k = 2 the problem can be reduced to planarity testing by adding edges between
consecutive vertices in the vertex order. Hence, it can be solved in linear time [Pat13].
Also the contrary problem, where the edge distribution is fixed, can be solved in linear
time for k = 2 [HN09].

2.2.2. Crossing number

Masuda et al. [MNKF90] proved that the 1-page crossing number problem isNP-complete.
Since the k-page book embedding problem is NP-complete for k > 1, the less restricted
k-page crossing number problem is also NP-complete.

Conclusion 2.13 ([BE14]). Determining the k-page crossing number crk(G) of a graph
G is NP-complete.

Bannister and Eppstein [BE14] have shown that cr1 and cr2 are fixed parameter tractable
with respect to the number of crossings respectively to the sum of the number of crossings
and the treewidth. However, they mention that their algorithms depend highly on the
parameters and are therefore impractical. Nevertheless, this shows that treewidth and
thus K-trees, which we will discuss in Section 4.6, are tightly coupled with book drawings.

In the next section we consider the question whether one may try to solve the embedding
and crossing minimisation problems even though they are NP-hard.

13

14 2. The problem

2.3. Exact solution

Several approaches to solve book embedding and k-page crossing minimisation problems
exactly can be found in the literature [dKP12, dKPS13, BKZ15]. We describe them in
more detail in the following.

A graph can be drawn in a k-page book with (n�1)!
2 di↵erent spines. This is due to the

fact that there are n! many permutations of the n vertices, for which we identify those n
yielding the same circular order and then the pairs with mutually reversed order. With
k = 2 there are already 2m�1 di↵erent edge distributions, (Stirling number of the second
kind sIIk (m) di↵erent for any k > 0, if we request that no page is empty). So brute force
becomes impossible for n > 20 [Sed77] or, if the vertex order is fixed, for large m. Hence,
one has to make use of the fact that some solutions are obviously not the best. This
has been done for example by de Klerk and Pasechnik [dKP12] to compute cr2 for some
complete graphs with a branch and bound algorithm. However, for n 2 {19, 21, 22, 23} or
n > 25 they had stopped their computations unsuccessfully after 60 hours. De Klerk et al.
[dKP12, dKPS13] also used known bounds on complete and complete bipartite graphs in
combination with new bounds computed by semidefinite programming to establish further
results for some small values of n.

Another way to solve the book embedding problem and the k-page crossing number prob-
lem is by formulating them as satisfiability problem (SAT) and weighted maximum sat-
isfiability problem (Weighted MAX-SAT), respectively. In latter the aim is to maximise
the weight of the satisfied clauses. In the remainder of this section we first outline the
transformation to SAT and then the extension to Weighted MAX-SAT.

2.3.1. SAT

We consider the book embedding problem as decision problem asking whether a graph
G can be embedded without crossings in a k-page book, i.e. whether pn(G) k. To
transform this problem into a satisfiability problem we have to express that the vertices
are in a proper order and that edges are distributed to pages and do not cross. We note
that to describe the vertex order it is enough to describe a linear order of the vertices
instead of cyclic order. Hence, we use again the concept of a spine, say a horizontal spine,
where the vertices are ordered from left to right. Thus vi < vj means that vertex vi is left
of vj . In the following we will first establish the variables and then the clauses for each of
the necessary conditions using the notations of Bekos et al. [BKZ15].

We have variables �(vi, vj) to describe the vertex order, �i(ej) for the edge distribution
and �(ei, ej) for possible crossings, as illustrated in Figure 2.10.

8vi, vj 2 V, i < j : �(vi, vj)

8ej 2 E, i 2 {1, . . . , k} : �i(ej)

8ej , ek 2 E, j 6= k : �(ej , ek)

(2.14)

Here, �(vi, vj) = true if vertex vi is left of vj , �i(ej) = true if edge ej is on page i, and
�(ej , ek) = true if the edges ej and ek are on the same page.

To define a proper ordering, � has to be antisymmetric and transitive. We want to note
that we define �(vi, vj) only for i < j. To state that vertex vj is left of vi, we simply take
¬�(vi, vj). Conveniently, this also yields the antisymmetry. Transitivity on the other hand
is ensured by the following rule.

�(vi, vj) ^ �(vj , vk)! �(vi, vk) (2.15)

14

2.3. Exact solution 15

page i

vi vj

�(vi, vj) = true
�i(ej) = true

ej ek

�(ej , ek) = true
�i(ek) = true

Figure 2.10.: Illustration of variables �(vi, vj) to describe the vertex order, �i(ej) for the
edge distribution and �(ei, ej) for possible crossings.

Since a book embedding actually has a circular order we can chose one vertex, say v1, to
be at the first position in the non-circular order. Furthermore, we know that a spine is
also valid if reversed. By fixing the order of two further vertices, say v2 and v3, we fix the
orientation of the spine as well. This is encoded by the rules 2.16.

�(v1, vi) 8vi 2 V, i 2 {2, . . . , n}
�(v2, v3)

(2.16)

In a proper edge distribution every edge is assigned to exactly one page. However, it is
enough to ensure with rule 2.17 that an edge is assigned to at least one page. Furthermore,
we can again reduce the search space by fixing one edge to one page, e.g., e1 to page 1, as
achieved by 2.18.

�1(ei) _ �2(ei) _ . . . _ �k(ei) 8ei 2 E (2.17)

�1(e1) (2.18)

Next, we have to connect possible crossings with the vertex order and the edge distribution.
�(ei, ej) has to be true if and only if ei and ej are on the same page. In this case, however,
to avoid a crossing, they either have to share a vertex or the order of their vertices can
not alternate. This is accomplished by the following rules.

((�1(ei) ^ �1(ej)) _ . . . _ (�k(ei) ^ �k(ej)))! �(ei, ej) 8ei, ej 2 E (2.19)

8(vi, vj), (vk, vl) 2 E, vi, vj , vk, vl pairwise di↵erent :

�((vi, vj), (vk, vl))!
¬(�(vi, vk) ^ �(vk, vj) ^ �(vj , vl)) ^ . . . ^ ¬(�(vl, vj) ^ �(vj , vk) ^ �(vk, vi))

(2.20)

Finally, these rules can be converted in CNF clauses straightforwardly. Summing up we
get O(n2 +m2 + km) variables and O(n3 +m2) clauses.

Bekos et al. [BKZ15] investigated whether planar graphs have pagenumber three or four.
They used a SAT solver to check critical instances and whether solutions have certain
properties. Of interest for us are reports concerning the running time. We want to note
here that planar graphs have at most 3n�6 edges. For graphs up to 100 vertices a solution
was mostly found within 3 seconds. However, for graphs with n in the range 500 and 700
they have reported running times of “few hours to a couple of days”.

15

16 2. The problem

2.3.2. Weighted MAX-SAT

The k-page crossing minimisation problem is, in contrast to the book embedding problem,
not that easy to convert into a decision problem. One approach could be to add an allowed
number of crossings into the SAT formulation above and use binary search to determine
the optimum. Another approach was used by de Klerk et al. [dKPS13], namely Weighted
MAX-SAT, to solve the k-page crossing minimisation problem with fixed vertex order as
optimisation problem. We extended this approach to the unrestricted case. In a MAX-
SAT problem one seeks to maximise the number of simultaneously satisfiable clauses. In a
Weighted MAX-SAT problem not the number but the weight of the satisfied clauses gets
maximised.

For the formulation of the k-page crossing minimisation problem as Weighted MAX-SAT,
we can reuse the SAT formulation from above. However, in addition, we have to ensure that
in all solutions the vertex order � and the edge distribution � is valid, i.e. the respective
clauses are always fulfilled. Only the clauses ensuring that there are no crossings should
get object of optimisation. If the vertex order is fixed (as in the case of the work by de
Klerk et al. [dKPS13]) this can be done straight forward by setting the weights, such that
it is always better to first fulfill the needed constraints than to avoid any crossing. When
the vertex order is not fixed it is more complex.

Rule 2.20 ensured that if two edges are on the same page, the involved vertices are in a
correct order. These rules get converted to multiple clauses in CNF. Hence, if only some
of these clauses are fulfilled, it does not follow that there is no crossing. They have to be
satisfied simultaneously and as the clauses for the vertex order and edge distribution should
not be subject to the maximisation process. Consequently we introduce new variables for
avoided crossings �((vi, vj), (vk, vl)) for all edge pairs. Let �i,j,k,l represent the rule 2.20.
Now we add the following rule, which says that �((vi, vj), (vk, vl)) is equal to whether
�i,j,k,l is fulfilled.

8(vi, vj), (vk, vl) 2 E, vi, vj , vk, vl pairwise di↵erent :

�((vi, vj), (vk, vl))$ �i,j,k,l

(2.21)

Making the clauses resulting from a transformation of 2.21 to CNF mandatory by choosing
appropriate weights, we can bundle whether a crossing occurs or not. To optimise the
number of avoided crossing we simple add the clauses (�((vi, vj), (vk, vl))) for all edge
pairs. By giving these clauses the weight 1 and all other clauses appropriate high enough
weight, we achieve that only the number of avoided crossings gets maximised and thus the
number of crossings minimised.

Weighted MAX-SAT problems are obviously harder to solve than MAX-SAT and SAT
problems. Hence, the maximal number of vertices and edges for which the running time is
still practicable is even more constrained for crossing minimisation in book drawings. de
Klerk et al. [dKPS13] used Weighted MAX-SAT on complete graphs (hence, with fixed
vertex order) only for up to 13 vertices. They report that for n > 13 no result was found
within 48 hours.

We conclude that even for small instances of the k-page crossing minimisation problem as
well as for the book embedding problem computing exact solutions is impractical. Here,
small instances means only just double-digit number of vertices, when minimising the
number of crossing, and up to at most some hundred vertices, when computing a full book
embedding of sparse graphs. Consequently, in the remainder of this thesis we examine
heuristics to compute book embeddings as well as optimisation algorithms. However,
before that, we examine the problem of counting crossings in book drawings.

16

2.4. Counting crossings 17

2.4. Counting crossings

We are interested in algorithms that minimise the number of crossings in book drawings
and thus have to count these crossings. It is not only natural to ask for a fast algorithm, but
also relevant for the performance of the experiments on these algorithms. Furthermore, one
approach to optimise book drawings is by using evolutionary algorithms (see Section 5.2).
There, the currently computed book drawings of one generation are evaluated and selected
for recombination and survival based on their number of crossings. Hence, counting the
crossings in a fast manner gets essential for this approach.

We will now look at three di↵erent approaches to count crossings. At first we consider a
simple and naive algorithm. Second, we look at an approach with running time depending
on the number of crossings. Last but not least, we show how to transform the problem
to counting crossings in two-layered drawings. At the end of this section an experimental
evaluation of these algorithms is presented.

2.4.1. Counting and reporting

The straightforward way to count the number of crossings is to check all pairs of edges
whether they cross. This can be done easily by checking the mutual positions of their
end vertices. Since a graph with m edges has m(m�1)

2 edge pairs, the algorithm runs in
O(m2) asymptotic time. Nonetheless, this algorithm can not only count, but also report
the crossings and since there can be up to O(m2) crossings in the worst case, there can be
no asymptotically better algorithm. However, we are mostly not interested in a list of all
crossings, rather only their count.

2.4.2. Open edges sweep

Six and Tollis [ST06] describe a method to count crossings in circular drawings with one
page. This approach can easily be adopted to work with with more pages. For ease of
exposition, we describe the algorithm for the case k = 1 first and then how to extend it.
We consider again the vertex order as horizontal spine, i.e. linear order with vertices x
left of y denoted by x < y. We start with a basic observation.

Observation 2.22. Two disjoint edges uv and xy placed on the same page can only cross
if xy starts between uv, i.e. u < x < v, or vice verse, i.e. x < u < y.

u x v y

Figure 2.11.: Case one of Observation 2.22, with xy starting between uv.

The algorithm (see Algorithm 1) sweeps along the vertices on the spine, visiting incident
edges as they occur in some order. We call an edge uv open, if it has been processed at
its start vertex u, but not at its end vertex v. If we visit an edge during the sweep at its
start vertex, we add it to a list of open edges (Algorithm 1, lines 13 - 14). The counting of
crossings happens, when we visit the end vertex v of an open edge uv (lines 6 - 12). Then
we know by Observation 2.22 that all open edges currently in the list after uv can cross
uv, see Figure 2.12 (a) for an illustration. Thus, we process the list backwards, counting
the visited and thus open edges, until we arrive at u. The edge uv is now closed and thus
removed from the list of open edges.

We should not count edges also starting at u or ending at v, since they do not produce
crossings with uv. This can easily be avoided if we process the edges at a vertex in a
particular order, more precisely, the one shown in Figure 2.12 (b).

17

18 2. The problem

The count of visited edges above equals the number of crossings of uv with edges xy, where
u < x. A crossing of uv with an edge x0y0 and x0 < u is counted when x0y0 gets closed.
Therefore, we can conclude that sweeping over the whole spine counts all crossings. To
adopt the algorithm for k > 1 one simply takes for each page a separate list for the open
edges.

u v v

1

i

i+ 1

d

(a) (b)

Figure 2.12.: Example of open edges, which can and can not cross uv (a), and the order
in which to process d incident edges at v (b).

Algorithm: CountCrossingsByOpenEdges

Data: book drawing given by spine and distribution
Result: the number of crossings in the book drawing
1 L new lists
2 count 0
3 foreach vertex v on spine from position 1 to n do
4 sort edges at v
5 foreach edge e at v in sorted order do
6 if e ends at v then
7 foreach edge e0 backwards through L do
8 if e = e0 then
9 remove e from L

10 stop going through L

11 else
12 count++

13 else
14 append e to L

15 return count

Algorithm 1: Algorithm to count crossings by counting open edges during a sweep.

Sorting the edges (line 5) to process them in the right order can be done with an adopted
radix sort algorithm in O(deg(v)), which in total takes O(

Pn
i=1 deg(vi)) = O(m) time.

Going through the open edges lists sums up to the number of crossings C. Thus, in total
the algorithm runs in O(m+ C) time and O(m) space.

The upside of this algorithm is that its asymptotic running time is linear in the number
of edges and depends on the number of crossings C. However, as mentioned before, this
can also be its downside as C can be quadratic in m. The next approach does not depend
on C and gives rise to a whole set of algorithms.

2.4.3. Transformation to two-layer cross counting

We transform the problem of counting crossings in a book drawing to counting crossing
in a two-layer drawing for which several algorithms have been proposed in the literature
[BJM02, NY04]. As before, we explain the algorithm for one page. With more pages we
count the number of crossings for each page separately and sum them up.

18

2.4. Counting crossings 19

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

G

G0

Figure 2.13.: An embedded graph G and its corresponding two-layer graph G0, illustrating
Observation 2.23. The edges v1v5 and v2v4 are nested in G and v1u5 and
v2u4 are crossing in G0.

The reduction works as follows and is, like the algorithm above, based on Observation 2.22.
For each edge we count the number of edges starting between its two endpoints. As shown
in Algorithm 2 (line 4 - 12), this can be done in linear time. However, this way, we
overcount the number of crossings by the number of nested edge pairs, i.e. edge pairs
xy, uv where x < u < v < y or u < x < y < v, respectively.

We define a two-layered drawing G0 = (V, U,E0) based on G and its book drawing. The
vertex sets V equals V (G) and U is a copy of V (G), both with the ordering given by the
spine of the drawing. Each edge in vivj 2 E(G) gives rise to an edge viuj in E0 with
vi 2 V, uj 2 U , formally, E0 := {viuj |vivj 2 E(G)}. Figure 2.13 illustrates this reduction
and the following observation.

Observation 2.23. Two edges vivj and vlvk of G are nested if and only if the two corre-
sponding edges viuj and vkuk of G0 cross in the described two-layered drawing.

Thus, we conclude that if we subtract the number of crossings in G0 from our previous
count, we get the desired number of crossings in the book drawing ofG. For the two-layered
cross counting we use the divide & conquer algorithm proposed by Bach et al. [BJM02],
which counts the crossings in a merge-like fashion and runs in O(m log n) time and O(m)
space. Since the first counting and the reduction can be done in linear time, O(m log n) is
also the asymptotic runtime of our whole algorithm. Among several other algorithms for
the two-layer cross count the one by Nagamochi and Yamada [NY04] running in O(n2)
time would be of interest for dense graphs.

2.4.4. Evaluation

We have seen three di↵erent approaches to count crossings, all with di↵erent running
times. Checking edges pairwise runs in O(m2), the open edges sweep runs in O(m + C)
and the divide & conquer approach for two layer cross count runs in O(m log n). As already
mentioned, the downside of the open edges sweep is that C can be in ⌦(m2). We could
easily evaluate with the following experiment that this does in fact matter.

We tested the three algorithms for planar graphs on one page and complete balanced
bipartite graphs on five pages with the number of vertices n growing in steps of ten. For
each n we used 100 randomly generated di↵erent planar graphs and the balanced complete
bipartite graph, respectively, and ran heuristics to compute a vertex order and an edge
distribution. Then we calculated the crossings with all three algorithms for each graph 100
times. The results are presented in Figure 2.14 along with the average number of crossings
(curve smoothed).

19

20 2. The problem

Algorithm: CountCrossingsBy2LayerCrossCount

Data: book drawing given by spine and distribution
Result: the number of crossings in the book drawing
1 edgesStartingBefore new int[n]
2 edgesEndingAt new int[n]
3 count 0
4 foreach edge e do
5 edgesStartingBefore[e.start]++
6 edgesEndingAt[e.end]++

7 for i from 2 to n do
8 edgesStartingBefore[i] += edgesStartingBefore[i� 1]
9 foreach edge e do

10 count + = edgesStartingBefore[e.end �1] � edgesStartingBefore[e.start]
11 edgesEndingAt[e.end]��
12 count � = edgesEndingAt[e.end]

13 count � = number of crossings in G0

14 return count

Algorithm 2: Algorithm to count crossings by overcounting open edges and subtracting
crossings in the two-layer graph G0.

0

2

4

6

8

10

12

0
0.5

1
1.5

2
2.5

3
3.5

4

cr
os

sin
gs

 in
 h

un
dr

es

tim
e

in
 m

s

n

pairwise
sweep
divide & conquer

crossings

0
1
2
3
4
5
6
7
8

0
0.5

1
1.5

2
2.5

3
3.5

4

cr
os

sin
gs

 in
 h

un
dr

ed
 m

ill
io

ns

tim
e

in
 s

n

Figure 2.14.: The three cross counting algorithms on 1-page book drawings of planar
graphs (top) as well as on 5-page book drawings of complete bipartite graphs
(bottom).

20

2.4. Counting crossings 21

We can observe that for planar graphs with few crossings the needed time was marginal
and di↵erences could be due to the implementations. Nevertheless, we already see that,
not surprisingly, the curve of the pairwise edge comparison grows way faster. However,
considering the diagram for complete bipartite graphs with growing n and hundred mil-
lions of crossings, also the di↵erence between the open edges sweep and divide & conquer
algorithm gets clear. The open edges sweep grew with the number of crossings and at some
points needed seconds, while the divide & conquer algorithm stayed in the milliseconds.

Hence, not surprisingly our choice is the divide & conquer algorithm after a reduction to
the two-layer cross count. We further want to note that for some algorithms it is possible
to compute the number of crossings alongside the drawing. Examples are the vertex order
heuristic by Bauer and Brandes [BB05] (Section 3.1.4) and the greedy edge distribution
heuristics (Section 3.2.1). However, since this is not always possible, we count the number
of crossings in our experiments after the drawings are computed.

21

3. Heuristic approaches

As we have seen, the k-page crossing minimisation problem is NP-hard in general and
solving it exactly has its limitation. Only for some graph classes are exact algorithms
known, however, mostly only for k equal to one, two or their pagenumber. Consequently,
for arbitrary graphs, heuristics are needed to compute book drawings. By heuristics, we
mean algorithms that use simple strategies to compute a vertex order or edge distribution
only once and do not iterate or optimise previous results. Optimisation algorithms are
subject of Chapter 5.

In Section 2.3 we have seen that the SAT based solution approaches transform the problems
of finding a vertex order and an edge distribution into a single problem. However, most
heuristics proposed in the literature tackle either the vertex order or the edge distribution.
Hence, this chapter is also split into several parts. First, in Section 3.1 we discuss vertex
order heuristics, second, in Section 3.2 edge distribution heuristics and at the end in
Section 3.3 possible combinations. We also introduce new heuristics in each of these
categories. Furthermore, for each presented heuristic we discuss whether and why we
implemented and tested them (or why not). This is mostly due to the fact that they either
performed well in previous experiments or are newly proposed. Afterwards, in Chapter 4,
we will evaluate the heuristics on graphs of di↵erent densities and graph classes.

3.1. Vertex order heuristics

When computing vertex order and edge distribution separately, the vertex order should
be created first. Otherwise it is unclear how to decide, if two edges should be on di↵erent
pages. In fact, all edge distribution heuristics we have found in the literature and those
presented in Section 3.2 make use of a previously computed vertex order, while, in turn,
no vertex order heuristic uses an edge distribution.

A vertex order heuristic tries to find a good circular order for the vertices of the given
graph. It thereby handles vertex after vertex. This means it first has to select the next
vertex to add and then insert it into the current order. However, it is not clear what a
good circular order is. One approach is to say that a vertex order is good if the number of
crossings is small when all edges lie in the same page. Another approach is placing long
chains on the spine. This is encouraged by the fact that book embeddings of maximal
outerplanar and Hamiltonian planar graphs use Hamiltonian cycles for the vertex order.

23

24 3. Heuristic approaches

3.1.1. Depth-first search

One approach to compute a vertex order is to simply place the vertices on the spine
in the order they are visited during a depth-first search (DFS). In the literature two
di↵erent strategies are proposed to decide where to start and which neighbour to visit
next. Figure 3.1 illustrates both of them.

random DFS (randDFS) The start vertex and the order of the neighbours are chosen at
random. Hence this algorithm by Bansal et al. [BSV+08] has running time O(m+n).

smallest degree DFS (smlDgrDFS) Aiming for a decrease in total edge length, He and
Sýkora [HS04] proposed placing the vertex with smallest degree first and then proceed
with the neighbour with smallest degree. Checking the degree of all neighbours at
each step sums up to O(m). Hence this algorithm has also asymptotic running time
O(m+ n). This algorithm is often called AVSDF.

1 12

34
5

6
7

8

9

10

2

3

4

5
6

7

8

9

10 34

56
7

10
8

9

2

1

4

5

6

7
8

9

10

1

2
3

Figure 3.1.: On the left, the randDFS algorithm on a graph and the resulting order for the
book drawing, and on the right smlDgrDFS on the same graph. The white
vertex is the chosen start vertex and the black edges are forward edges of the
respective DFS.

We want to mention that we have not found a direct comparison of their performance
in the literature. However, we want to note that the algorithms are the same on regular
graphs.

Furthermore, randDFS is also used in several evolutionary approaches to compute the
initial population and as intermediate DFS [SSS13, BSV+08, SSG11]. There, a part of an
existing vertex order gets fixed and the search is only run on the non-fixed vertices.

A third algorithm, which uses DFS, is due to Six and Tolis [ST06]. They propose a DFS
algorithm on an reduced edge set to find a long path when constructing 1-page circular
drawings. However, since the algorithm was outperformed by smlDgrDFS in experiments
by He and Sýkora [HS04], and due to its complexity, we exclude it from our experiments.

3.1.2. Breath-first search

Similar to the DFS based heuristics, algorithms can compute a vertex order based on a
breath-first search (BFS). While the two DFS algorithms above di↵er in their search, the
two BFS algorithms below create two di↵erent orders from the same search. Figure 3.2
illustrates both of them.

random BFS (randBFS) As in the DFS algorithms, this algorithm sets the vertex order
as the order in which it visits the vertices in the BFS. Similarly, it picks the start
vertex and the order in which it processes the neighbours randomly [SSS13].

tree BFS (treeBFS) A breath-first search generates a spanning tree on the traversed
graph. Our algorithm treeBFS embeds this tree crossing-free in a 1-page book (see
Section 2.1.1) and then uses the resulting vertex order for the whole graph.

24

3.1. Vertex order heuristics 25

randBFS works similar as randDFS, however, as we can see in Figure 3.2, the algorithms
clearly tends to produce many crossings. The edges between each level cross each other in
the worst possible way. Hence, we exclude the heuristic from the experiments in the next
chapter due its bad performance.

1 12

56
3

7
8

10

9

4

2

3

4

5
6

7

8

9

10
1

2

5

6

3
7

10

8

4

9

Figure 3.2.: The graph from Figure 3.1 with computed BFS tree in black on the left. The
resulting book drawing for randBFS in the middle and for treeBFS on the
right. The white vertex indicates the start vertex of the search.

3.1.3. Max-neighboring

The maxNbr algorithm processes groups of vertices. More precisely it picks the vertex with
the highest degree, say v, and places it at the end of the spine. Next, it places behind
v all neighbours of v in increasing order of their degree. Then it removes both v and its
neighbours from the graph and starts again. It stops when all vertices are placed. In
other words, the algorithm covers the vertices of the graph with stars and places the stars
behind each other on the spine. Satsangi et al. [SSS13] used this algorithm, but sorted the
neighbours by decreasing degree. It can be implemented to run in O(m + n) time using
a bucket priority queue. Figure 3.3 illustrates this algorithm. We can observe that this
algorithm has the same problems as randDFS. Hence, we also exclude maxNbr from the
experiments due to this problem and its bad performance.

46

78
1

5
3

10

9

2

1
2

3

4

5
6

7

8

9

10

Figure 3.3.: The maxNbr heuristic, where white vertices are those picked by degree. The
black vertices are ordered after the white vertex they are adjacent to via a
black edge.

Satsangi et al. [SSS13] also proposed to place the vertices in an order found by a vertex
cover approximation algorithm, which chooses vertices by highest degree. However, they
also show that the resulting book drawings are mostly even worse than drawings with
random vertex order or computed by maxNbr.

3.1.4. Connectivity

The following algorithm, introduced by Baur and Brandes [BB05], greedily chooses an
unplaced vertex and places it at one end of the spine, similar to an algorithm of Mäki-
nen [Mä88]. They proposed several strategies for selecting the next vertex to place and

25

26 3. Heuristic approaches

v4

v1

v2 v3v4

v1
v2 v3

(a) (b) (c)

Figure 3.4.: In (a) the connectivity strategy is illustrated, choosing vertices first by most
placed neighbours and then fewer unplaced ones. In (b) and (c) the options for
conCro and conGreedy to place the vertices are shown. For both algorithms
the upper left option would be chosen.

for choosing the end to place the vertex. However, we only use their most successful
combination, which works as follows.

The algorithm selects the vertex with most placed neighbours and breaks ties in favor of
vertices with fewer unplaced neighbours. In order words, the chosen vertex closes most
open edges and opens fewest at ties. This is illustrated in Figure 3.4 (a). The end to
place the vertex is picked in favor of the one producing fewer new crossings, as shown in
Figure 3.4 (b). We refer to the algorithm with conCro, since the algorithm first selects
based on connectivity and then based on crossings. It can be implemented to run in
O((m+ n) log n) time [BB05].

The limitation to place vertices only at the beginning or at the end of spine is good for the
running time, but might not be so good for the number of crossings. Hence, we propose
Algorithm 3, which uses the idea of choosing vertices to place by connectivity as well.
However, it places the vertex greedily between any two other already placed vertices, such
that the number of new crossings is minimal. This strategy is illustrated in Figure 3.4 (c).
We call the algorithm conGreedy, since it picks vertices based on connectivity and places
them greedily. Its running time is in O(m2n), since it has to compare all new edges with
those already closed at each position.

Algorithm: conGreedy

Data: graph G
Result: vertex order
1 while not all vertices placed do
2 vertex v chose next vertex based on connectivity
3 foreach open edge uv, u already placed do
4 foreach closed edge xy, x, y 6= u do
5 if x < u < y then
6 mark positions between y and x as bad for v
7 else
8 mark positions between x and y as bad for v

9 place v at position with fewest marks

Algorithm 3: Algorithm conGreedy.

We note that a new crossing is formed di↵erently in conCro and conGreedy. In the former

26

3.2. Edge distribution heuristics 27

a new crossing is produced by a new closed edge and an open edges, whereas in the latter
it is produced by a new closed edge and an old closed edge. We recall that an edge is open
if only one of its incident vertices is already placed, and accordingly closed when both are
already placed.

In total we have six vertex order heuristics that we will consider in the experiments. First,
we have the three search based heuristics, namely, randDFS and smlDgrDFS using DFS
and treeBFS using BFS. Second, we have the two connectivity based heuristics conCro

and conGreedy. Furthermore, in Section 3.3 we introduce with a variation of conGreedy,
namely conGreedy+, another vertex order heuristic.

3.2. Edge distribution heuristics

The task of an edge distribution heuristic is to place each edge on a single page with the
goal of keeping the number of crossings low. The heuristics presented here use a previously
computed vertex order, in contrast to the vertex order heuristics above that do not use a
given edge distribution.

3.2.1. Greedy

There are several heuristics sharing a general framework. They all first compute an edge
order according to some strategy. Then they process the edges in this order and place each
of them on the page where the increase in crossings is minimal.

We describe three strategies to find an edge order. The first two were both motivated by
the idea to place long edges first. However, only the second, namely ceilFloor, does this
correctly. The third strategy uses the result that complete graphs can be embedded in dn2 e
pages (see Theorem 4.11).

length (eLen) In this strategy by Cimikowski [Cim02] and Satsangi et al. [SSS13] the
edges are ordered non-increasingly by the distance of their end vertices in a linear
order (not a circular order). This can be seen as the length of the edge in a linear
spine. Thus edge (1, n) is listed first and any edge (i, i + 1) last. This is illustrated
in Figure 3.5 (a). However, since a book drawing has actually a circular order, the
edges with such linear length i and n � i have the same possibilities of producing
crossings. This is achieved by the next heuristic.

ceil-floor (ceilFloor) In this strategy the edges are ordered non-increasingly by their
actual length, which is the distance of the end vertices in the vertex order (a circular
order), as illustrated in Figure 3.5 (b). Kapoor et al. [KRSZ02] used this strategy
when searching for pagenumbers and they achieve what eLen aims for, namely placing
the edges with highest probability of producing crossings first. We reuse the name
ceilFloor from Satsangi et al. [SSS13].

circular (circ) The vertex order achieving zero crossings for complete graphs on dn2 e
pages is to start at vertex i and then go to i + 1, i � 1, i + 2, . . . , i + dn2 e, iterating
i from 1 to dn2 e. For each i this gives a path that can be placed on the same page.
The strategy by Satsangi et al. [SSS13] orders the edges of a graph as they appear
in this sequence.

Finding the order takesO(m logm) time for eLen and ceilFloor, butO(n4) time for circ.
The second step greedily distributing the edges takes O(m2) time for all the heuristics.
Hence their running time in total is O(m2) and O(n4) for eLen, ceilFloor and circ,
respectively.

There are several other greedy approaches by Cimikowski [Cim02], He et al. [HSSV06]
and Satsangi et al. [SSS13]. However, since they are either only slight variations or were

27

28 3. Heuristic approaches

eLen:
(1, 8)
(2, 8)
(1, 4), (3, 7)
(4, 7)
(2, 3), (6, 7)

1
2

3

5
6

7

8

1 2 3 4 5 6 7 8
4

ceilFloor:
(1, 5), (2, 8)
(4, 7)
(2, 8)
(1, 8), (2, 3), (6, 7)

(a) (b)

Figure 3.5.: Illustration of the orders in which eLen and ceilFloor consider the edges.
eLen uses the length according to a linear spine, ceilFloor according to a
circular spine.

outperformed in their experiments, we decide to only use the three greedy strategies from
above. Furthermore, Cimikowski also described a dynamic programming and a divide and
conquer approach. Again however, both are more complex and were outperformed by the
greedy approaches. Hence, we do not consider them.

3.2.2. Slope

The next algorithms makes use of the geometry of circular drawings. Consider two edges
with the same slope for an already computed vertex order and the corresponding circular
drawing where the vertices are distributed evenly. Then we can observe that their end
vertices can not be alternating and hence they can not cross. If however, their slopes di↵er
more and more, it gets also more likely that they cross. He et al. [HSV05] used this fact
for two-page book drawings to determine an edge distribution. They mapped edges with
a positive slope to page one and edges with negative slope to page two. Our algorithm
slope extends this straight forward to k pages, as illustrated in Figure 3.6 for k = 3.

Figure 3.6.: Illustration of the slope heuristic for two pages on the left and for three
pages on the right. The coloured parts of the half cycle show which slope gets
mapped to which colour respectively page.

The slope of an edge can be computed in di↵erent ways. One approach is to compute
it with trigonometric functions. However, since this approach is prone to floating point
errors, we use the second approach, which uses the combinatorics to compute the slope.
Considering Figure 3.7 (a), we observe that an edge can have at most n di↵erent slopes in
a circular drawing with n evenly distributed vertices. This is due to the fact that any edge
is either parallel to an edge starting at vertex 0 ⌘ n or to the edge (1, n�1). We therefore
label the di↵erent slopes from 0 to n� 1 according to the sum of the vertices modulo n of
these edges (1, n � 1), (0, 1), . . . , (0, n � 1), i.e. the edge (0, i) defines the slope i. This is
illustrated in Figure 3.7 (b).

To compute the slope of an edge (i, j) we use the following lemma.

Lemma 3.1. Let the slopes be defined as above. The slope of an edge (i, j) in a circular
drawing with evenly distributed vertices is i+ j mod n.

28

3.2. Edge distribution heuristics 29

Proof. Without loss of generality let i < j. We proof the statement by showing that the
edge (i, j) is parallel to the edge (0, i+ j mod n) or (1, n� 1), respectively.

It is easy to see that two non-incident chords (i, j), (k, l) with i < j, k < l of a cycle are
parallel if and only if they do not cross and if the circular arcs between the chords have
the same length. This means that if k < l < i < j we have j � k = (n + l) � i, and if
k < i < j < l we have i� k = l � j.

Assuming i+ j < n, we are in the case k < i < j < l and it follows that the edge (i, j) is
parallel to (0, j + i). This is also illustrated in Figure 3.7 (c). Furthermore, if i + j > n,
which is the case k < l < i < j, (i, j) is parallel to (0, j+ i mod n), since i�0 = (j+ i)� j.
Last but not least, if i+ j = n, we see that (i, j) is parallel to (0 + 1, n� 1) = (1, n� 1),
since i� 1 = (n� 1)� j = (i+ j � 1)� j.

2
1

0 ⌘ 8

6
5

4

3

7

0 1
2
3
4
5

6
71

2
3
4
5
6

7

0⌘ 8

2 = i

0

5 = j
j + i = 7

i

+i

j

(a) (b) (c)

Figure 3.7.: (a) and (b): The di↵erent slopes defined by the edges (0, i).
(c): Illustration why (i, j) is parallel to (0, i+ j).

Since the slope of each edge can be computed independently in O(1), the algorithm runs
in O(m) time. Furthermore, we want to note in advance that it is actually conjectured
that slope produces book drawings with minimal number of crossings of complete graphs
for any number of pages [dKPS13]. We will discuss this more detailed in Section 4.8.

3.2.3. Ear decomposition

The algorithm earDecomp, which was developed during the practical course preceding this
thesis, works on an ear decomposition of the edge conflict graph. We recall that the edge
conflict graph Gc for a given graph G and vertex order is the graph with edges of G as
vertices and adjacency between two conflict edges, i.e. edges that can cross for the given
vertex order. An ear of a graph is a path where every internal vertex has degree two.
An ear decomposition partitions the graph’s edge set into a sequence of ears, such that,
except from the first ear, the endpoints of every ear belong to an ear appearing earlier in
the sequence and its internal vertices do not.

The algorithm constructs an ear decomposition on the edge conflict graph and simultane-
ously distributes the edges to pages. When its finds a new ear, it can place its internal
vertices (edges of the original graph) alternating on two or three pages, as Figure 3.8
indicates, avoiding any crossings among the corresponding edges in the original graph.
Consequently, earDecomp needs two or three pages to do this, depending on whether the
start and end vertices are on the same page and the path has even or odd length. If
however, an ear consists of only one edge, like edge e = xy in Figure 3.8, and the start
and end vertices, x and y, are already on the same page, then there is a crossing in the
book drawing. However, the algorithms tries to avoid this by selecting the best page with
respect to its already placed neighbours. Thus it might not always be the best to alternate.

earDecomp can be implemented to run in O(m2) time. Constructing the edge conflict
graph needs O(m2) time, traversing it to find the ears runs also in O(m2 +m) time and

29

30 3. Heuristic approaches

distributing the vertices of the ears also needs O(m2) time. For each edge the algorithm
considers at most all other edges when searching for the best page.

u v

u

v

e

x y

page 1 page 2 page 3

Figure 3.8.: Illustration of the earDecomp heuristic with conflict graph on the left and
edge distribution on the right. The internal vertices of the ear from u to v
are distributed to pages in alternating fashion. The ear consisting of e = xy
produces a crossing if x and y are on the same page.

We recall from the last chapter that a crossing-free page can contain at most one maximal
outerplanar graph and thus at most 2n�3 edges. Hence, every additional edge introduces
at least one edge in the edge conflict graph, independent of the vertex order and the number
of pages. Moreover, with higher density, every additional edge introduces on average more
and more edges in the edge conflict graph. For example, the edge conflict graph of the
complete graph Kn has

�
n
4

�
edges, since any four distinct vertices introduce a conflict.

We note that
�
n
4

�
is quadratic in m. With higher density the average length of the ears

becomes shorter and thus the idea to alternate between pages ine↵ectual. We can report in
advance to the experiments in the next chapter that earDecomp performed indeed mostly
worst of the edge distribution heuristics for graphs with higher density

So in total we have five edge distribution heuristics. We have three di↵erent greedy edge
distribution heuristics, namely ceilFloor, eLen and circ. Furthermore, we have slope

using the geometry of book drawings and earDecomp using an ear decomposition.

3.3. Full drawing heuristics

Having seen that book drawings can be computed in two steps by using vertex order and
edge distribution heuristics, it is natural to ask whether these steps can be combined. The
presented edge distribution heuristics make use of a previously computed vertex order and
thus have to run after. Strictly speaking, slope can be used simultaneously if the vertex
order heuristic only appends vertices to the currently computed vertex order like conCro.
However, then it would not make a di↵erence to running slope after the vertex order
heuristic has completed its work.

Nevertheless, the concept of distributing the edges greedily to the best pages can be im-
plemented during the computation of a vertex order. He et al. [HSSV06] did exactly this
within the smlDgrDFS algorithm. When their algorithm visits an edge during the search
the second time, it places the edge on the page where it produces fewest crossings. When
it visited the edge the first time, the position of the second vertex is not known yet and
thus no real decision where to place the edge could be made.

We implemented this approach for smlDgrDFS, randDFS and randBFS. We call these new
algorithms, which now have running time O(m2), smlDgrDFS+, randDFS+ and randBFS+

respectively. The second BFS based heuristic, treeBFS, can not be combined with concur-
rent greedy edge distribution, since it computes the vertex order based on the computed
spanning tree and thus after the search.

30

3.3. Full drawing heuristics 31

Furthermore, following the same idea, we implemented conGreedy+ based on the con-

Greedy heuristic. Pseudocode of the algorithm is given in Algorithm 4. When searching
for a new position for a vertex, the algorithm also considers the pages of the already placed
edges. For this purpose, it marks, like conGreedy, the positions where the new edges would
produces crossings with the already closed edges. However, this times the marks depend
on the pages of the closed edges. The best position for a new vertex is then the position
that received fewest marks from the newly closed edges in Line 11. We see that finding
the position for one new vertex (Algorithm 4, Line 2 to Line 12) takes O(mn�) time.
This sums up to O(m2n) (or O(mn2�)) for all vertices. After a vertex has been placed on
the spine, the algorithm distributes its incident edges greedily to the best page (Lines 13
and 14). This runs in total in O(m2). So overall, the asymptotic running is time O(m2n).

We observe that, in contrast to the search based algorithms, the immediate edge distribu-
tion also e↵ects the computed vertex order. Hence, conGreedy+ can also be used as vertex
order heuristic. A combination of conCro with greedy edge distribution would however
not alter the vertex order, since conCro considers the open edges to find the position for
the vertex, which in turn are not yet distributed to pages. Therefore we omit this combi-
nation. In Section 5.1.3 we also combine vertex order and edge distribution optimisation
in one greedy algorithm.

Algorithm: conGreedy+

Data: graph G, number of pages k
Result: k-page book drawing of G
1 while not all vertices placed do
2 vertex v chose next vertex based on connectivity
3 foreach open edge uv, u already placed do
4 foreach closed edge xy, x, y 6= u do
5 p page of xy
6 if x < u < y then
7 mark positions between y and x as bad for v for page p
8 else
9 mark positions between x and y as bad for v for page p

10 foreach possible position a do
11 mark a with the minimal number of marks it has on one page

12 place v at position with fewest marks
13 foreach open edge uv, u already placed do
14 distribute uv to page where it produces fewest crossings

Algorithm 4: Algorithm conGreedy+.

31

4. Evaluation of heuristics

In this chapter we evaluate the heuristics described in the previous chapter. We have in-
troduced three new vertex order heuristics, namely treeBFS, conGreedy and conGreedy+,
and one edge distribution heuristic, earDecomp. Naturally we are interested how they per-
form against the heuristics from the literature. We have also extended some of the vertex
order heuristics to distribute the edges greedily while computing the vertex order. This
raises the question, whether and when this yields better book drawings. Especially the
performance of conGreedy+ is of interest, since the simultaneous edge distribution directly
influences the vertex order.

It is also one of our interests to create a test suite for the evaluation of heuristics for book
drawings. We therefore discuss also why we used the particular graph classes for testing.
Since the heuristics from literature have mostly been proposed only for one or two pages,
we are also interested in their performances for larger number of pages. Furthermore, as far
as we know, these heuristics have also not been designed for particular graph classes or for
graphs with certain properties. Therefore, we used graph classes that represent di↵erent
graph aspects. We have chosen planar and 1-planar graphs due to their general significance
in graph drawing. Cartesian products of cycles, hypercubes and t-ary d-cubes (also known
as k-ary n-cubes) represent regular graphs with many automorphisms. Furthermore, we
considerK-trees as well as random graphs of di↵erent densities. In addition, we also discuss
for other graph classes why or why not they should be considered for the evaluation of
heuristics for book drawings.

We consider the graph classes in increasing order of their density. We first look at ran-
dom graphs with a linear number of edges in terms of n (Section 4.1). This is followed
by graph classes that likewise have a linear number of edges. More precisely, we con-
sider outerplanar graphs (Section 4.2), Cartesian products of cycles Ci⇥Cj (Section 4.3),
Hamiltonian and random planar graphs (Section 4.4), 1-planar graphs (Section 4.5) and
K-trees (Section 4.6). These classes have in common that their pagenumbers are bounded
by constants. After that, in Section 4.7 we look at very regular graphs, more precisely
hypercubes and t-ary d-cubes (also known as k-ary n-cubes) . Then, we consider graphs
with high density, namely complete graphs (Section 4.8) and complete bipartite graphs
(Section 4.9) and again random graphs (Section 4.10). The graph classes of the latter two
groups (the cube-like and dense graphs) have in common that their pagenumber grows
with respect to n.

We refer to Appendix A for more information regarding graph generation. Moreover, we
describe the languages, machine and tools we used for our experiments in Appendix C.

33

34 4. Evaluation of heuristics

4.1. Linear number of edges

We start our evaluation of the heuristic with experiments on random graphs with linear
number of edges. More precisely, we use random graphs generated with the Erdös-Rényi
model with the expected number of edges m = an, where a ranges from 2 to 10. We start
at 2, since graphs with roughly n edges are either not connected or almost trees and thus
either graphs we excluded or easy embeddable ones. We are interested whether the best
heuristics can be determined knowing only the density of a graph and the number of pages.
Hence, we use these random graphs in order to compare the performance of the heuristics
on graphs with di↵erent densities and graphs of certain graph classes. For example, since
1-planar graphs have roughly 4n edges, we compare the results for 1-planar graphs with
those from random graphs with a = 4. Furthermore, for a = 2 we consider outerplanar
graphs (Section 4.2) and Cartesian products of cycles (Section 4.3), for a = 3 Hamiltonian
planar and random planar graphs (Section 4.4) and for a from 5 to 10 we consider K-trees
with fixed K (Section 4.6).

4.1.1. Experimental results

The settings of our experiments were the following. We tested all combinations of vertex
order and edge distribution heuristics as well as all full drawing heuristics. The heuristic
conGreedy+ was used both as vertex order and full drawing heuristic. We set the number
of vertices to 50, 100 and 150. For each factor a, ranging from 2 to 10 in steps of one,
we generated 200 random graphs with roughly m = an edges. We then ran each heuristic
and combination of heuristics on these graphs with the number of pages k ranging from 1
to 20.

ka 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

5

6

7

8

9

10

conGreedy slope ceilFloorrandDFSconGreedy+ conGreedy+ (only)

Figure 4.1.: Heuristics on random graphs with linear number of edges and 50 vertices.

Figures 4.1, 4.2 and 4.3 show the winning heuristics for each combination of a and k for
50, 100 and 150 vertices, respectively. To determine the winning heuristic for k and a
we mark each out of the 200 graphs with the heuristic that performed best and then find
which heuristic has been used as a mark most of the times over the 200 graphs. We ended
a row at a k, where the average number of crossings for the best heuristic was less than 1
for the first time. The diagrams depict the results as follows. Each factor a is represented
by a row and each number of pages k by a column. In each cell the best heuristic or
heuristic combination is shown. In each item the upper left corner represents the vertex
order heuristic and the lower right corner the edge distribution. If there is only one tile,
this is due to one of two reasons. Either k = 1 and there is no edge distribution needed

34

4.1. Linear number of edges 35

and thus only a vertex order is presented, or the tile represents a full drawing heuristic,
which in these results is conGreedy+. Furthermore, when conGreedy+ won in combination
with a certain edge distribution heuristic, it is represented with its own shape, as depicted
in the legends of Figures 4.1 to 4.3.

ka 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

5

6

7

8

9

10

conGreedy slope ceilFloorrandDFSconGreedy+ conGreedy+ (only)

Figure 4.2.: Heuristics on random graphs with linear number of edges and 100 vertices.

ka 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

5

6

7

8

9

10

conGreedy slope ceilFloorrandDFSconGreedy+ conGreedy+ (only)

Figure 4.3.: Heuristics on random graphs with linear number of edges and 150 vertices.

The first thing we notice is that all three diagrams consist basically out of the same
four regions. The predominant heuristic is conGreedy+ used as full drawing heuristic. It
was the best heuristic for small a and for small k. Furthermore, if used as vertex order
heuristic in combination with ceilFloor, it was also comparable or better than the simple
conGreedy vertex order heuristic for large k. We further observe that the region occupied
by conGreedy+, conGreedy and ceilFloor shifts to larger k with the growth of the graph
size. Also conGreedy+ completely replaces conGreedy for n = 150. For larger a, the
two regions at the bottom of the diagram show the edge distribution heuristic slope, for
smaller k in combination with conGreedy and for larger k with randDFS. These regions
occupy more k for larger n.

35

36 4. Evaluation of heuristics

Based on these observations we can already conclude that the simultaneous computation of
vertex order and edge distribution in conGreedy+ can be an advantage. In other words, the
combination of conGreedy with greedy edge distribution yields a well performing heuristic,
both if used as full drawing heuristic or to only improve the vertex order.

4.2. Outerplanar graphs

In Section 2.1.3 we have seen that outerplanar graphs have at most 2n�3 edges, pagenum-
ber one and a 1-page book embedding can be derived directly from a planar embedding by
using the order on the outer face. Since computing a planar embedding of an outerplanar
graphs as well as making the graph maximal outerplanar can be done in linear time [Pat13],
we can also construct a 1-page book embedding in linear time. Hence, outerplanar graphs
are of less interest for the evaluation of heuristics for book drawings. Nevertheless, as we
do in the following, it can been worth considering whether a heuristic is capable of com-
puting 1-page book embeddings of outerplanar graphs in general or of certain subclasses
of outerplanar graphs.

In contrast to the embedding of trees (Section 2.1.1), most vertex order heuristics can not
guarantee to embed outerplanar graphs crossing-free in one page. In fact, only in the case
where the graph is maximal outerplanar, conGreedy achieves always zero crossings.

Lemma 4.1. The vertex order heuristic conGreedy computes crossing-free circular draw-
ings of maximal outerplanar graphs.

Proof. We recall that conGreedy picks a vertex with most placed neighbours and then
finds the best position for it in terms of crossings. We proof inductively that during
the computation of the vertex order with conGreedy the already placed vertices form a
maximal outerplanar graph. For n 3 this clearly holds.

Now, if we already have a maximal outerplanar graph with n vertices embedded, the
question is which vertex v gets picked next and where it gets placed. We therefore consider
Figure 4.4. We see that v has at least two already placed neighbours, since it will be part
of a new triangle while other vertices can be adjacent to at most one vertex in the current
graph. Furthermore, we see that v has indeed exactly two already placed neighbours x
and y, since otherwise we would form a K4 as minor, which is a forbidden subgraph of
outerplanar graphs. Moreover, x and y are obviously consecutive in the vertex order.
Hence, v can only be added in the vertex order between x and y without introducing
crossings. Furthermore, it is easy to see that the now embedded graph is still maximal.

v v

v
v

x

x

y

y

x x

y

y

Figure 4.4.: Two steps of conGreedy on a maximal outerplanar graph.

The properties used in the proof also follow from the fact that maximal outerplanar graphs
are 2-trees (see Section 4.6). However, for non-maximal outerplanar graphs this is no longer
the case and conGreedy does not always output crossing-free drawings.

36

4.3. Cartesian product of cycles 37

Comparing this to the result on random graphs with factor a = 2 and k = 1, we see that
again conGreedy wins. Hence, we conclude that in this case the density is enough to decide
for the algorithm. However, we recall that conGreedy has an asymptotic running time of
O(m2n). Consequently, if the running time is an objective, the algorithms of choice for
outerplanar graphs is the one mentioned above, which first computes a planar embedding
and then derives from this a vertex order, both in linear time.

4.3. Cartesian product of cycles

The Cartesian product graph G⇥H of two graphs G and H has vertex set V (G)⇥ V (H)
and any two vertices (uG, uH), (vG, vH) 2 V (G ⇥ H) are adjacent if the original vertices
are adjacent in G or H, i.e. either (uG, vG) 2 E(G) or (uH , vH) 2 E(H). Furthermore, let
Ci (Pi) stand for a cycle (path) with i vertices.

In this section we use Cartesian products of two cycles Ci⇥Cj , which we call cycle product
graphs, to test the heuristics. These graphs are also known as toroidal mesh. They have
exactly 2n edges, which follows from the fact that a vertex in a cycle has degree 2 and
thus in Ci ⇥ Cj degree 4 and the handshake lemma. He et al. [HSSV06] considered the
one-page and two-page crossing numbers of Ci⇥Cj . They also consider Pi⇥Pj and Ci⇥Pj .
These graphs were also subject to experiments of Satsangi et al. [SSS13] and He et al.
[HSMV15].

Before we test our heuristics on the graphs Ci⇥Cj , we proof in a series of steps that they
have pagenumber at most 3 and thus settle a conjecture of Satsangi et al. [SSS13]. Before
we start with a statement on their subgraphs Ci ⇥ Pj , we recall that subhamiltonian is
defined as being subgraph of a planar Hamiltonian graph.

Lemma 4.2 ([HSSV06]). The graphs Ci ⇥ Pj are planar and subhamiltonian.

Proof sketch. If i or j 2 the statements clearly holds. Figure 4.5 depicts planar embed-
dings of C4 ⇥ P5 and C5 ⇥ P5 that can be extend to planar embeddings of any Ci ⇥ Cj .
Hence, the first part of the statement holds.

Figure 4.5.: On the left C4 ⇥ P5 with Hamiltonian cycle and on the right C5 ⇥ P5 with a
Hamiltonian path that can be extended to a Hamiltonian cycle, showing that
both graphs are planar and subhamiltonian.

Figure 4.5 also shows a Hamiltonian cycle in C4 ⇥ P5 and a Hamiltonian path in C5 ⇥ P5.
The latter can be extended to a Hamiltonian cycle by adding the dashed edge. To construct
a Hamiltonian cycle of Ci ⇥ Pj if either i or j is even, we use the strategy of C4 ⇥ P5 in
Figure 4.5. From the subgraph Pi⇥Pj we use, informally speaking, the first path of Pi on
the left and then go in an alternating manner right and left along the paths Pj to visit all
other vertices. Since i is even, this works out. If however, both i and j are odd, we also
use the strategy from C5 ⇥ P5 in Figure 4.5 for the two bottom rows. There, we alternate
up and down to visit all vertices. This yields a Hamiltonian path that can be extended to
Hamiltonian cycle.

37

38 4. Evaluation of heuristics

We can also observe in Figure 4.5 that these Hamiltonian cycles yield 2-page book em-
beddings of Ci ⇥ Pj . The first part of the following statement follows directly from the
previous lemma, the second part from Figure 4.6.

Lemma 4.3. The graphs Ci ⇥ Cj are subhamiltonian and if i, j � 3 non-planar.

1 2

3

4

5

Figure 4.6.: K5 as Minor in C3 ⇥ C3.

Using the previous two lemmata we can now consider the pagenumber of cycle product
graphs Ci ⇥ Cj .

Theorem 4.4. The cycle product graphs Ci ⇥ Cj have pagenumber at most 3 and this
bound is tight if i, j � 3.

Proof. The 3-page book embeddings of Ci ⇥ Cj are based on the following 2-page book
embeddings of Ci ⇥ Pj . We use the Hamiltonian cycles, or paths if both i and j are odd,
from Lemma 4.2. This leaves only the edges connecting the ends of the paths Pj in the
subgraph to form the cycles Cj for embeddings of Ci ⇥Cj . These edges can be embedded
without crossings on page 3, since the ends of the di↵erent paths are not alternating on
the Hamiltonian cycle (or path) but nested. Hence, we have a 3-page book embedding of
Ci ⇥ Cj . This is illustrated in Figure 4.7 for i = 4 and j = 5.

For i, j � 3 we known from Lemma 4.3 that Ci ⇥ Cj is non-planar and thus requires at
least 3 pages.

Figure 4.7.: A 3-page book embedding of C4 ⇥ C5 based on the Hamiltonian cycle from
Figure 4.5.

4.3.1. Experimental results

In contrast to random graphs, the graphs Ci ⇥ Cj are 4-regular and have many automor-
phisms. This raises the question, whether the ranking of the heuristics between random
graphs and product cycle graphs di↵er. Hence, we tested the heuristics on the product

38

4.4. Planar graphs 39

cycle graphs to compare the results with those from above on random graphs with linear
number of edges, where a is equal to 2.

We recall that we tested on random graphs with n = 50, 100 and 150. To get n to roughly
50 we used for i and j the combinations (7, 7), (6, 8), (5, 10), (4, 12), (4, 13) and (3, 17),
for 100 we used (10, 10), (9, 11), (8, 13), (7, 15), (6, 17) and (5, 20) and for 150 we used
(12, 12), (11, 13), (10, 15), (9, 17), (8, 19), (7, 21), (6, 25) and (5, 30). Furthermore, we ran
each heuristic 50 times on each graph.

Table 4.1 shows the three best heuristics in terms of average number of crossings for
this experiment and for random graphs from the experiment of Section 4.1 to ease the
comparison.

First, we consider the case k = 1. conCro performed best on Ci ⇥ Cj while conGreedy

did on random graphs. The third best heuristic on random graphs was smlDgrDFS. Since
every vertex has degree 4 in a graph Ci ⇥ Cj , smlDgrDFS behaves just like randDFS on
these graphs. In addition, we report that randDFS was the best search based heuristic
when i and j di↵ered more, while treeBFS was the best when i and j di↵ered less or were
equal.

For k = 2, 3 conGreedy+ was the overall best heuristic on both graph classes. However,
beyond that, we observe that again conCro performed better than conGreedy on cycle
product graphs. Concerning the edge distribution earDecomp performed best for k = 2,
while a greedy edge distribution heuristic performed best for k = 3.

We conclude that for k = 1 it is worth to consider the structure of the graph. Concerning
k = 2, 3 the best choices coincide between both graph classes and hence the density seems
enough to decide. If we consider however the second or third best heuristics, we observe
that di↵erent vertex order heuristics should be chosen.

k random Ci ⇥ Cj

1
conGreedy conCro

conCro conGreedy

smlDgrDFS randDFS, treeBFS

2
conGreedy+ conGreedy+

conGreedy-earDecomp conCro-earDecomp
conGreedy-eLen conCro-ceilFloor

3
conGreedy+ conGreedy+

conGreedy-eLen conCro-ceilFloor
conGreedy-earDecomp conCro-eLen

Table 4.1.: Best heuristics on random graphs with m roughly 2n in experiment of Sec-
tion 4.1 and on Cartesian product of cycles.

4.4. Planar graphs

In this section we consider planar graphs. We recall from Theorem 2.10 that a graph
has a 2-page book embedding if only if it is a subgraph of a Hamiltonian planar graph.
However, not all planar graphs are subhamiltonian and not all maximal planar graphs are
Hamiltonian. Figure 4.8 shows the smallest non-Hamiltonian maximal planar graph, which
has 11 vertices. Hence we distinguish between Hamiltonian planar graphs and others.

The Hamiltonian planar graphs contain large classes of planar graphs. For example, planar
graphs without separating triangles are subhamiltonian and they can be extended to max-
imal planar graphs keeping this property [KO07]. Is is further known that all bipartite

39

40 4. Evaluation of heuristics

Figure 4.8.: The Goldner Harary graph has 11 vertices and is the smallest non-hamiltonian
planar graph.

planar graphs and all triangle-free planar graphs are subhamiltonian [Ove98]. Further-
more, all 4-connected planar graphs [Ove07] and all planar graphs with maximum degree
three [Hea85] or even four [BGR14] admit a 2-page book embedding. In the latter case
they can be constructed in O(n2) time. Moreover, series-parallel graphs, X-trees [CLR87]
and Halin graphs [Gan95] are 2-page embeddable.

The maximal pagenumber of planar graphs is still unknown. The best known upper bound
is due to Yannakakis.

Theorem 4.5 ([Yan86]). Every planar graph has pagenumber at most 4.

Yannakakis claimed that this bound is tight. However, neither a proof nor a counterexam-
ple, showing that three pages are not enough, is known [BKZ15]. For some subclasses of
planar graphs it is known that they are 3-page embeddable, like planar 3-trees (Apollonian
networks, stellations of K3) [Hea84].

We ran several experiments to evaluate the heuristics on maximal planar graphs. In the
first two experiments we tested vertex order heuristics and edge distribution heuristics
separately on Hamiltonian maximal planar graphs. Then we tested their combinations on
both Hamiltonian and random maximal planar graphs.

4.4.1. Finding Hamiltonian cycle

We start with a fact about 2-page book embeddings of Hamiltonian maximal planar graphs.

Lemma 4.6. The vertex order in a 2-page book embedding of a Hamiltonian maximal
planar graph G is always a Hamiltonian cycle of G.

Proof. Let G be a Hamiltonian maximal planar graph. Since G is maximal, we know
that it has a unique planar embedding (up to combinatorial equivalence) [Pat13], and,
furthermore, every face of this embedding is a triangle. We now consider a 2-page book
embedding of G, i.e. a 2-page book drawing without crossings. Since this book embedding
is also a planar embedding, we know that again each face is again a triangle.

We assume now, for the sake of contradiction, that two vertices u, v that are consecutive
in the vertex order are not adjacent. Thus, since every face of the 2-page book embedding
is a triangle, it follows that there must be an edge e separating u and v in the drawing
topologically. However, since no edge is allowed to cross the spine, no such edge e can
exist.

We are therefore interested in how successful the vertex order heuristics can find Hamil-
tonian cycles. For this purpose, we generated Hamiltonian maximal planar graphs of

40

4.4. Planar graphs 41

di↵erent sizes and counted how often the vertex order heuristics computed a vertex order
that admits a crossing-free edge distribution on two pages, i.e. a Hamiltonian cycle. For
each graph size we used 2000 graphs. A description of how we generated the graphs can
be found in Appendix A.4. The resulting success rates are shown in Figure 4.9.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

5 10 15 20 25 30 35 40 45 50 55
n

conGreedy
conGreedy+
conCro
smlDgrDFS
randDFS
treeBFS

Figure 4.9.: Success rates of the vertex order heuristics to find a vertex order for
Hamiltonian maximal planar graphs that admits a crossing-free 2-page book
embedding.

Since the heuristics were not designed to find Hamiltonian cycles, it is not surprising to
see that they were indeed not very successful. Even the two best performing heuristics
conGreedy and smlDgrDFS found a Hamiltonian cycle for less than 1% of the graphs with
n = 55.

4.4.2. Distributing perfectly

As counterpart to the previous experiment, we also ran the following one to test the edge
distribution heuristics. We used again 2000 Hamiltonian maximal planar graphs with
di↵erent sizes. This time we set a Hamiltonian cycle as vertex order and then counted
how often the heuristics were able to distribute the edges to two pages without crossings.
Figure 4.10 shows the resulting success rates.

We observe that, not surprising, slope performed worst on this task. The three greedy
heuristics ceilFloor, eLen and circ were unsuccessful for graphs with more than 40
vertices. However, earDecomp found for more than 10% of the graphs with 50 and more
vertices still a perfect distribution. We report that the heuristics success rate dropped
below 1% not until n reached 120. Then again, recalling from Section 2.3.1 that we can find
complete book embeddings for planar graphs with several hundred vertices in reasonable
time using a SAT solver, we can conclude that the heuristics are not very successful when
it comes to finding book embeddings of Hamiltonian planar graphs. So in order to find
out which combination to use when the planar graphs are to large for the SAT solving
approach, we look at the average number of crossings they achieve next.

4.4.3. Average number of crossings

We tested the performance of the heuristics in terms of crossings for Hamiltonian planar
graphs and random maximal planar graphs for one, two and three pages. Concerning
the case k = 1, we report that conGreedy performed best for Hamiltonian and random

41

42 4. Evaluation of heuristics

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

5 10 15 20 25 30 35 40 45 50 55
n

ceilFloor
eLen
circ
slope
earDecomp

Figure 4.10.: Success rates of the edge distribution heuristics to distribute the edges with-
out crossing on two pages given a maximal planar graph with a Hamiltonian
cycle used as vertex order.

maximal planar graphs in our experiment, where we used the same settings as in the
random graphs experiment.

For k = 2, 3, in comparison to two the experiments above, we used the combinations of
the vertex order and edge distribution heuristics as well as the full drawing heuristics. For
each n we tested with 200 di↵erent graphs.

First, we look at the results on the Hamiltonian maximal planar graphs. Bearing in mind
the results from the previous two experiments, we expect to see the combination conGreedy

and earDecomp to perform best. This is indeed the case and their combinations performs
equally as good as conGreedy+ with earDecomp. In fact, earDecomp was the best edge
distribution heuristic for all vertex order heuristics. Figure 4.11 shows the results of
earDecomp with all vertex order heuristics as well as the two best full drawing heuristics.

0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180 200

av
g.

 #
 c

ro
ss

in
gs

n

conCro-earDecomp
conGreedy+
conGreedy+-earDecomp
conGreedy-earDecomp
randDFS-earDecomp
smlDgrDFS+
smlDgrDFS-earDecomp
treeBFS-earDecomp

Figure 4.11.: Average number of crossings achieved by selection of heuristic combinations
for Hamiltonian maximal planar graphs and two pages.

Figure 4.12 shows the results for k = 2 and random maximal planar graphs. More pre-
cisely, it shows the best average number of crossings achieved by the di↵erent vertex order

42

4.4. Planar graphs 43

0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180 200

av
g.

 #
 c

ro
ss

in
gs

n

conCro-ceilFloor
conGreedy+
conGreedy+-earDecomp
conGreedy-earDecomp
randDFS-earDecomp
smlDgrDFS+
smlDgrDFS-earDecomp
treeBFS-earDecomp

Figure 4.12.: Average number of crossings achieved by selection of heuristic combinations
for maximal planar graphs and two pages.

heuristics in combination with an edge distribution heuristic as well as the two best full
drawing heuristics. We observe that again earDecomp was often the best edge distribution
heuristic, however, conCro performed better with ceilFloor. Furthermore, we observe
that the average number of crossings achieved on Hamiltonian maximal planar graphs are
lower than on random maximal planar graphs for all shown heuristics.

In addition to the diagrams, we report that conGreedy and conGreedy+ performed also
better in combination with the other greedy edge distribution heuristics (and solely) than
conCro and all searched based vertex order heuristics. Hence, we can conclude that, if
slope is not used, the choice of the vertex order heuristic is more essential for Hamiltonian
maximal planar graphs than the choice of the edge distribution heuristic. We will see this
again in the next section on 1-planar graphs.

Next, we look at the the results on random planar graphs and three pages. We do not
consider Hamiltonian planar graphs, since they have pagenumber 2. Figure 4.13 shows
again for the best combinations of each vertex order heuristic with an edge distribution
heuristic. This time, however, we divided the average number of crossings by the number
of edges, i.e. by 3n � 6. We want to remark that the ranking of the performances is the
same as if the diagram would depict the total number of crossings. We can observe that
similar to the Cartesian product of cycles earDecomp is not the best choice for k = 3. This
time conGreedy with ceilFloor performed best, followed by conGreedy+. In contrast
to Hamiltonian planar graphs, conGreedy+ performed better alone than with an edge
distribution heuristic. We can also observe that the average number of crossings per edge
grows very slowly for conGreedy-ceilFloor. This indicates that the crossings of the
heuristics are more local problems than global ones, which is, considering how conGreedy

works, not surprising but nevertheless pleasing.

We can observe in all three diagrams, Figures 4.11 to 4.13, that smlDgrDFS in combination
with an edge distribution heuristics worked better than smlDgrDFS+. In fact, smlDgrDFS
performed better with earDecomp and all three greedy edge distribution heuristics ceil-
Floor, eLen and circ. This was also the case for randDFS and randBFS. However, we
excluded both from the diagrams due to their too bad performance. Nevertheless, we can
conclude that the order in which the greedy edge distribution heuristics consider the edges
works better than the order in which the search based vertex order heuristics visit the
edges, at least on maximal planar graphs.

43

44 4. Evaluation of heuristics

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350 400 450 500

av
g.

 #
 c

ro
ss

in
gs

 p
er

 e
dg

e

n

conCro-ceilFloor
conGreedy+
conGreedy+-ceilFloor
conGreedy-ceilFloor
randDFS-earDecomp
smlDgrDFS+
smlDgrDFS-ceilFloor

Figure 4.13.: Average number of crossings achieved by selection of heuristic combinations
for random maximal planar graphs and three pages.

4.5. 1-planar graphs

Lately, book drawings have also been studied for 1-planar graphs. A graph is 1-planar if it
can be drawn in the plane such that each edge has at most one crossings. Every 1-planar
drawing has at most n � 2 crossings and since planar graphs have at most 3n � 6 edges,
it follows that 1-planar graphs have at most 4n � 8 edges [CH13]. However, there exist
1-planar graphs with fewer edges where no edge can be added while preserving 1-planarity.
These are called maximal. 1-planar graphs that have 4n� 8 edges are, on the other hand,
called optimal. Bekos et al. [BBKR15] have shown that 1-planar graphs have pagenumber
at most 39. This has been improved further by Alam et al. [ABK15].

Theorem 4.7 ([ABK15]). Let G be a 1-planar graph. Then holds:

• The pagenumber of G is at most 16.

• If G is 3-connected, then its pagenumber is at most 12.

• If the planar skeleton of G is Hamiltonian, then the pagenumber of G is at most 4.

Their proofs are constructive and the algorithms run in linear time if provided with an
1-planar embedding of the considered graph. Furthermore, in the former two cases the
algorithms are based on the algorithm by Yannakakis [Yan89] for planar graphs. It is
open, whether there exist 1-planar graphs that are not embeddable in a 4-page book. In
Section 2.3 we mentioned that Bekos et al. [BKZ15] used SAT solving to test for some
planar graphs whether they have 3-page book embeddings. They also tested optimal 1-
planar graphs with 25 to 155 vertices, which they could embed all in books with 4 pages.

4.5.1. Experimental results

We tested the heuristics on 200 1-planar graphs of sizes 50, 100 and 150 with k from 1 to
16. These are the same setting as in the experiment on random graphs with linear number
of edges. The results are easy to report. conGreedy-ceilFloor was the best combination
for all k. This stands in contrast to the results on random graphs with m ⇡ 4n, where
conGreedy+ won with a clear lead. Furthermore, conGreedy-ceilFloor needed at most
8 pages to achieve an average number of crossings below 1. Concerning k = 2, 3, further
results can be found in Appendix B.1.

We also measured the average number of crossings achieved by the heuristics for k = 4 and
growing n. A selection of the heuristics is shown in Figure 4.14. conGreedy+ achieved the

44

4.5. 1-planar graphs 45

0

100

200

300

400

500

0 50 100 150 200

av
g.

 #
 c

ro
ss

in
gs

n

conCro-ceilFloor
conGreedy+
conGreedy-ceilFloor
conGreedy-eLen
smlDgrDFS+
smlDgrDFS-circ

Figure 4.14.: Average number of crossings achieved by a selection of heuristic combinations
on 1-planar graphs on four pages.

0

100

200

300

400

500

0 50 100 150 200

av
g.

 #
 c

ro
ss

in
gs

n

conCro-ceilFloor
conCro-circ
conCro-earDecomp
conCro-eLen
conCro-slope
conGreedy-ceilFloor
conGreedy-circ
conGreedy-earDecomp
conGreedy-eLen
conGreedy-slope

Figure 4.15.: Comparison of the combinations with conCro and conGreedy in terms of
average number of crossings achieved on 1-planar graphs on four pages.

best results when run as full drawing heuristic and not with additional edge distribution
heuristic afterwards. However, smlDgrDFS+ performed again way worse than smlDgrDFS.
The more interesting observation is that again the choice of the vertex order heuristic
is more important than of the edge distribution heuristic, at least if the latter is not
slope. This is emphasized by Figure 4.15, which shows all edge distribution heuristics in
combination with conCro and conGreedy. Ignoring slope, we can see that the di↵erences
between edge distribution heuristics with the same vertex order heuristic are far less than
between di↵erent vertex order heuristics.

45

46 4. Evaluation of heuristics

4.6. K-trees

A K-tree for fixed K can be defined recursively. First, the complete graph with K vertices
is a K-tree. Next, if G is a K-tree and C is a K-clique of G, then the graph formed by
adding a new vertex to G and making it adjacent to all vertices of C is again a K-tree.
Hence, a K-tree has m = nK�K�1

1 �1 edges, which for large n is roughly nK. A subgraph
of a K-tree is a partial K-tree and has treewidth K.

1-trees are exactly the trees and thus have pagenumber 1. All 2-trees are maximal series-
parallel graphs and thus have pagenumber 2 [RVM95]. Maximal outerplanar graphs are
also 2-trees. Ganley and Heath [GH01] have proven constructively that every K-tree has
pagenumber at most K + 1. This bound is tight for K � 3 due to Dujmović and Wood
[DW07], which gave examples of K-trees that need K + 1 pages. Hence, the following
theorem holds.

Theorem 4.8 ([GH01, DW07]). Every K-trees has pagenumber at most K+1, which can
be tight for K � 3.

This result does not imply that for K � 3 all K-trees need K +1 pages. On the contrary,
the complete graph Kn, which is a n-tree, can be embedded without crossings in dn2 e pages
(as shown in Section 4.8). We want to mention that K-trees are normally denoted with
lower case k. However, since we use k for the number of pages, we use K instead.

We are interest in K-trees for several reasons. On the one hand, as we have seen in
Section 2.2, the problem of determining cr2(G), i.e. the minimal number of crossings
possible for a graph G in a 2-page book, is fixed parameter tractable in the treewidth of
G and cr2(G) [BE14]. Furthermore, if we consider the structure of K-trees, we see that a
good strategy to draw K-trees in books works similar to the embedding of trees in 1-page
books. The branches of a K-tree (of its width-k tree-decomposition, respectively) should
not intersect. For further details we refer to the constructive proof for k = K+1 by Ganley
and Heath [GH01]. So, summing up, we see that K-trees are tightly coupled to the k-page
crossing minimisation problem. On the other hand, K-trees of di↵erent K provide us with
graphs that have roughly m = Kn edges.

4.6.1. Experimental results

We tested the heuristics again on 200 graphs for n = 50, 100, 150 and k from 1 to K + 1,
i.e. the maximal pagenumber. The winning heuristics are shown in Figure 4.16.

Our first observation is that the best vertex order heuristic was always conGreedy. We
recall from the results for random graphs that there the tiles for di↵erent factors a (for
number of edges m = an) and the number of pages were covered by three regions. con-

Greedy+ was best in most of the cases. However, for a > 6 and k > 3 slope in combination
with conGreedy and randDFS was often the best heuristic. Therefore, our second obser-
vation is that conGreedy-ceilFloor has replaced them and is for K-trees in most cases
the best combination, at least for the ranges of K we tested.

The third observation we can make is that the greedy edge distribution heuristic circ was
the best choice for k = 2 as well as for bigger k with growing n. This stands in contrast
to the result on random graphs and also the other graph classes tested above.

Our last observation is that for k = K + 1 the full drawing heuristic conGreedy+ always
performed best. Figure 4.17 shows that conGreedy+ in fact also got way better than the
others for this particular k. We can report that it achieved an average total number of
crossings below 10, whereas the results of the other heuristics and especially of conGreedy-
ceilFloor, which was best for one page less (k = K), did not drop this far. For example

46

4.6. K-trees 47

k 1 2 3 4 5 6 7 8 9 10 11

5

6

7

8

9

10

n = 50

conGreedy

ceilFloor

K

1 2 3 4 5 6 7 8 9 10 11

5

6

7

8

9

10

n = 100

1 2 3 4 5 6 7 8 9 10 11

5

6

7

8

9

10

n = 150

eLen

circ

k
K

k
K

conGreedy+

conGreedy+ (only)

Figure 4.16.: Winning heuristic on K-trees for di↵erent number of pages k.

0

0.5

1

1.5

2

2 3 4 5 6 7 8 9
k

cG+
cG-circ
cG-ceilFloor
cG-eLen
cG-slope

Figure 4.17.: Average number of crossings of conGreedy (abbreviated with cG) with several
edge distribution heuristics relative to conGreedy+ for 8-trees, n = 150 and
k from 2 to 9.

for n = 150 and K = 8 conGreedy+ improved from an average total number of crossings
of over 900 to 8.5, while conGreedy-ceilFloor only got from 760 to 340.

In summary, we can say that the results on K-trees di↵er to the results on random graphs
with the same density and also for specific k to the other graph classes tested above.
Moreover, conGreedy+ works well on the maximal pagenumber k = K + 1.

47

48 4. Evaluation of heuristics

4.7. Hypercubes and t-ary d-cubes

In this section we consider hypercubes and t-ary d-cubes. The latter are known as k-ary
n-cubes, however we call them t-ary d-cubes to not overload the notation of k and n. The
closely related graph classes, incomplete hypercubes and cube-connected cycles, have also
been considered in the context of book drawings [KHT89, Cim02, Has09, TS10].

A hypercube Qd of dimension d is the Cartesian product of d edges (or C2). They can
also be defined to be the graphs that have all binary strings of length d as vertex set and
where two vertices are adjacent if and only if they di↵er in exactly one bit. The class of
hypercubes is the first graph class (not counting random graphs) we consider, where the
pagenumber is not bounded by a constant.

Theorem 4.9 ([KHT89]). The hypercube Qd of dimension d � 2 has pagenumber d� 1.

2-page book drawings of hypercubes have been considered Faria et al. [FdFRv13].

t-ary d-cubes can be defined in terms of Cartesian products of graphs and strings as well.
A t-ary d-cube is the Cartesian product of d cycles Ct. Equivalently, it is also the graph
with vertex set all strings of length d over the alphabet {0, 1, . . . , t� 1}, where again two
vertices are adjacent if and only if they di↵er in exactly on position by 1 mod t. Figure 4.18
depicts the first three 3-ary d-cubes. Furthermore is a hypercube Qd a 2-ary d-cube and
a cycle Ct a t-ary 1-cube. The Cartesian product of two cycles, which we considered in
Section 4.3, is a t-ary 2-cube if both cycles have length t. Except for these three cases, we
are not aware of known pagenumbers.

Figure 4.18.: From left to right the 3-ary 1-cube, the 3-ary 2-cube and the 3-ary 3-cube
(some edges inside cube omitted).

The hypercubes Qd has n = 2d vertices and m = 1
2nd = 1

2n log n edges, since every vertex
has degree d. A t-ary d-cube has n = td vertices, all with degree 2d, if d > 2, and thus
m = n logt(n) edges. Hence, these graphs do not have a linear but a linearithmic number
of edges. Both graph classes are of interest since they have many automorphisms (or
symmetries).

4.7.1. Experimental results

We tested the heuristics on di↵erent hypercubes Qd as well as t-ary d-cubes for k = d� 1
and for k = d + 1, respectively. Results for di↵erent k can be found in Appendix B.2.
Each heuristic was executed 50 times. Figure 4.19 shows the average number of crossings
per edge for a selection of heuristic combinations on hypercubes, which are, except for
conGreedy, the best combinations per vertex order heuristic. Our main observation is
that conGreedy-ceilFloor and conGreedy-eLen achieved always zero crossings. The third
greedy edge distribution heuristic circ in combination with conGreedy came close behind
but did not achieve perfect results for higher dimensions.

48

4.8. Complete graphs 49

0
2
4
6
8

10
12
14

Q₃ Q₄ Q₅ Q₆ Q₇ Q₈ Q₉ Q₁

av
g.

 #
 c

ro
ss

in
gs

 p
er

 e
dg

e
conCro-eLen
conGreedy+
conGreedy-cF/eLen
conGreedy-circ
randDFS-slope
treeBFS-eLen

Figure 4.19.: Average number of crossings achieved by a selection of heuristic combinations
on hypercubes Qd and k = d� 1. (ceilFloor is abbreviated with cF).

Figure 4.20 shows the performance on the t-ary d-cubes of combinations of vertex order
heuristic with circ , since the latter was always the best edge distribution heuristic. How-
ever, the vertex order heuristic is still the more important choice, which in this case is
conCro. We recall that smlDgrDFS and randDFS work identically on regular graphs. Fur-
thermore, it is noteworthy that both on hypercubes and t-ary d-cubes treeBFS performed
better than randDFS and on t-ary d-cubes also sometimes better than conGreedy. We
have already seen this on the Cartesian products on cycles. Hence, for regular and very
symmetric graphs there seems to be a trend.

0
2
4
6
8

10
12
14
16

av
g.

 #
 c

ro
ss

in
gs

 p
er

 e
dg

e

conCro-circ conGreedy+-circ conGreedy-circ
randDFS-circ treeBFS-circ

Figure 4.20.: Average number of crossings achieved by vertex order heuristics in combina-
tion with circ on t-ary d-cubes Q(t, d) and k = d+ 1.

4.8. Complete graphs

We now consider graphs with higher density. We start with the graphs containing an edge
between any two vertices, the complete graphs, and then continue with complete bipartite
graphs. After that we will evaluate the heuristics on random graphs with high density.

The complete graph Kn on n vertices contains all m = n(n�1)
2 edges. Hence, it has only one

vertex order. If we now consider a 1-page book drawing of Kn, we can directly determine

49

50 4. Evaluation of heuristics

the number of crossings. Since any four distinct vertices produce exactly one crossings,
cr1(Kn) =

�
n
4

�
. The minimal number of crossings is also known for k = 2 and of course

k = pn(Kn) = dn2 e. We first take a look at the latter case.

Theorem 4.10 ([BK79]). The complete graph Kn with n � 4 has pagenumber dn2 e.

Proof. First, we show that dn2 e is a lower bound for pn(Kn) and than that we actually can
find a dn2 e-page book drawing of Kn.

We recall from our observations on outerplanar graphs in Section 2.1.3 that for the pa-
genumber of a graph a lower bound is given by m�n

n�3 . This yields for Kn that we need at

least
n(n�1)

2 �n

(n�3) = n(n�3)
2(n�3) pages, or more precisely dn2 e. Hence, we have proven the lower

bound.

Let now n be even. Then, since Kn�1 is a subgraph of Kn, the result will hold for n odd
as well. We now cover Kn with dn2 e zigzag paths, as illustrated in Figure 4.21 for K8. We
start at vertex i and then go to i + 1, i � 1, i + 2, . . . , i + dn2 e, iterating i from 1 to dn2 e.
Clearly, each path is crossing free and all edges are covered. Hence, the upper bound holds
as well and thus also the statement.

Figure 4.21.: Book embedding of K8.

We observe that slope produces exactly these book drawings of Kn. Moreover, it is known
that slope creates also the 2-page book drawings of Kn with minimal number of crossings
[dKPS13]. Figure 4.22 depicts such a book drawing for K8. It is conjectured that the
exact minimal number of crossings for two pages Z2(n), which is given below, is also the
(planar) crossing number of Kn, i.e. cr(Kn) = Z2(n) [dKPS13]. This is known as the
Harary-Hill conjecture.

Theorem 4.11 ([AAFM+12]). The 2-page crossing number of the complete graph Kn is
Z2(n) =

1
4bn2 cbn�1

2 cbn�2
2 cbn�3

2 c.

Figure 4.22.: Crossing optimal 2-page book drawing of K8.

In fact, de Klerk et al. [dKPS13] have conjectured that the book drawings obtained by
slope are optimal for any k.

Conjecture 4.12 ([dKPS13]). The edge distribution heuristic slope computes k-page book
drawings of complete graphs Kn with minimal number of crossings for all 2 k dn2 e.

50

4.9. Complete bipartite graphs 51

Furthermore, they gave the exact number of crossings of these drawings. We want to note
that they described di↵erent but equivalent approaches to obtain these drawings.

We therefore conclude that complete graphs are not suitable for the evaluation of heuristics.
They should only be considered to check whether slope does not work perfectly or whether
the heuristic under consideration works as good as slope.

4.9. Complete bipartite graphs

We now consider complete bipartite graphs Ks,t. For s t we get a book embedding on s
pages of Ks,t, if we embed each of its s di↵erent subgraphs K1,t (stars) in a single page.
Using the pigeon hole argument, Bernhart and Kainen [BK79] have shown that this is
optimal if s is a lot smaller than t, more precisely, if s2 � s + 1 t. However, this does
not hold in general. For example, a better bound is known in the balanced case.

Theorem 4.13 ([ENO97]). The pagenumber of Ks,s is at most b2s3 c+ 1.

For further bounds on the pagenumber as well as k-page crossing numbers we refer to
Bernhart and Kainen [BK79], Muder et al. [MWW88], Enomoto et. al [ENO97] and de
Klerk et al [dKPS14].

4.9.1. Experimental results

We tested the heuristics on di↵erent complete bipartite graphs with 50 and 100 vertices
of di↵erent densities to compare the results with random graphs. We used K25,25 (K50,50)
for density 0.5, K13,37 (K28,72) for 0.4, K9,41 (K18,82) for 0.3 and K6,44 (K11,89) for 0.2.
Each heuristic ran 50 times on each graph.

K6,44

k
G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

K9,41

K13,37

K25,25

conGreedy

slopeceilFloor

smlDgrDFS randDFSconGreedy+ conGreedy+ (only)

n = 50

conCro

eLen

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K11,89

G

K18,82

K28,72

K50,50

conCro/conGreedy/randDFS

n = 100

Figure 4.23.: Heuristics on complete bipartite graphs Ks,t with densities from 0.2 to 0.5
for 50 (top) and 100 vertices (bottom).

Figure 4.23 shows which heuristics performed best for these graphs. The first thing we
observe is that for the balanced graphs conCro, conGreedy and randDFS together with
slope were best for k from 5 to 14 and 20, respectively. If we consider how they work,
we notice that they all create a vertex order where the vertices alternate between the two

51

52 4. Evaluation of heuristics

partitions. However, we can report that in most cases subsequent greedy optimisation
yields a lower number of crossings and thus, these book drawings seem not to be optimal.
Next, we observe that conGreedy+ was successful for small k and conGreedy-slopefor
larger k. We will see this pattern again in the experiment on random graphs with quadratic
number of edges in the next section.

Figure 4.24 shows the performance in terms of average number of crossings of some heuris-
tics in comparison to conGreedy-slope on K28,72. We observe that slope is for these cases
a better choice than ceilFloor (or other greedy edge distribution heuristics). However,
we can also observe that the choice of the vertex order heuristics is important as well and
that conGreedy+ becomes for bigger k a worse and worse choice.

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

conGreedy-slope
conGreedy-ceilFloor

conCro/rDFS-slope
conCro-ceilFloor
randDFS-ceilFloor
treeBFS-slope
treeBFS-ceilFloor

conGreedy+

Figure 4.24.: Performance of some heuristics in comparison to conGreedy-slope in terms
of average number of crossings on the complete bipartite graph K28,72 for k
from 2 to 20.

4.10. Quadratic number of edges

In this section we consider random graphs with high density, i.e. where the number of
edges is quadratic in n, namely, a percentage p of all possible edges. We tested again with
200 graphs for 50, 100 and 150 vertices and k ranging from 1 to 20. This time, however,
we tested for densities from 10% to 100% or in other words edge probability p from 0.1
to 1. The results are presented in Figures 4.25, 4.26 and 4.27. We note that for k = 1 no
edge distribution is needed and that for p = 1, the complete graphs, only one vertex order
exists. Hence, the last row of each diagram resembles the conjecture from Section 4.8.

Comparing with the results for graphs with linear number of edges (see Figures 4.1, 4.2
and 4.3) we observe the following. On the one hand, we can observe that conGreedy+

got less dominant for higher density. However, it was still the best heuristic for two and
three pages. On the other hand, the pattern from the tests with linear number of edges
continues to arise. slope is the best and only successful edge distribution heuristic for
dense graphs. Either in combination with conGreedy or randDFS.

The key argument for the good performance of slope on random graphs with quadratic
density is the fact that, as we have seen, slope is conjectured to work perfectly on complete
graphs. Random graphs are basically complete graphs with missing edges and no further
structure, in contrast to complete bipartite graphs. So due to this resemblance and the
missing structure of random graphs, it is not surprising that the geometry of the drawing
is more important to the number of crossings and thus slope performs best.

52

4.10. Quadratic number of edges 53

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.1

p

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

conGreedy slope ceilFloorrandDFSconGreedy+ conGreedy+ (only)

Figure 4.25.: Heuristics on random graphs with di↵erent density and 50 vertices.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.1

p

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

conGreedy slope ceilFloorrandDFSconGreedy+ conGreedy+ (only)

Figure 4.26.: Heuristics on random graphs with di↵erent density and 100 vertices.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.1

p

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

conGreedy slope ceilFloorrandDFSconGreedy+ conGreedy+ (only)

Figure 4.27.: Heuristics on random graphs with di↵erent density and 150 vertices.

53

54 4. Evaluation of heuristics

4.11. Conclusion

In the previous sections we looked at the performance of the heuristics for di↵erent graph
classes and graph densities. We will now summarize our findings and make some conclu-
sions.

We can record that our new heuristic conGreedy is successful as vertex order heuristic as
well as its extended version conGreedy+ as full drawing heuristic. conGreedy is mostly
the best choice if we have only one page. For small k mostly conGreedy+ was the best
choice and for higher k conGreedy in combination with an edge distribution heuristic.
However, we have seen that they are clearly worse than conCro for k = 1 on the Cartesian
product of cycles and for k = d + 1 on t-ary d-cubes. conGreedy+ in combination with
ceilFloor was also more successful than conGreedy-ceilFloor for random graphs with
linear number of edges and high k. So even when the edge distribution of conGreedy+ is
not the best choice, the vertex order can still benefit from the simultaneous computation
of an edge distribution.

The full drawing heuristics smlDgrDFS+, randDFS+ and randBFS+, however, perform worse
than their corresponding vertex order heuristics in combination with another edge distri-
bution heuristic.

Our other new heuristics, however, performed well in some cases. treeBFS works well
on regular graphs like Ci ⇥ Cj , Qd, t-ary d-cubes. It was still not the best choice for
these graphs, however, it performed often best among the search based heuristics and even
better than conGreedy+ on the t-ary d-cubes and k = d+ 1. So for regular graphs and if
linear running time is required, treeBFS is a good candidate. Our new edge distribution
heuristic earDecomp performs well for k = 2 and structured sparse graphs like the product
of cycles and planar graphs. However, on random graphs, graphs with higher densities or
for more pages it was outperformed by other heuristics.

Regarding the choice of the heuristics, our main conclusion is that for low graph density
a version of conGreedy is mostly the best choice, while for higher density slope becomes
most dominant. If the density is low, a good advice is to not take slope as edge distribution
heuristic. As we have seen, it performs mostly worse than others. Furthermore, the vertex
order heuristic is the more important choice. Di↵erences are often higher among the results
produced by di↵erent vertex order heuristics than by di↵erent edge distribution heuristics.
On the other hand, if the density gets higher, slope gets more and more successful. This is
possibly due to the fact that it is conjectured that slope computes perfect book drawings
of complete graphs. Only for k near the pagenumber we can observe that sometimes other
edge distribution heuristics perform better. This might be due to the fact that with many
pages the geometry gets less and less important and the structure of the graph becomes
more significant. However, for graphs with high density, we also observe that the choice
of the vertex order heuristic does still have a large impact on the resulting number of
crossings. So in general, computing a vertex order greedily works mostly well and either a
greedy edge distribution (low density) or slope (high density) is the best choice. However,
for particular graph classes and k it can be worth checking which heuristics perform best.

Furthermore, we were interested in the creation of a test suite. Concerning this matter,
we have seen that all the di↵erent graph classes, di↵erent densities and di↵erent number
of pages yielded new insights. There were di↵erences between drawing-related graphs, like
planar and 1-planar graphs, and regular graphs with many automorphisms, like hyper-
cubes. Moreover, the results di↵ered also between planar and 1-planar graphs as well as
between hypercubes and t-ary d-cubes. For growing density or number of pages, the results
changed also for random graphs. Especially the cases k = 2, 3 and k = pn(G) have shown
interesting results. Summarising, we conclude that the graph classes we used provide a

54

4.11. Conclusion 55

diverse test suite for the evaluation of the performance of a heuristic. This hols for vertex
order, edge distribution or full drawing heuristic.

We advise to not use combinations of graph classes and number of pages where exact
algorithms with feasible running time are known. Examples are outerplanar graphs, planar
graphs and k = 4 or complete graphs. However, these cases can still be considered in order
to find out whether a heuristic finds the best book drawings as well.

55

5. Optimisation

In this chapter we consider approaches to optimise given book drawings in terms of cross-
ings. The presented optimisation algorithms are, in contrast to the heuristics discussed
above, not restricted to compute a drawing in one run but are allowed to iterate and
to use multiple drawings. In Section 5.1 we look at di↵erent greedy optimisation algo-
rithms and also briefly evaluate them. After that, in Section 5.2, we look at evolutionary
algorithms. This includes those presented in the literature as well as our implementa-
tion and a combination with greedy optimisation. We compare the algorithms of these
two approaches in Section 5.3. We then discuss further possible optimisation approaches,
including force-based ones, in Section 5.4.

5.1. Greedy optimisation

We consider several greedy optimisation algorithms. First, those that only alter the vertex
order, then, those that only optimise the edge distribution, and finally algorithms that
improve both.

5.1.1. Greedy vertex order optimisation

Greedy vertex order optimisation works mostly like the two heuristics conCro and con-

Greedy from Section 3.1.4, which compute a vertex order greedily. The algorithm picks a
vertex and places it at the position where the number of crossings gets reduced the most.
If it does not find a better position, the vertex is not moved. However, in contrast to
the heuristics, this algorithm also considers the edge distribution (if k > 1) of the book
drawing. The algorithm then repeats moving a vertex to the best position with all vertices.
We call this one round of greedy vertex order optimisation.

An exhaustive greedy optimisation can run several rounds. We consider the following
situation. The algorithm already moved vertex u to its current best position. Next, after
it moved another vertex v, it is possible that u could be moved again to an even better
position. Hence, if the algorithm moves at least one vertex in the current round, it should
run another round afterwards. If, however, the algorithm only moves the first vertex of a
round or no vertex at all, than it stops and the greedy vertex order optimisation reached
a local minimum.

The algorithm can be implemented to run one round in O(mn) time. When searching
for the best position the crossing number is not computed anew at each position. More

57

58 5. Optimisation

cleverly, the considered vertex is swapped through the whole spine and with each swap
the number of crossings is updated. Thus, only the edges of the two swapped vertices are
involved and in total for all positions and all vertices each edge is only considered O(n)
times.

Baur and Brandes [BB05] proposed this algorithm as post-processing for circular drawings
with 1 page. They called it sifting, however, we refer to it with greedyVOO.

Local adjusting

He and Sýkora [HS04] and Six and Tollis [ST06] proposed a similar algorithm, which they
called local adjusting. This algorithm also searches for the best position to place a vertex.
However, it only considers the current position of a vertex and those next to its neighbours.
He and Sýkora also gave an order in which to consider the vertices, namely with descending
number of crossings on incident edges. Again, one round of the algorithm takes O(nm)
time, however, finding the number of crossings for each vertex can take O(m2) time in
total. Hence, in our evaluation we will stick to the first described algorithm, greedyVOO,
which uses a random order.

5.1.2. Greedy edge distribution optimisation

Greedy edge distribution optimisation takes an edge and moves it to the page, where it
produces fewest crossings. It repeats this with all edges, which again is one round of
optimisation. The algorithms can run one such round in O(m2). The order in which the
edges are considered is random in our implementation. However, one could also use the
order used by ceilFloor, eLen or circ. As in greedyVOO, if an improvement was made in
one round, the algorithm might reduce the number of crossings further in another round.
We refer to this algorithm with greedyEDO.

We recall that the k-page crossing minimisation problem is equivalent to Max k-Cut if the
vertex order is fixed (see Section 2.1.4). The equivalent of the greedy edge distribution
optimisation is known as the local search algorithm for Max k-Cut. It has an approximation
factor of 1 � 1

k [GKK08]. Hence, greedy edge distribution optimisation avoids also 1 � 1
k

of all possible crossings. We note, however, that this does not directly yield a bound on
the number of crossings, since the minimal number of crossings is not directly linked to
the number of edges in the edge conflict graph. Consider for example the complete graph
Kn and a non-complete graph G on a book with dn2 e pages and an arbitrary vertex order.
The edge conflict graph for Kn has

�
n
4

�
edges, while the one for G has fewer. However,

both graphs zero crossings are possible.

5.1.3. Greedy book drawing optimisation

We propose several algorithms for greedy book drawing optimisation, i.e. optimising a whole
book drawing greedily. Above we have seen greedyVOO for greedy vertex order optimisation
and greedyEDO for greedy edge distribution optimisation. These two algorithms can be
combined in several ways. The first approach is to run them in an alternating manner,
either one round of optimisation or exhaustively until they make no further improvement
(exhaustive execution). We call these algorithms greedyAlt and describe the variants by
di↵erent su�xe.

greedyAltRR Alternate one round of greedyVOO with one round of greedyEDO.

greedyAltRE Alternate one round of greedyVOO with an exhaustive execution of
greedyEDO.

58

5.1. Greedy optimisation 59

greedyAltER Alternate an exhaustive execution of greedyVOO with one round of
greedyEDO.

greedyAltEE Alternate an exhaustive execution of greedyVOO with an exhaustive exe-
cution of greedyEDO.

Our second approach for greedy book drawing optimisation works like the full drawing
heuristic conGreedy+. The algorithm takes the vertices in some order (not based on
connectivity) and finds the best position for them on the spine, just like greedyVOO.
However, at each considered position the incident edges of the vertex are placed on the
best page as in greedyEDO. We note that, since pairwise incident edges can never cross
each other, the order in which incident edges are redistributed is non-relevant and does
not e↵ect the result. One round of repositioning the vertices and distributing its incident
edges can be implemented to run in O(m2n) time. At each of the n positions, each edge
is considered together with all other edges. We refer to this algorithm with greedyCombi.

For further work, more sophisticated greedy algorithms could be developed. One idea
could be to modify greedyCombi, such that when it searches for the best position of a
vertex, it not only considers the edges incident to this vertex but also the edges for which
new crossings get introduced. Another approach could move sets of edges in greedyEDO

instead of single edges, similar to an approach for graph partitioning [DMP95].

5.1.4. Evaluation

We want to compare the five greedy book drawing optimisation algorithms with each other.
Therefore we test which algorithm optimises to the smallest number of crossings We tested
the algorithms on multiple book drawings of planar graphs, 1-planar graphs and K-trees.
Each initial drawing was created with conGreedy+. Figure 5.3 shows the obtained results.
We also ran tests with other graph classes and parameters, but they indicated the some
observations and hence we omitted the details of the full experiments.

0%

20%

40%

60%

80%

100%

k = 2 k = 3 k = 2 k = 3 k = 4 k = 2 k = 3 k = 4 k = 5 k = 6

planar planar 1-planar 1-planar 1-planar 6-tree 6-tree 6-tree 6-tree 6-tree

cr
os

sin
gs

 re
so

lv
ed

greedyCombi greedyAltRR greedyAltRE greedyAltER greedyAltEE

Figure 5.1.: Comparison of the greedy book drawing optimisers on planar and 1-planar
graphs with 150 vertices and 6-trees with 100 vertices.

Our first result is that there was no notable di↵erence between the four greedyAlt algo-
rithms. Hence, we stick from now on two greedyAltRR and omit the su�x. Second, we
observe that greedyCombi achieved far better results. However, it is not surprising that
we have to report that it was also way slower. While the greedyAlt algorithms needed less

59

60 5. Optimisation

than a second, greedyCombi needed between 10 and 17 seconds. Last but not least, we
observe that with growing number of pages the performance of all algorithms got better
in terms of resolved crossings. We can observe the same pattern in the results shown in
Figure 5.2 of an experiment with the hypercube Q8. The fact that greedyEDO, which is a
subalgorithm of both greedyAlt and greedyCombi, gets better in resolving crossings for
higher k supports the conclusion that our greedy book drawing optimisation algorithms
get better in resolving crossings for higher k as well. However, we have to be aware that
the results depend also on the varying performance with respect to k of the heuristic con-
Greedy+, which we used to compute the initial drawings. Hence, the results can neither
be generalized to other graph classes nor do they directly proof an improved performance
of the optimisation algorithms for higher k.

0%

10%
20%

30%

40%

50%

60%

70%

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

cr
os

sin
gs

 re
so

lv
ed

greedyCombi
greedyAltRR

Figure 5.2.: Percentage of resolved crossings by greedyCombi and greedyAlt for di↵erent
k on the hypercubes Q8.

We also wanted to scratch the surface of the question whether di↵erent initial drawings
have an e↵ect on the outcome of the greedy optimisation. We therefore ran an experiment
where we first created drawings with several heuristics of 1-planar graphs with 150 vertices
and 3 pages and then used the greedy optimisation algorithms. The results are presented
in Figure 5.3. We can observe that both the initial number of crossings as well as the
particular heuristics e↵ect the results. For more detailed answers one should test again
with di↵erent graph classes, densities, number of pages and number of vertices, as we did
for the evaluation of the heuristics.

5.2. Evolutionary algorithms

In this section we consider evolutionary algorithms for the k-page crossing minimisation
problem. We start with an outline of evolutionary algorithms and then describe the vari-
ations we used in the experiments of the next section.

5.2.1. Mimicing evolution in nature

An evolutionary algorithm is an optimisation algorithm inspired by the biological evolution
in nature. The goal is to find a good solution based on some fitness function for a given
problem. The algorithm thereby mimics the evolution of nature in a series of steps. At
first, it generates an initial population of solutions (the individuals) to the problem, the
first generation. In the case of the k-page crossing minimisation problem, this is a set of
k-page book drawings of the graph. The population then evolves over multiple generations
and, hopefully, brings forth better solutions. Generating a new generation is implemented
in multiple steps. First, the algorithm selects a subset of the current population as parents

60

5.2. Evolutionary algorithms 61

0

500

1000

1500

2000

2500

3000

3500

4000

initial greedyCombi greedyAlt

av
g.

 #
 c

ro
ss

in
gs conGreedy+

randDFS-ceilFloor
randDFS-slope
treeBFS-ceilFloor
treeBFS-slope

Figure 5.3.: Comparison of the performance greedyCombi and greedyAlt for di↵erent ini-
tial book drawings from di↵erent heuristics on 1-planar graphs with 150 ver-
tices and k = 3.

for the next generation. Second, it combines these parents (mating, recombination) to
get children. The idea is to create solutions that fuse good properties of their parents
and, therefore, improve the population. Next, some of the children undergo a mutation,
just like in nature. These mutations do not target an improvement of the quality of the
children, but rather an exploitation of the search space. Finally, the algorithms selects
individuals from the old population and the children to form the next generation. After a
fixed number of iterations, elapsed time or when no further progress is made or possible,
the algorithm stops. This iterative process is illustrated in Figure 5.4. We discuss how to
implement this concept after a short remark.

population
initilisation

selection

recombination, mutation

selection

termination
best solution

new
generation

parents children

Figure 5.4.: Concept of an evolutionary algorithm. The population evolves by recombining
a selection of parents and applying mutations to form the next generation.

The use of evolutionary algorithms in graph theory is not uncommon. For example,
Sanders and Schulz [SS12] applied the concept to graph partitioning and Branke et al.
[BBS96] to graph drawing. Evolutionary algorithms have also been used for book draw-
ings and book embeddings. Kapoor et al. [KRSZ02] and Satsangi et al. [SSG11] used
evolutionary algorithms to find the pagenumber of graphs. Moreover, evolutionary algo-
rithms have been used for crossing minimisation in book drawings with one page [HNS05],

61

62 5. Optimisation

two pages [HSM07, BSV+08] and k pages [SSS13].

5.2.2. Implementation

We now discuss how to implement an evolutionary algorithm, in general but also, in
particular, for the k-page crossing minimisation problem. The three main components are
the population, the fitness function and the operators.

The population consists of individuals that are a representation of a solution. Depending
on the problem at hand, the representation can, for example, be a bit vector, an array of
integers or coordinates. To represent a book drawing, we simply use its vertex order and
its edge distribution.

The fitness function summarises in a single figure of merit how good an individual is.
Hence, it should reflect the underlying problem. However, it can include further properties
of an individual. In our case, an individual with less crossings is better. If a higher fitness
should be represented by a bigger number, the functions 1

(C+1) or 1
(C2+1) , with C the

number of crossing, by He et al. [HSM07] could be used.

The operators process or create a set of individuals. All steps in Algorithm 5, which rep-
resents the framework for our evolutionary algorithms, are executed by such an operator.
This includes the task of creating an initial population, selecting parents or survivors for
the next generation, recombining parents and mutating children. Moreover, we add the
step of developing individuals. This can be seen as a growing up or getting older. We
propose that a book drawing develops by simple greedy optimisation. In the following,
we describe the methods we use in each operator and how they work with regard to book
drawings.

Algorithm: EvolutionaryAlgorithm

Data: k-page crossing minimisation problem
Result: best solution found
1 create first generation of population
2 compute number of crossings of individuals (fitness)
3 while termination criteria not fulfilled do
4 develop population
5 select parents
6 create children (recombine parents or recompute)
7 mutate children
8 develop children
9 compute number of crossings of children (fitness)

10 select survivor for next generation

11 return best solution

Algorithm 5: Framework of our evolutionary algorithms.

Initialisation

Bansal et al. [BSV+08] and Satsangi et al. [SSS13] used randDFS and eLen to generate the
initial population. However, we want more diversity in the initial population. Hence, we
use randDFS, smlDgrDFS, conCro and conGreedy to compute initial vertex order. Taking
into account the running time of the two connectivity based heuristics, we use the latter
two only for a smaller proportion of the initial population. We then use ceilFloor, eLen
and slope to compute the initial edge distributions. Having regard to our heuristics
evaluation, we use slope on a larger portion for graphs with higher density.

62

5.2. Evolutionary algorithms 63

Parent selection

There exist several strategies to select the parents, like selecting at random with probability
proportional to their fitness (fitness proportionate or roulette wheel, stochastic universal
sampling) or taking the best 1

p of the population p times (truncation). In one algorithm we
simply use all parents and in another we use the tournament strategy. Here, two randomly
picked individuals are compared (play a tournament) and the one with fewer crossings is
selected. This is repeated till enough parents are found.

Recombination & recomputation

The representation of an individual is sometimes also called its genome. Recombination
takes the genomes of two or more parents and combines them to generate two or more
children. This is called crossover. We use the so called two-point crossover technique and
only combine two parents to get two new children. This works di↵erently for the spine
and the edge distribution.

crossover spines Keep an interval of the spine (vertex order) in both of the parents.
Then fill the rest of the spine with unplaced vertices in the order they have in the
other parent.

crossover edge distribution Swap an interval of the edge distribution between two
parents, i.e. swap the page assignment of some edges.

The described crossover on spines has also been used by He et al. [HNS05].

Bansal et al. [BSV+08] and Satsangi et al. [SSS13] used an asexual operator to create
children, called recomputation. This operator keeps a part of the vertex order, computes
the order for the other vertices anew with randDFS and then also computes a new edge
distribution. We use both, recombination and recomputation, in di↵erent variants of our
evolutionary algorithms.

Spine alignment

The idea behind recombination is to fuse good properties of the parents. However, Branke
et al. [BBS96] described the competing conventions problem in evolutionary algorithms for
graph drawing. Two graphs drawings might be actually the same or nearly the same but
are rotated, shifted or inverted. Hence, recombination might miss its initial objective and
create inferior children. This might also occur in the crossover of spines. Therefore, we
tested whether rotating and reversing spines to increase similarity before running crossover
recombination improves the performance. However, we could not observe significant dif-
ferences in our experiment.

Mutation

Mutations alter a small number of genes in the genome of an individual. The main purpose
is to maintain genetic diversity and a broader exploitation of the search space. For each
new child it is randomly decided whether it undergoes mutation. We decrease (increase)
the chance to mutate, the mutation rate, in one of our algorithms when the population
does (does not) improve over one generation. This is called adaptive mutation rate.

Mutations concerning the vertex order are for example moving vertices, swapping the
positions of vertices and rotating or reversing a part of the order. We use the swapping of
positions of two randomly chosen vertices. A mutation of the edge distribution moves an
edge to a randomly chosen page.

63

64 5. Optimisation

Developing

We introduce an additional step in the normal evolutionary algorithm. After a child has
been generated it is given the chance to develop (or grow up). Furthermore, the whole
population gets older each iteration and thus also develops. Developing means that we
optimise the individuals with one of our greedy optimisation algorithms. We thereby use
two di↵erent strategies. In the first strategy we only optimise the position of one vertex and
the assigned page of one edge. In the second strategy, we run one round of greedy vertex
order optimisation greedyVOO and one round of greedy edge distribution optimisation
greedyEDO, so in other words one round of greedyAlt. A third strategy could be to use
one round of greedyCombi. However, we did not implement this strategy due to the slow
running time of one round in greedyCombi in comparison to the other approaches.

Survivor selection

After generating a set of children, we have to decide which individuals come into the new
population. We use a simple strategy and select the best individuals out of each parent
and its child. One variation of this strategy is to select a child with some chance even if
it is worse than its parent. Further possible strategies are to select only the children or to
select the best out of the last generation and all the children.

5.2.3. Algorithms

We decided to test several di↵erent evolutionary algorithms, which di↵er in the amount of
greedy optimisation they use for developing. Our choices of the operators and parameters
are based on other publications, preliminary test runs and our intuition.

The first group of algorithms uses crossover for recombination. Two of them, evo and
evoSngl, di↵er only in the developing operator. The former does not have development,
while the latter optimises the position of a single vertex and the assigned page of a single
edge. They use a population size of min{3

2n, 100}. The size of 3
2n has also been used

by Satsangi et al. [SSS13]. Both algorithms select parents with the tournament operator
and survivors by comparing each parent with its child. The chance that a child mutates
is set to 20%. The third algorithm, evoRnd, varies only in two points, namely, it has a
population size of only 30 and uses one round of greedyAlt (greedyVOO and greedyEDO)
as development.

The algorithm evoRec does not use crossover but instead uses recomputation with the
asexual operator like Satsangi et al. [SSS13]. So from a parent a part of the vertex order
is kept, while the second part is generated anew with randDFS. For the resulting vertex
order a new edge distribution is computed with ceilFloor. The rest of the algorithm’s
settings are the same as those of evoSngl.

The algorithm evoGreedy is centered around greedy optimisation with greedyAlt. It
does not generate new children, but reuses the whole population. This means that each
individual gets optimised and mutates in an alternating manner, and that neither parent
nor survivor selection is needed. The algorithm uses adaptive mutation rates, i.e. the
chance that an individual mutates depends on the progress of the population. If greedy
optimisation improves the population, the probability to mutate is decreased by factor 4,
otherwise it gets set to 100%. The population size set to 5.

We want to stress that these algorithms are not designed to be the best of all possible
evolutionary algorithms for the k-page crossing minimisation problem. The input of such
a problem has many parameters, like n,m, k and the graph class. It is likely that for
di↵erent configurations of these parameters di↵erent settings of the evolutionary algorithms

64

5.3. Evaluation of optimisation algorithms 65

name population size child creation mutation rate developing

evo min
�
3
2n, 100

recombination 20% none

evoSngl min
�
3
2n, 100

recombination 20% single greedy opt.

evoRnd 30 recombination 20% one round greedyAlt

evoRec min
�
3
2n, 100

recomputation 20% single greedy opt.

evoGreedy 5 none adaptive one round greedyAlt

Table 5.1.: Settings of the di↵erent evolutionary algorithms.

achieve better results. This has for example been show by He et al. [HSM07] for 2-page
book drawings. However, this is also not the point we want to make. Our main goal is
to show that the classical crossover operator does not work well and that, however, the
combination of evolutionary algorithm with greedy optimisation in evoGreedy can achieve
better results than plain greedy optimisation.

5.3. Evaluation of optimisation algorithms

We compare the evolutionary algorithms evo, evoSngl, evoRnd , evoRec and evoGreedy

with the greedy book drawing optimisation greedyCombi.

Our first result concerns the evolutionary algorithms that use crossover for recombination.
We have to report that we could not find settings for which the algorithms worked e↵ec-
tively. Figure 5.5 shows the progress of the three algorithms evo, evoSngl and evoRnd for
1-planar graphs with 250 vertices and k = 3 (top) as well as for the hypercube Q8 and
k = 7 = pn(Q8) (bottom). More precisely, it depicts the number of crossings of the best
individual in the population for the first 100 generations. We want to mention that in
order to prove our point, we could have used any other graph class, and that, furthermore,
the results did also not improve after several thousand iterations. We observe that the
best solution was actually found in the first generation or at least very early for evoRnd. In
fact, not even the heavy greedy optimisation of evoRnd was able to prevent the population
from worsening after a few generations. We can observe, however, that evoSngl was able
to slowly improve the population after the bad start. However, the improvement happened
so slow and the population was after several thousand generations still way closer to the
worst result than to best at the start. Furthermore, the di↵erence between evo and both
evoSngl and evoRnd on 1-planar graphs shows that greedy optimisation was here more
successful against crossover and the mutations.

The diagrams in Figure 5.5 also show the performance of evoRec, which uses recomputa-
tion to generate children. We have to note that we used slightly di↵erent settings than
Satsangi et al. [SSS13]. Nevertheless, even though Satsangi et al. could show good results
for small graphs, we question the e�ciency of this approach. We believe that the good
results are actually based on the heuristics as well as on the choice of tested graphs and
less on the evolutionary approach. Improvements to the algorithm could possibly be made,
if, instead of only a version of randDFS, the algorithm would also use other heuristics and
also other edge distribution heuristics like slope, especially for dense graphs. We tested
the latter approach for random graphs with edge probability 0.6, n = 150 and k = 6. The
result in Figure 5.6 shows an improvement of evoRec with the use of slope in comparison
to ceilFloor. However and nevertheless, with regard to the evaluation of evoGreedy and
greedyCombi, which comes next, we have to question whether variations of evoRec are
actually reasonable.

65

66 5. Optimisation

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 100

#
 c

ro
ss

in
gs

 o
f b

es
t i

nd
iv

id
ua

l

iteration

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70 80 90 100

#
 c

ro
ss

in
gs

 o
f b

es
t i

nd
iv

id
ua

l

iteration

evo
evoSngl
evoRnd
evoRec
evoGreedy

Figure 5.5.: The number of crossings of the best individual in the population in the first
100 iterations of the evolutionary algorithms on on a 1-planar graph with
n = 250 and k = 3 on top and Q8 with k = 7 at the bottom.

0
10000
20000
30000
40000
50000

0 10 20 30 40 50 60 70 80 90 100

#
 c

ro
ss

in
gs

 o
f b

es
t

in
di

vi
du

al

iteration

evoRec-ceilFloor
evoRec-slope

Figure 5.6.: The number of crossings of the best individual in the population in the first
100 iterations of evoRec with ceilFloor and slope on a random graph with
n = 250, edge probability p = 0.2 and k = 6.

We now compare the two algorithms that by construction always optimise, evoGreedy
and greedyCombi. The diagrams in Figure 5.5 also show that evoGreedy performed way
better than the other evolutionary algorithms. We recall that evoGreedy does not use a
recombination or recomputation operator but only uses greedy optimisation, greedyVOO

66

5.4. Force-based optimisation 67

and greedyEDO, and adapting mutation rates. In Section 5.1.4 we have seen that greedy-
Combi achieved better results than greedyAlt, which is now kind of a subalgorithm of
evoGreedy. We are therefore interested whether the mutations and especially the adapt-
ing mutations rates can help to overcome this performance gap. Hence, we tested with
several graph classes, namely with planar graphs with n = 500, K-trees with K = 6 and
n = 250, the complete bipartite graph K50,50 and the hypercube Q7. We stopped evo-

Greedy when it did not find a better book drawing during 1000 iterations. To overcome
the bias of the initial drawing, which, as we have seen above, can a↵ect the greedy op-
timisation, we ensured that all three algorithms used the same heuristics for the initial
drawings. The results are presented in Figure 5.7.

1

10

100

1000

10000

100000

planar planar 6-tree 6-tree 6-tree 6-tree 6-tree K₅₀,₅₀ Q₇
k = 2 k = 3 k = 2 k = 3 k = 4 k = 5 k = 6 k = 6 k = 5

evoGreedy greedyCombi greedyAlt

Figure 5.7.: Comparison of evoGreedy, greedyCombi and greedyAlt on di↵erent graphs.

We can observe that evoGreedy did not always achieve the best results. For example, for
the 6-trees and k = 6 greedyCombi performed better. However, concerning most of the
other cases, we can see that evoGreedy was the best algorithm. Since the diagram shows
also greedyAlt, we know that the advantage of evoGreedy was obtained by the use of
the mutations in the evolutionary framework. Regarding this, Figure 5.8 shows for several
planar graphs that the adapting mutation rate indeed helped evoGreedy to come out of
local minima. However, we have to state that the algorithm is more a random search,
which converges fast to a local minimum, than a target-oriented search towards a global
minimum.

5.4. Force-based optimisation

We now take a look at algorithms that use the concept of physical forces to optimise
book drawings. They work in a similar way to force-directed graph drawing in the plane
[Kob12]. The algorithms consider the whole drawing as physical systems and move the
edges (vertices in the edge conflict graph) in the direction of some forces to improve the
drawings. We first consider an approach to optimise the vertex order and then discuss an
idea for force-based optimisation of the edge distribution.

5.4.1. Mean & median iteration vertex order

The following two algorithms are only in the broader sense force-based algorithms. Gasner
and Koren [GK07] proposed them for circular drawings with one page to improve read-
ability by decreasing the total edge length. We want to find out whether they can also
improve a book drawings with more than one page in terms of crossings. Hence, after we

67

68 5. Optimisation

0

50

100

150

200

250

300

#
 c

ro
ss

in
gs

 o
f b

es
t i

nd
iv

id
ua

l

iterations

Figure 5.8.: Illustration of evoGreedy on several planar graphs with n = 500 and k =
3. The lines represent the number of crossings in the best individual of the
population, measured after every 10 iterations.

describe how the algorithms work, we present the results of an experiment tackling this
question.

The main idea of the two algorithms is to iteratively place the vertices at the mean or
median position of their neighbours. So they need an initial vertex order. This vertex
order is interpreted as uniformly distributed positions on the circle, just like in our previous
illustrations of circular drawings (like Figure 4.21 or Figure 4.22). Now, for one vertex,
the length of its incident edges is smallest, when it is at the barycenter of its neighbours.
However, the vertices have to be placed on the circle. Thus, in an iterative procedure,
one by one, the vertices are first placed on the barycenter of their neighbours and then
projected back to the circle. Since the barycenter corresponds to the mean of the angular
coordinates, this algorithm is called mean iteration (meanIter). To prevent the vertices
from accumulating at one point and minimising the total edge length to zero, the vertices
are again distributed uniformly as in the order of their angular position after ten iterations.
Furthermore, in each iteration three randomly chosen vertices are not repositioned to
function as anchors.

In a variation of this algorithm, the vertices are not placed at the mean but at the median
of their neighbours independently for the x and y coordinate and then projected back to
the circle. This algorithm is called median iteration (medianIter). Both algorithms run
one iteration in O(n+m) time and Gasner and Koren suggested running O(n) iterations.
We note that these two algorithms do not consider an edge distribution.

We tested the algorithms with planar graphs, hypercubes and random graphs with edge
probability p = 0.2. For the initial book drawings we used di↵erent vertex order heuristics,
namely random, treeBFS, conCro and conGreedy, and then ceilFloor to compute the
edge distribution. We then ran the two iteration algorithms and after that created new
edge distributions for the resulting book drawings, again with ceilFloor. The results are
shown in Figure 5.9.

We report that the use of di↵erent initial vertex order heuristics did not have a significant
e↵ect on the book drawings created by meanIter and medianIter. Hence, we should
see these two algorithms as two further vertex order heuristics and not as optimisation
algorithms. Furthermore, the resulting book drawings of meanIter had mostly most cross-

68

5.4. Force-based optimisation 69

ings, apart from those with a random vertex order. medianIterdid perform well on some
graphs, however, still much worse than the best vertex order heuristic. Therefore, we
conclude that the two heuristics are not a good choices for crossing minimisation in book
drawings.

1

10

100

1000

10000

100000

k = 2 k = 3 k = 2 k = 3 k = 4 k = 5 k = 6 k = 2 k = 3 k = 4 k = 5

planar planar rand rand rand rand rand Q₇ Q₇ Q₇ Q₇

random treeBFS conCro conGreedy mean median

Figure 5.9.: Comparison of di↵erent vertex order heuristics in combination with ceil-

Floor and the two force-based vertex order optimisation algorithms on di↵er-
ent graphs. rand stands for random graphs.

5.4.2. Force-based edge distribution

In our force-based edge distribution approach we model the edge distribution problem as
physical system and then let the system reduce its energy potential itself. The original
idea for the system is shown in Figure 5.10. Two edges that can cross for a given spine
do not want to be on the same page. Hence, to reduce the energy of the system, they
repel each other. Two edges that can not produce a crossing, on the other hand, may
attract each other. So in our system we (conceptually) remove the pages and let the edges
distribute themselves around the spine. When the system has converged, we partition them
again based on their positions into pages. The hope is that conflicting edges distribute
themselves far enough apart such that we do not place them on the same page in the last
step.

Figure 5.10.: In the middle the spine viewed from above, first with the initial distribution
on the left and then two iterations of repelling forces. The resulting edge
distribution is shown on the right.

Algorithm 6 describes the basic concept. The algorithms works iteratively and on the
complement of the edge conflict graph Gc

c. Two vertices of Gc
c (original edges) are adjacent

if they are not in conflict, i.e. if the corresponding edges of G can not produce a crossing for
the given spine. Now, the algorithms works mostly like a normal force-directed algorithm.
In each iteration two adjacent vertices attract each other with forces related to their
distance (Algorithm 6, Lines 5 to 7). These forces are weak if the vertices are already
close. If they are further apart also the forces gets stronger to group them. However,

69

70 5. Optimisation

we set the forces to zero if the two vertices are very far apart, more precisely if they are
distance is larger than the expected size of a page when we collect them again in the end.
The idea behind this is that we are not interested in grouping all non-conflicting edges, only
those that already close together. Besides the adjacent vertices, there are also repelling
forces between non-adjacent vertex pairs (conflicting edge pairs, Lines 8 to 10). Such a
repelling force is stronger if the two vertices are close, since we do not want to have them
on the same page. With greater distance it gets less likely that the edges get placed on
the same page and hence the repelling force gets weaker. After some iterations the system
should converge to a local minimum of its energy. We then cluster the vertices (original
edges of G) with a k-means algorithm (Line 13) and distribute each of the obtained clusters
to one of the k pages (Line 14).

Algorithm: forceBasedEdgeDistribution

Data: graph G, fixed vertex order, initial edge distribution
Result: new edge distribution
1 Gc edge conflict graph for G and given vertex order
2 Gc

c complement of edge conflict graph
3 position vertices of Gc

c to k uniformly distributed positions based on initial edge
distribution

4 while system has not converged do
5 foreach edge uv of Gc

c do
6 compute attracting forces between u and v based on their positions
7 store forces for both

8 foreach pair u, v, uv 62 E(Gc
c) do

9 compute repelling forces between u and v based on their positions
10 store forces for both

11 foreach vertex u do
12 compute new position based on computed forces

13 cluster vertices based on their positions with k-means
14 distribute edges of G to pages based on clustering

Algorithm 6: Algorithm concept for force-based edge distribution optimisation.

We use a normal k-means algorithm [Llo82], but set the initial means to specific positions.
The goal of k-means is to partition the vertices into k clusters such that all vertices belong
to the cluster with the nearest mean. The algorithms approximates this with an iterative
refinement technique. First, k points are set as initial means. We use the initial positions
of our pages for these points. Next, each vertex is assigned to the nearest point and thus
k clusters created. Now, for each cluster the mean is computed and set as new reference
point. So in the next round the vertices are now assigned to clustered with respect to
these new points. This improves the clustering iteratively. The algorithm stops when the
position of the means has converged, i.e. when they did not change by at least some ✏. We
observe that this solves our problem of collecting the vertices in our force-based system. If
the forces created a good geometrical clustering, k-means may find a good clustering and
thus also a good edge distribution.

In Figure 5.10, motivated by our illustrations of book drawings, the space where the
vertices of Gc

c (the edges of G) can move is a cycle. However, in concept, this algorithm
could use also another metric space. In fact, using a cycle has some drawbacks. For
example, consider the case where k = 3 and already three groups have formed. Now, if
a vertex lies between two groups which both repel it, but it would be better for it (in
terms of minimal energy or avoided crossings) to be in the third group, then the forces
may capture it between the two groups. This problem can occur between any two groups.

70

5.5. Further approaches 71

Hence, with higher k there are more of these bad zones on the cycle. Consequently, it is
preferable to use a space of higher dimension, where more groups are needed to catch a
vertex.

We made several attempts to successfully implement this algorithm. However, we faced the
problem as we did with the force-based vertex order algorithms above. Even though our
implementations worked in general, they were still often not better than the simple edge
distribution heuristics. One big challenge in the implementation is the configuration of the
parameters and force functions. We also tested a similar force-based clustering algorithm
by Noah [Noa07, Noa08]. However, the produced book drawings using the algorithms
standard settings were even worse than those of the other algorithms. Nevertheless, with
regards to the matters discussed in the next section, we still think that the force-based
edge distribution optimisation approach, if sophisticatedly implemented, has the potential
to work successfully. Beyond this, it is also of interested whether vertex order and edge
distribution optimisation can be combined in one force-based algorithm.

5.5. Further approaches

In this section we consider two further approaches for the edge distribution problem with
fixed spine. We recall that this problem is equivalent to the Max k-Cut problem. Hence,
any algorithm for Max k-Cut would work for the edge distribution problem as well. How-
ever, we will discuss below to further approaches, namely using graph partitioning and
maximal independent sets. We also want to mention again that neural networks have
been considered for k = 2 [CS96, HSM06, Wan08] as well as for the general k-page cross-
ing minimisation problem [LRMCOdLLGM07] including the problem of finding a vertex
order.

5.5.1. Graph partitioning & clustering

Both graph partitioning and graph clustering are related to the edge distribution problem.
In the k-way graph partitioning problem for a graph G the problem is to partition G into
k components with specific properties. A partitioning is defined as good if the number
of edges running between di↵erent components, the inter-edges, is small. Furthermore,
the problem also contains a balancing constraint on the sizes of the k partitions. On
the other hand, in the graph clustering problem of a graph G the problem is to partition
the graph into clusters such that a specific function gets optimised. The goal is again
to have few inter-edges and also many intra-edges, i.e. edges within a cluster. However,
the trivial clustering into one cluster is forbidden. There is also no balancing constraint.
If we consider graph partitioning or clustering on the complement of the edge conflict
graph Gc

c and regard a partition as one page, we can observe some similarities to the edge
distribution problem. An edge in Gc

c indicates that two edges of G are not in conflict
and, thus, can be distributed to the same page. Hence, if we have a high density in the
partitions and thus many intra-edges, we get many edges (vertices of Gc

c) on the same
page that are not in conflict. Furthermore, if we have less inter-edges, then there are more
edges of Gc between partitions and we thereby avoid more conflicts. Thus, the goal of
graph partitioning and clustering to have few inter-edges aligns with the goal of the edge
distribution problem to avoid many crossings.

There are, however, also several di↵erences between the problems. First, if we partition Gc
c

with regard to a good edge distribution, we may find that there can be actually quite many
inter-edges. Distributing two non-conflicting edges to di↵erent pages is not negative. If,
on the other hand, two vertices in a partition are not adjacent, then we have a crossing in
the corresponding book drawing. Hence, the actual goal of the edge distribution problem

71

72 5. Optimisation

is to partition Gc
c such that the partitions are as dense as possible. We can thus state

that problems have similar goals, however, not the same. Second, graph partitioning
has a balancing constraint that, in contrast, the edge distribution problem has not. One
page might contain many edges while another contains only few or even only one. A big
di↵erence to graph clustering is that graph clustering has no fixed number of clusters while
the number of pages of the edge distribution problem is fixed.

For graph partitioning well crafted and tested algorithms exists [Sch13b]. Hence, one
approach to tackle the edge distribution problem is to compute the complement of the
conflict graph Gc

c and apply an existing graph partitioning algorithm with a weak bal-
ancing constraint. The problem that the edge distribution problem has by definition no
balancing constraint does not yield that the pages of good book drawings actually are
very unbalanced. In fact, it seems reasonable that, at least for some graphs and k, the
pages are rather balanced. We therefore suggest that before this approach gets tested, it
should be investigated how balanced or unbalanced the pages of good book drawings are.
However, even if they are balanced there is still the discrepancy between the goals of the
two problems.

The problem that graph clustering does not have a fixed number of clusters prevents
a similar approach using a graph clustering algorithm instead of a graph partitioning
algorithm. We want to note here that this can also be a problem in the force-based edge
distribution approach above, since the described physical system does not have to goal to
converge to k clusters. Hence, this should be introduced with additional forces into the
system, for example with k anchors (or “magnets”).

5.5.2. Maximal independent set

Another idea to compute an edge distribution is by using maximal independent sets. If we
consider a page of a book drawing without crossings, we can observe that the corresponding
vertices in the edge conflict graph Gc of the edges in this page form an independent set
of Gc. A maximal independent set of Gc, in return, represents a page to which no further
edge of G can be added without introducing any crossings.

In order to compute an edge distribution, the idea is to compute several maximal indepen-
dent sets, merge those that contain few edges between each other and at the end obtain
k partitions of Gc. The number of maximal independent sets should be at least k and the
union of all the sets has to contain all vertices of Gc. Otherwise some edges of G would
not be distributed to pages. The maximal independent sets can be computed with simple
heuristics. Computing maximum independent sets might yield better result, it is however
also NP-hard. After the sets have been computed, merging those that span few edges
between each other introduces few crossings in the resulting book drawing. Once only k
sets remain, they can be used to obtain an edge distribution. One set yields one page and
an edge corresponding to a vertex that is contained is several sets should be placed on the
page where it produces fewest crossings.

To describe a full algorithm we have to solve several problems first. It is unclear how many
maximal independents sets should be computed. Moreover, it has to be ensured that the
maximal independent sets cover all vertices of Gc. One approach could be to start every
new maximal independent set with an uncovered vertex. Furthermore, we also need an
algorithm to merge the sets e�ciently. If we considering the discussion about the graph
partitioning based approach above, we observe that this approach with independent sets
does not necessarily yield balanced pages. However, it might be reasonable that the pages
are balanced and thus the sets should be maximal but also at most of size n

k (1 + ✏), with
✏ > 0 small. However, we might then end with an approach that is only another graph
partitioning approach.

72

6. Summary and outlook

In this thesis we considered book drawings and book embeddings and in particular al-
gorithms for the k-page crossing minimisation problem. In Chapter 2 we saw that book
embeddings can be computed easily for trees and outerplanar graphs and that, however,
it is NP-hard to determine whether a planar graph has a 2-page book embedding. We
outlined that therefore also the k-page crossing minimisation problem is NP-hard. We
then referred to results showing that book embeddings can be computed exactly for planar
graphs with up to about 500 vertices in reasonable time and that, however, the limit for
the k-page crossing minimisation problem can be reached already with 13 vertices. Fur-
thermore, since counting crossings of book drawings is an important part of experiments
and also of the evolutionary algorithms, we considered algorithms to solve this problem.
We investigated two existing algorithms that run in ⇥(m2) time in the worst case. We
therefore introduced a transformation of the problem to counting crossings in two-layered
graphs and thus obtained a divide & conquer algorithm that runs in O(m logm) time.

In Chapter 3 we presented heuristics that compute the vertex order of a book drawing and
heuristics that compute an edge distribution of a book drawing as well as heuristics that
compute both simultaneously. We proposed two new vertex order heuristics. treeBFS

computes the vertex order based on the spanning tree found by a BFS search. conGreedy
chooses vertices to place on the spine based on connectivity and then finds the best position
greedily. We also introduced a new edge distribution heuristic, namely earDecomp, that
uses an ear decomposition of the edge conflict graph. Furthermore, we combined the vertex
order heuristics conGreedy, smlDgrDFS(also known as AVSDF), randDFS and randBFSwith
simultaneous greedy edge distribution. In particular the resulting full drawing heuristic
conGreedy+ is of interest, since the immediate edge distribution also e↵ects the computed
vertex order.

In Chapter 4 we investigated the performance of the heuristics, especially of our new
heuristics. The lack of systematic approaches in the literature to evaluate the performance
of heuristics motivated us to create an extensive test suite for the evaluation. We were in
particular interested in di↵erences of the heuristics’ performance for di↵erent graph classes
and graph densities. Therefore, we ran experiments with the heuristics and heuristic
combinations on di↵erent graph classes, graph sizes and di↵erent number of pages. We
evaluated them based on the achieved number of crossings. With our experiments we
found out that treeBFS performs well on regular graphs with many automorphisms like
Cartesian product of cycles and t-ary d-cubes. It is the best choice among vertex order
heuristics with linear running time for these graph classes. However, on other graph

73

74 6. Summary and outlook

classes it did not perform that well and ranked behind randDFS and smlDgrDFS. The edge
distribution heuristic earDecomp is successful for sparse graphs, like planar graphs, and
k = 2, but less for denser graphs or more pages. The full drawing heuristics smlDgrDFS+,
randDFS+ and randBFS+ do not perform well. In our experiments they always produced
more crossings than their corresponding vertex order heuristics in combination with a
greedy edge distribution heuristic like ceilFloor. Our second new vertex order heuristic
conGreedy as well as its full drawing heuristic conGreedy+ are in most of the cases the best
choice. In fact, only for t-ary d-cubes (also known as k-ary n-cubes) and sometimes for a
large number of pages non of them ranked first. conGreedy+ was very successful, especially
on random graphs and a small number of pages as well as on K-trees and k = K+1. It also
computes book embeddings of maximal outerplanar graphs. On random graphs and large
k conGreedy+, used as vertex order heuristic in combination with ceilFloor, performed
best. We can conclude that simultaneous distribution of the edges while computing a
vertex order can produce better book drawings or at least improve the vertex order.

Concerning all heuristics, we saw that for graphs with low density the choice of the vertex
order heuristic is more important than the choice of the edge distribution heuristic, at least
if it is not slope. For example on 1-planar graphs, conGreedy with any edge distribution
heuristic (except slope) is the better choice than conCro, which likewise is better than
smlDgrDFS. For higher densities slope is mostly the best choice. However, similar to low
densities, the choice of the vertex order heuristic is still important, as we observed on
complete bipartite graphs. Furthermore, we observed that di↵erent heuristics performed
well when comparing random graphs and structured graphs of the same densities. The
heuristic rankings do also often change between di↵erent graph classes, especially for k = 2
or k = 3 and then also with growing k.

For future work on this topic, in order to evaluate a new heuristic, we suggest the created
test suite around random graphs, graph classes like planar and 1-planar and graph classes
with regular graphs and many automorphisms. K-trees are of interest since they are
tightly coupled to book drawings via treewidth. However, complete graphs should only
be considered with the conjecture in mind that slope always performs optimally. Graph
classes like trees or outerplanar graphs, for which a book embedding can be computed
in linear time, are not of interest. Furthermore, however, it is worth considering the
heuristics’ performances for di↵erent k, especially small ones, the pagenumber and the
overall tendency. Considering a vertex order heuristic more emphasis should be put on
graphs with lower density. For an edge distribution heuristic any density is of interest,
however, in particular for dense graphs the challenge is to perform better than slope.

In Chapter 5, we considered optimisation algorithms, since the heuristics are often far
from optimal. We tested for several approaches whether they really improve the results.
We then compared them against each other. Greedy optimisation works well, but runs
in local minima. The optimisation algorithm greedyCombi , which optimises vertex order
and edge distribution simultaneously, achieves better results than greedyAlt , which alter-
nates between the optimisation of vertex order and edge distribution. However, it also has
higher running time, namely O(m2n) for one round, in contrast to O(m2) of greedyAlt.
We also tested evolutionary algorithms, which try to come out of local minima. We found
out that the classical crossover operator for reproduction does not perform well. Even
simultaneous greedy optimisation can not always prevent the population from worsening.
Furthermore, the approach using recomputation with an intermediate version of randDFS
instead of recombination did not work well either. In both approaches it is also hard to
configure the parameters and to choose the best operators. However, the concept of mu-
tation and in particular adapting mutation rates of the evolutionary algorithm together
with greedy optimisation worked well. Using the evolutionary framework with adapting
mutation rates, greedy optimisation was able to climb out of local minima and achieve

74

75

better results than standalone greedy optimisation. However, we suggest to search for
further new optimisation algorithms. For example, we considered force-based approaches
for optimisation. Further approaches could make use of the similarity between well known
problems and the edge distribution problem. Hence, we suggested to consider graph par-
titioning algorithms and an approach based on maximal independent sets. However, these
approaches need further investigation of the properties of good book drawings and then
also sophisticated implementations.

Another goal of this thesis was to find out if we can combine the computation or op-
timisation of the vertex order and edge distribution e�ciently. With conGreedy+ and
greedyCombi we found such algorithms. Both perform well and often better than algo-
rithms that consider vertex order and edge distribution separately. However, both also
have higher asymptotic running time. On the other hand, with smlDgrDFS+, randDFS+
and randBFS+ we saw that only computing vertex order and edge distribution simulta-
neously but still more or less independently does not yield better book drawings. We
suggest to further investigate the idea of computing or optimising full book drawings and
not only either vertex order or edge distribution. Furthermore, heuristics that compute
full book drawings at once might be in particular of interest for certain graph classes, since
algorithms that compute book embeddings of graphs often also compute vertex order and
edge distribution simultaneously [BK79, Yan89, ABK15].

75

Bibliography

[AAFM+12] B. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and
G. Salazar, “The 2-page crossing number of kn,” in Proceedings of
the Twenty-eighth Annual Symposium on Computational Geometry,
ser. SoCG ’12. New York, NY, USA: ACM, 2012, pp. 397–404.
[Online]. Available: http://doi.acm.org/10.1145/2261250.2261310

[ABK15] M. J. Alam, F. J. Brandenburg, and S. G. Kobourov, “On the book
thickness of 1-planar graphs,” CoRR, vol. abs/1510.05891, 2015.
[Online]. Available: http://arxiv.org/abs/1510.05891

[Alh05] M. Alhashem, “The book embedding of ordered sets,” 2005.

[BB05] M. Baur and U. Brandes, “Crossing reduction in circular layouts,”
in Graph-Theoretic Concepts in Computer Science. Springer, 2005,
pp. 332–343.

[BBKR15] M. A. Bekos, T. Bruckdorfer, M. Kaufmann, and C. Raftopoulou,
“1-planar graphs have constant book thickness,” in Algorithms-ESA
2015. Springer, 2015, pp. 130–141.

[BBS96] J. Branke, F. Bucher, and H. Schmeck, “Using genetic algorithms
for drawing undirected graphs,” in The Third Nordic Workshop on
Genetic Algorithms and their Applications, 1996, pp. 193–206.

[BE14] M. J. Bannister and D. Eppstein, “Crossing minimization
for 1-page and 2-page drawings of graphs with bounded
treewidth,” CoRR, vol. abs/1408.6321, 2014. [Online]. Available:
http://arxiv.org/abs/1408.6321

[BGR14] M. A. Bekos, M. Gronemann, and C. N. Raftopoulou, “Two-Page
Book Embeddings of 4-Planar Graphs,” in 31st International
Symposium on Theoretical Aspects of Computer Science (STACS
2014), ser. Leibniz International Proceedings in Informatics
(LIPIcs), E. W. Mayr and N. Portier, Eds., vol. 25. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014,
pp. 137–148. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2014/4453

[BJM02] W. Barth, M. Jünger, and P. Mutzel, “Simple and e�cient
bilayer cross counting,” in Graph Drawing, ser. Lecture Notes in
Computer Science, M. Goodrich and S. Kobourov, Eds. Springer
Berlin Heidelberg, 2002, vol. 2528, pp. 130–141. [Online]. Available:
http://dx.doi.org/10.1007/3-540-36151-0 13

[BK79] F. Bernhart and P. C. Kainen, “The book thickness of a
graph,” Journal of Combinatorial Theory, Series B, vol. 27,

77

http://doi.acm.org/10.1145/2261250.2261310
http://arxiv.org/abs/1510.05891
http://arxiv.org/abs/1408.6321
http://drops.dagstuhl.de/opus/volltexte/2014/4453
http://drops.dagstuhl.de/opus/volltexte/2014/4453
http://dx.doi.org/10.1007/3-540-36151-0_13

78 Bibliography

no. 3, pp. 320 – 331, 1979. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0095895679900212

[BKZ15] M. A. Bekos, M. Kaufmann, and C. Zielke, “The book embedding
problem from a sat-solving perspective,” 23rd International Sympo-
sium on Graph Drawing and Network Visualization, 2015.

[BS84] J. F. Buss and P. W. Shor, “On the pagenumber of planar graphs,”
in Proceedings of the sixteenth annual ACM symposium on Theory
of computing. ACM, 1984, pp. 98–100.

[BS14] J. Balogh and G. Salazar, “Decompositions of permutations and book
embeddings,” 2014.

[BS15] ——, “Book embeddings of regular graphs,” SIAM Journal on
Discrete Mathematics, vol. 29, no. 2, pp. 811–822, 2015. [Online].
Available: http://dx.doi.org/10.1137/140961183

[BSV+08] R. Bansal, K. Srivastava, K. Varshney, N. Sharma et al., “An evolu-
tionary algorithm for the 2-page crossing number problem,” in Evo-
lutionary Computation, 2008. CEC 2008.(IEEE World Congress on
Computational Intelligence). IEEE Congress on. IEEE, 2008, pp.
1095–1102.

[CDD+12] P. Clote, S. Dobrev, I. Dotu, E. Kranakis, D. Krizanc, and J. Urrutia,
“On the page number of rna secondary structures with pseudoknots,”
Journal of mathematical biology, vol. 65, no. 6-7, pp. 1337–1357,
2012.

[CH13] J. Czap and D. Hudák, “On drawings and decompositions of 1-planar
graphs,” the electronic journal of combinatorics, vol. 20, no. 2, p. P54,
2013.

[Cim02] R. Cimikowski, “Algorithms for the fixed linear crossing number
problem,”Discrete Applied Mathematics, vol. 122, no. 1, pp. 93–115,
2002.

[Cim06] ——, “An analysis of some linear graph layout heuristics,” Journal
of Heuristics, vol. 12, no. 3, pp. 143–153, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10732-006-4294-9

[CLR87] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, “Embedding
graphs in books: A layout problem with applications to vlsi design,”
SIAM Journal on Algebraic Discrete Methods, vol. 8, no. 1, pp.
33–58, 1987. [Online]. Available: http://dx.doi.org/10.1137/0608002

[CM07] R. Cimikowski and B. Mumey, “Approximating the fixed linear
crossing number,”Discrete Applied Mathematics, vol. 155, no. 17, pp.
2202 – 2210, 2007. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0166218X07001485

[CS96] A. Cimikowski and P. Shope, “A neural-network algorithm for a
graph layout problem,” Neural Networks, IEEE Transactions on,
vol. 7, no. 2, pp. 341–345, Mar 1996.

[DGGL11] E. Di Giacomo, F. Giordano, and G. Liotta, “Upward topological
book embeddings of dags,” SIAM Journal on Discrete Mathematics,
vol. 25, no. 2, pp. 479–489, 2011.

78

http://www.sciencedirect.com/science/article/pii/0095895679900212
http://www.sciencedirect.com/science/article/pii/0095895679900212
http://dx.doi.org/10.1137/140961183
http://dx.doi.org/10.1007/s10732-006-4294-9
http://dx.doi.org/10.1137/0608002
http://www.sciencedirect.com/science/article/pii/S0166218X07001485
http://www.sciencedirect.com/science/article/pii/S0166218X07001485

Bibliography 79

[dKP12] E. de Klerk and D. V. Pasechnik, SIAM Journal on Optimization,
vol. 22, no. 2, pp. 581–595, 2012.

[dKPS13] E. de Klerk, D. V. Pasechnik, and G. Salazar, “Improved lower
bounds on book crossing numbers of complete graphs,” SIAM Jour-
nal on Discrete Mathematics, vol. 27, no. 2, pp. 619–633, 2013.

[dKPS14] ——,“Book drawings of complete bipartite graphs,”Discrete Applied
Mathematics, vol. 167, pp. 80 – 93, 2014. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0166218X13004824

[DMP95] R. Diekmann, B. Monien, and R. Preis, “Using helpful sets to im-
prove graph bisections,” Interconnection networks and mapping and
scheduling parallel computations, vol. 21, pp. 57–73, 1995.

[DNEH13] H. R. Dehkordi, Q. Nguyen, P. Eades, and S.-H. Hong, Circular graph
drawings with large crossing angles. Springer, 2013.

[DW04] V. Dujmović and D. R. Wood, “On linear layouts of graphs.”Discrete
Mathematics & Theoretical Computer Science, vol. 6, no. 2, pp. 339–
358, 2004.

[DW07] ——, “Graph treewidth and geometric thickness parameters,”
Discrete & Computational Geometry, vol. 37, no. 4, pp.
641–670, 2007. [Online]. Available: http://dx.doi.org/10.1007/
s00454-007-1318-7

[DW09] ——, “On the book thickness of k-trees,” arXiv preprint
arXiv:0911.4162, 2009.

[EM99] H. Enomoto and M. S. Miyauchi, “Embedding graphs into a three
page book with o(m log n) crossings of edges over the spine,” SIAM
J. Discret. Math., vol. 12, no. 3, pp. 337–341, Sep. 1999. [Online].
Available: http://dx.doi.org/10.1137/S0895480195280319

[ENO97] H. Enomoto, T. Nakamigawa, and K. Ota, “On the pagenumber of
complete bipartite graphs,” Journal of Combinatorial Theory, Series
B, vol. 71, no. 1, pp. 111 – 120, 1997. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0095895697917731

[FdFRv13] L. Faria, C. de Figueiredo, R. Richter, and I. vrt’o, “The
same upper bound for both: The 2-page and the rectilinear
crossing numbers of the n-cube,” in Graph-Theoretic Concepts
in Computer Science, ser. Lecture Notes in Computer Science,
A. Brandstädt, K. Jansen, and R. Reischuk, Eds. Springer Berlin
Heidelberg, 2013, vol. 8165, pp. 249–260. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-45043-3 22

[Gan95] J. L. Ganley, “Stack and queue layouts of halin graphs,” 1995.

[GH01] J. L. Ganley and L. S. Heath, “The pagenumber of k-trees is O(k),”
Discrete Applied Mathematics, vol. 109, no. 3, pp. 215 – 221, 2001.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0166218X00001785

[Gil59] E. N. Gilbert, “Random graphs,” Ann. Math. Statist., vol. 30,
no. 4, pp. 1141–1144, 12 1959. [Online]. Available: http:
//dx.doi.org/10.1214/aoms/1177706098

79

http://www.sciencedirect.com/science/article/pii/S0166218X13004824
http://www.sciencedirect.com/science/article/pii/S0166218X13004824
http://dx.doi.org/10.1007/s00454-007-1318-7
http://dx.doi.org/10.1007/s00454-007-1318-7
http://dx.doi.org/10.1137/S0895480195280319
http://www.sciencedirect.com/science/article/pii/S0095895697917731
http://www.sciencedirect.com/science/article/pii/S0095895697917731
http://dx.doi.org/10.1007/978-3-642-45043-3_22
http://www.sciencedirect.com/science/article/pii/S0166218X00001785
http://www.sciencedirect.com/science/article/pii/S0166218X00001785
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1214/aoms/1177706098

80 Bibliography

[GJMP80] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou,
“The complexity of coloring circular arcs and chords,” SIAM Journal
on Algebraic Discrete Methods, vol. 1, no. 2, pp. 216–227, 1980.
[Online]. Available: http://dx.doi.org/10.1137/0601025

[GK07] E. Gansner and Y. Koren, “Improved circular layouts,” in Graph
Drawing, ser. Lecture Notes in Computer Science, M. Kaufmann
and D. Wagner, Eds. Springer Berlin Heidelberg, 2007, vol.
4372, pp. 386–398. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-70904-6 37

[GKK08] D. R. Gaur, R. Krishnamurti, and R. Kohli, “The capacitated max k-
cut problem,”Mathematical Programming, vol. 115, no. 1, pp. 65–72,
2008.

[GLM+15] F. Giordano, G. Liotta, T. Mchedlidze, A. Symvonis, and
S. Whitesides, “Computing upward topological book embeddings of
upward planar digraphs,” Journal of Discrete Algorithms, vol. 30,
pp. 45 – 69, 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1570866714000914

[Gro15] M. Gronemann, “Algorithms for incremental planar graph drawing
and two-page book embeddings,” Ph.D. dissertation, Universität zu
Köln, 2015.

[Has09] T. Hasunuma, “Improved book-embeddings of incomplete hy-
percubes,” Discrete Applied Mathematics, vol. 157, no. 7,
pp. 1423 – 1431, 2009. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0166218X08004599

[Hea84] L. S. Heath, “Embedding planar graphs in seven pages,” in Founda-
tions of Computer Science, 1984. 25th Annual Symposium on, Oct
1984, pp. 74–83.

[Hea85] ——, “Algorithms for embedding graphs in books,” 1985.

[Hea87] ——, “Embedding outerplanar graphs in small books,” SIAM
Journal on Algebraic Discrete Methods, vol. 8, no. 2, pp. 198–218,
1987. [Online]. Available: http://dx.doi.org/10.1137/0608018

[HI92] L. S. Heath and S. Istrail, “The pagenumber of genus g graphs is
o(g),” J. ACM, vol. 39, pp. 479–501, Jul. 1992. [Online]. Available:
http://doi.acm.org/10.1145/146637.146643

[HN09] S.-H. Hong and H. Nagamochi, “Two-page book embedding and clus-
tered graph planarity,” Technical Report 2009-004, Department of
Applied Mathematics & Physics, Kyoto University, Tech. Rep., 2009.

[HNS05] H. He, M. Newton, and O. Sýkora, “Genetic algorithms for bipar-
tite and outerplanar graph drawings are best!” Communications of
the 31st Conference on Current Trends in Theory and Practice of
Informatics, 2005.

[HS04] H. He and O. Sýkora, “New circular drawing algorithms,”Conference
Papers and Presentations (Computer Science), 2004.

[HSM06] H. He, O. Sýkora, and E. Makinen, “An improved neural network
model for the two-page crossing number problem,”Neural Networks,
IEEE Transactions on, vol. 17, no. 6, pp. 1642–1646, Nov 2006.

80

http://dx.doi.org/10.1137/0601025
http://dx.doi.org/10.1007/978-3-540-70904-6_37
http://dx.doi.org/10.1007/978-3-540-70904-6_37
http://www.sciencedirect.com/science/article/pii/S1570866714000914
http://www.sciencedirect.com/science/article/pii/S1570866714000914
http://www.sciencedirect.com/science/article/pii/S0166218X08004599
http://www.sciencedirect.com/science/article/pii/S0166218X08004599
http://dx.doi.org/10.1137/0608018
http://doi.acm.org/10.1145/146637.146643

Bibliography 81

[HSM07] H. He, O. Sýkora, and E. Mäkinen, “Genetic algorithms for the 2-
page book drawing problem of graphs,” Journal of heuristics, vol. 13,
no. 1, pp. 77–93, 2007.

[HSM10] H. He, A. Sălăgean, and E. Mäkinen, “One- and two-page
crossing numbers for some types of graphs,” International Journal
of Computer Mathematics, vol. 87, no. 8, pp. 1667–1679, 2010.
[Online]. Available: http://dx.doi.org/10.1080/00207160802524747

[HSMV15] H. He, A. Sălăgean, E. Mäkinen, and I. Vrt’o, “Various heuristic
algorithms to minimise the two-page crossing numbers of graphs,”
Open Computer Science, vol. 5, no. 1, August 2015.

[HSSV06] H. He, O. Sýkora, A. Salagean, and I. Vrt’o, “Heuristic crossing min-
imisation algorithms for the two-page drawing problem,” 2006.

[HSV05] H. He, O. Sýkora, and I. Vrt’o, “Crossing minimisation heuristics
for 2-page drawings,” Electronic Notes in Discrete Mathematics,
vol. 22, pp. 527 – 534, 2005, 7th International Colloquium on Graph
Theory. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1571065305052637

[HT73] J. Hopcroft and R. Tarjan, “Algorithm 447: E�cient algorithms for
graph manipulation,” Commun. ACM, vol. 16, no. 6, pp. 372–378,
Jun. 1973. [Online]. Available: http://doi.acm.org/10.1145/362248.
362272

[Jac89] G. Jacobson, “Space-e�cient static trees and graphs,” in Foundations
of Computer Science, 1989., 30th Annual Symposium on, Oct 1989,
pp. 549–554.

[Kai90] P. C. Kainen, “The book thickness of a graph. ii,” Congressus Nu-
merantium, vol. 71, pp. 121–132, 1990.

[KHT89] M. Konoe, K. Hagihara, and N. Tokura, “Page-number of
hypercubes and cube-connected cycles,” Systems and Computers
in Japan, vol. 20, no. 4, pp. 34–47, 1989. [Online]. Available:
http://dx.doi.org/10.1002/scj.4690200404

[KO07] P. C. Kainen and S. Overbay, “Extension of a theorem of whitney,”
Applied Mathematics Letters, vol. 20, no. 7, pp. 835 – 837, 2007.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893965906002783

[Kob12] S. G. Kobourov, “Force-directed drawing algorithms,” in Handbook
of Graph Drawing and Visualization, R. Tamasia, Ed. CRC Press,
2012, ch. 12.

[KRSZ02] N. Kapoor, M. Russell, I. Stojmenovic, and A. Y. Zomaya, “A
genetic algorithm for finding the pagenumber of interconnection
networks,” Journal of Parallel and Distributed Computing, vol. 62,
no. 2, pp. 267 – 283, 2002. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0743731501917897

[Llo82] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129–137, Mar 1982.

[LRMCOdLLGM07] D. López-Rodŕıguez, E. Mérida-Casermeiro, J. Ort́ız-de Lazcano-
Lobato, and G. Galán-Maŕın, “K-pages graph drawing with

81

http://dx.doi.org/10.1080/00207160802524747
http://www.sciencedirect.com/science/article/pii/S1571065305052637
http://www.sciencedirect.com/science/article/pii/S1571065305052637
http://doi.acm.org/10.1145/362248.362272
http://doi.acm.org/10.1145/362248.362272
http://dx.doi.org/10.1002/scj.4690200404
http://www.sciencedirect.com/science/article/pii/S0893965906002783
http://www.sciencedirect.com/science/article/pii/S0893965906002783
http://www.sciencedirect.com/science/article/pii/S0743731501917897
http://www.sciencedirect.com/science/article/pii/S0743731501917897

82 Bibliography

multivalued neural networks,” in Artificial Neural Networks –
ICANN 2007, ser. Lecture Notes in Computer Science, J. de Sá,
L. Alexandre, W. Duch, and D. Mandic, Eds. Springer Berlin
Heidelberg, 2007, vol. 4669, pp. 816–825. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74695-9 84

[Mä88] E. Mäkinen, “On circular layouts,” International Journal of
Computer Mathematics, vol. 24, no. 1, pp. 29–37, 1988. [Online].
Available: http://dx.doi.org/10.1080/00207168808803629

[Mah13] B. Mahavir, “Optimal book embedding of the generalized petersen
graph p (n, 2),” in International Conference on Mathematical Com-
puter Engineering-ICMCE, 2013, p. 921.

[Mal94a] S. Malitz, “Genus g graphs have pagenumber O(
p
g),” Journal of Al-

gorithms, vol. 17, no. 1, pp. 85 – 109, 1994. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0196677484710285

[Mal94b] ——, “Graphs with E edges have pagenumber O(
p
E),” Journal of

Algorithms, vol. 17, no. 1, pp. 71 – 84, 1994. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0196677484710273

[McC12] J. McClintock, “Extremal graph theory for book-embeddings,”Ph.D.
dissertation, M. Sc. Thesis, University of Melbourne Department of
Mathematics and Statistics, 2012.

[MNKF90] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa, “Cross-
ing minimization in linear embeddings of graphs,”Computers, IEEE
Transactions on, vol. 39, no. 1, pp. 124–127, Jan 1990.

[MS09] T. Mchedlidze and A. Symvonis, “Crossing-optimal acyclic hamilto-
nian path completion and its application to upward topological book
embeddings,” inWALCOM: Algorithms and Computation. Springer,
2009, pp. 250–261.

[MS10] ——, “On ⇢-constrained upward topological book embeddings,”
in Graph Drawing: 17th International Symposium, GD 2009,
Chicago, IL, USA, September 22-25, 2009. Revised Papers,
D. Eppstein and E. R. Gansner, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 411–412. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11805-0 40

[MWW88] D. J. Muder, M. L. Weaver, and D. B. West, “Pagenumber of
complete bipartite graphs,” Journal of Graph Theory, vol. 12, no. 4,
pp. 469–489, 1988. [Online]. Available: http://dx.doi.org/10.1002/
jgt.3190120403

[Noa07] A. Noack, “Energy models for graph clustering,” Journal of Graph
Algorithms and Applications, vol. 11, no. 2, pp. 453–480, 2007.

[Noa08] ——, “Modularity clustering is force-directed layout,” CoRR, vol.
abs/0807.4052, 2008. [Online]. Available: http://arxiv.org/abs/
0807.4052

[NY04] H. Nagamochi and N. Yamada, “Counting edge crossings in
a 2-layered drawing,” Information Processing Letters, vol. 91,
no. 5, pp. 221 – 225, 2004. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0020019004001516

82

http://dx.doi.org/10.1007/978-3-540-74695-9_84
http://dx.doi.org/10.1080/00207168808803629
http://www.sciencedirect.com/science/article/pii/S0196677484710285
http://www.sciencedirect.com/science/article/pii/S0196677484710285
http://www.sciencedirect.com/science/article/pii/S0196677484710273
http://www.sciencedirect.com/science/article/pii/S0196677484710273
http://dx.doi.org/10.1007/978-3-642-11805-0_40
http://dx.doi.org/10.1002/jgt.3190120403
http://dx.doi.org/10.1002/jgt.3190120403
http://arxiv.org/abs/0807.4052
http://arxiv.org/abs/0807.4052
http://www.sciencedirect.com/science/article/pii/S0020019004001516
http://www.sciencedirect.com/science/article/pii/S0020019004001516

Bibliography 83

[Obr93] B. Obrenic, “Embedding de bruijn and shu✏e-exchange graphs in
five pages,” SIAM Journal on Discrete Mathematics, vol. 6, no. 4,
pp. 642–654, 1993.

[Ove98] S. B. Overbay, “Generalized book embeddings,” Ph.D. dissertation,
Colorado State University, 1998.

[Ove07] S. Overbay, “Graphs with small book thickness,” Missouri Journal
of Mathematical Sciences, vol. 19, no. 2, pp. 121–130, 2007.

[Pat13] M. Patrignani, Planarity testing and embedding. CRC press, 2013,
ch. 1, pp. 1–42.

[PMH07] T. Poranen, E. Mäkinen, and H. He, “A simulated annealing algo-
rithm for the 2-page crossing number problem,” in Proceedings of
International Network Optimization Conference (INOC), 2007.

[Prü18] H. Prüfer, “Neuer Beweis eines Satzes über Permutationen,” Arch.
Math. Phys, vol. 27, no. 1918, pp. 742–744, 1918.

[RVM95] S. Rengarajan and C. E. Veni Madhavan, Computing and
Combinatorics: First Annual International Conference, COCOON
’95 Xi’an, China, August 24–26, 1995 Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1995, ch. Stack and
queue number of 2-trees, pp. 203–212. [Online]. Available:
http://dx.doi.org/10.1007/BFb0030834

[Sch13a] M. Schaefer, “The graph crossing number and its variants: a survey,”
The electronic journal of combinatorics, vol. 1000, pp. DS21–May,
2013.

[Sch13b] C. Schulz, “High quality graph partitioning,” 2013.

[Sed77] R. Sedgewick, “Permutation generation methods,” ACM Comput.
Surv., vol. 9, no. 2, pp. 137–164, Jun. 1977. [Online]. Available:
http://doi.acm.org/10.1145/356689.356692

[SS12] P. Sanders and C. Schulz, “Distributed evolutionary graph partition-
ing.” in ALENEX. SIAM, 2012, pp. 16–29.

[SSG11] D. Satsangi, K. Srivastava, and Gursaran, “A hybrid evolutionary
algorithm for the page number minimization problem,” in Trends
in Computer Science, Engineering and Information Technology,
ser. Communications in Computer and Information Science,
D. Nagamalai, E. Renault, and M. Dhanuskodi, Eds. Springer
Berlin Heidelberg, 2011, vol. 204, pp. 463–475. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24043-0 47

[SSS13] D. Satsangi, K. Srivastava, and G. Srivastava, “K-page crossing
number minimization problem: An evaluation of heuristics and
its solution using gesakp,” Memetic Computing, vol. 5, no. 4,
pp. 255–274, 2013. [Online]. Available: http://dx.doi.org/10.1007/
s12293-013-0115-5

[ST06] J. M. Six and I. G. Tollis, “A framework and algorithms for
circular drawings of graphs,” Journal of Discrete Algorithms,
vol. 4, no. 1, pp. 25 – 50, 2006. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1570866705000031

83

http://dx.doi.org/10.1007/BFb0030834
http://doi.acm.org/10.1145/356689.356692
http://dx.doi.org/10.1007/978-3-642-24043-0_47
http://dx.doi.org/10.1007/s12293-013-0115-5
http://dx.doi.org/10.1007/s12293-013-0115-5
http://www.sciencedirect.com/science/article/pii/S1570866705000031
http://www.sciencedirect.com/science/article/pii/S1570866705000031

84 Bibliography

[Stö88] E. Stöhr, “A trade-o↵ between page number and page width
of book embeddings of graphs,” Information and Computation,
vol. 79, no. 2, pp. 155 – 162, 1988. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0890540188900363

[TS06] Y. Tanaka and Y. Shibata, “On the pagenumber of trivalent cayley
graphs,” Discrete Applied Mathematics, vol. 154, no. 8, pp. 1279
– 1292, 2006. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0166218X06000023

[TS10] ——, “On the pagenumber of the cube-connected cycles,”
Mathematics in Computer Science, vol. 3, no. 1, pp. 109–117, 2010.
[Online]. Available: http://dx.doi.org/10.1007/s11786-009-0012-y

[Ung88] W. Unger, “On the k-colouring of circle-graphs,” in STACS
88: 5th Annual Symposium on Theoretical Aspects of Computer
Science Bordeaux, France, February 11–13, 1988 Proceedings,
R. Cori and M. Wirsing, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1988, pp. 61–72. [Online]. Available: http:
//dx.doi.org/10.1007/BFb0035832

[Ung92] ——, STACS 92: 9th Annual Symposium on Theoretical Aspects
of Computer Science Cachan, France, February 13–15, 1992
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992,
ch. The complexity of colouring circle graphs, pp. 389–400. [Online].
Available: http://dx.doi.org/10.1007/3-540-55210-3 199

[VWY09] J. Vandenbussche, D. B. West, and G. Yu, “On the pagenumber of
k-trees,” SIAM Journal on Discrete Mathematics, vol. 23, no. 3, pp.
1455–1464, 2009. [Online]. Available: http://dx.doi.org/10.1137/
080714208

[Wan08] J. Wang, “Hopfield neural network based on estimation of distribu-
tion for two-page crossing number problem,”Circuits and Systems II:
Express Briefs, IEEE Transactions on, vol. 55, no. 8, pp. 797–801,
Aug 2008.

[Wig82] A. Wigderson, “The complexity of the hamiltonian circuit problem
for maximal planar graphs,” Tech. Rep. EECS 198, Princeton Uni-
versity, USA, Tech. Rep., 1982.

[Wik16] Wikipedia. (2016) Algorithm to convert a
Prüfer sequence into a tree. [Online]. Avail-
able: https://en.wikipedia.org/wiki/Pr{ü}fer sequence#Algorithm
to convert a Pr.C3.BCfer sequence into a tree

[Yan86] M. Yannakakis, “Four pages are necessary and su�cient for
planar graphs,” in Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, ser. STOC ’86. New
York, NY, USA: ACM, 1986, pp. 104–108. [Online]. Available:
http://doi.acm.org/10.1145/12130.12141

[Yan89] ——, “Embedding planar graphs in four pages,” Journal of
Computer and System Sciences, vol. 38, no. 1, pp. 36 – 67, 1989.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/0022000089900329

84

http://www.sciencedirect.com/science/article/pii/0890540188900363
http://www.sciencedirect.com/science/article/pii/0890540188900363
http://www.sciencedirect.com/science/article/pii/S0166218X06000023
http://www.sciencedirect.com/science/article/pii/S0166218X06000023
http://dx.doi.org/10.1007/s11786-009-0012-y
http://dx.doi.org/10.1007/BFb0035832
http://dx.doi.org/10.1007/BFb0035832
http://dx.doi.org/10.1007/3-540-55210-3_199
http://dx.doi.org/10.1137/080714208
http://dx.doi.org/10.1137/080714208
http://doi.acm.org/10.1145/12130.12141
http://www.sciencedirect.com/science/article/pii/0022000089900329
http://www.sciencedirect.com/science/article/pii/0022000089900329

List of Figures

1.1. Book drawing . 1
1.2. Book vs. circular drawing . 2
1.3. Circular drawing . 2

2.1. Embedding a tree . 8
2.2. Embedding graph with attached trees . 8
2.3. Book drawing of tree with unresolvable crossing 9
2.4. Book drawing of tree with quadratically many crossing 9
2.5. Greedy optimisation on trees . 9
2.6. Embedding biconnected components . 10
2.7. Embedding outerplanar graph . 11
2.8. Edge conflict graph . 12
2.9. Planar subhamiltonian graph . 13
2.10. SAT variables . 15
2.11. Condition for crossing . 17
2.12. Open edges cross counting . 18
2.13. Divide & Conquer Cross Counting . 19
2.14. Cross counting experiment . 20

3.1. DFS heuristics . 24
3.2. DFS heuristic . 25
3.3. Max-neighboring heuristic . 25
3.4. Connectivity based heuristics . 26
3.5. eLen & ceilFloor heuristics . 28
3.6. Edge distribution heuristic slope (1) . 28
3.7. Edge distribution heuristic slope (2) . 29
3.8. Ear decomposition based heuristic . 30

4.1. Heuristics on random graphs linear, n = 50 34
4.2. Heuristics on random graphs linear, n = 100 35
4.3. Heuristics on random graphs linear, n = 150 35
4.4. Heuristic conGreedy on maximal outerplanar graphs 36
4.5. Hamiltonian cycle in Cartesian product of path and cycle 37
4.6. K5 in Ci ⇥ Cj . 38
4.7. 3-page book embedding of Cartesian product of cycles 38
4.8. Non-hamiltonian planar graph . 40
4.9. VOH on Hamiltonian planar graphs . 41
4.10. EDH on Hamiltonian planar graphs . 42
4.11. Heuristics on Hamiltonian planar graphs, k = 2 42
4.12. Heuristics on maximal planar graphs, k = 2 43
4.13. Heuristics on maximal planar graphs, k = 3 44
4.14. Heuristics on 1-planar graphs, k = 4 . 45

85

86 List of Figures

4.15. conCro and conGreedy on 1-planar graphs, k = 4 45
4.16. Heuristics on k-trees . 47
4.17. Heuristics on 8-trees, k = 2, . . . , 9 . 47
4.18. 3-ary n-cubes . 48
4.19. Heuristics on hypercubes, k = d� 1 . 49
4.20. Heuristics on t-ary d-cubes, k = d+ 1 . 49
4.21. Book embedding of K8 . 50
4.22. 2-page book drawing of K8 . 50
4.23. Heuristics on complete bipartite graphs . 51
4.24. Heuristics on K28,72 . 52
4.25. Heuristics on random graphs quadratic, n = 50 53
4.26. Heuristics on random graphs quadratic, n = 100 53
4.27. Heuristics on random graphs quadratic, n = 150 53

5.1. Greedy optimiser comparison . 59
5.2. Greedy optimiser comparison for growing k 60
5.3. Greedy optimiser with di↵erent initial embedding 61
5.4. Concept evolutionary algorithm . 61
5.5. Evolutionary algorithms on hypercube and 1-planar graph 66
5.6. Evolutionary algorithms on random graph 66
5.7. Greedy and evolutionary algorithms experiment 67
5.8. Greedy evolutionary algorithm on planar graphs 68
5.9. Force-based vertex order optimisation . 69
5.10. Force based edge distribution . 69

A.1. Hamiltonian planar graph construction . 90
A.2. 1-planar graph construction . 90
B.3. Heuristics on 1-planar graphs, k = 1, . . . , 8 91
B.4. Heuristics on 1-planar graphs, k = 2 . 92
B.5. Heuristics on 1-planar graphs, k = 3 . 92
B.6. Heuristics on hypercubes, k = 1, . . . , d� 1 93
B.7. Heuristics on t-ary d-cubes, k = 1, . . . , 10 93
B.8. Second best heuristics on random graphs with linear number of edges . . . 94
B.9. Second best heuristics on random graphs with quadratic number of edges . 95

86

List of Algorithms

1. Open edges cross counting . 18

2. 2-layer cross counting . 20

3. Vertex order heuristic conGreedy . 26

4. Full drawing heuristic conGreedy+ . 31

5. Framework evolutionary algorithm . 62

6. Force-based edge distribution . 70

7. Maximal planar graph generation . 90

87

Appendix

A. Graph generation

In this section we briefly describe how we created the graphs for our experiments. The
graphs of some graph class can be generated straight forward. These graph classes are
complete graphs, complete bipartite graphs, Cartesian products of cycles, hypercubes and
t-ary d-cubes. Graphs of the other graph classes can be generated in many di↵erent ways
and thus caution is required. For examples, when generating trees we did not want to
end up with trees that only have few vertices with very high degree and many leaves.
Another aspect of graph generation is that, if the graphs are not shu✏ed, the algorithms
could become biased to the graph generation algorithm if they consider vertices or their
adjacent edges in the order they appear in the data structure. Hence, we also discuss how
we shu✏ed the graphs before the experiments at the end of this section.

A.1. Trees

We generate trees using Prüfer sequences [Prü18]. Prüfer sequence can be used to describe
labeled trees uniquely. To generate a random tree we generate a random labeled tree and
then remove the labels. For a labeled tree with n vertices the Prüfer sequence a has length
n� 2 and each value a[i] lies between 1 and n. Hence, we can start with generating such a
sequence randomly and then convert it into a labeled tree. This is possible in linear time.
A good description of the algorithm can be found at Wikipedia [Wik16].

A.2. Outerplanar graphs

To generate an outerplanar graph we start with a cycle Cn and then add edges in the inner
face recursively, which works as follows. We take two adjacent vertices x, y of the cycle
and randomly chose a third one z. We then add the edge to form the triangle xyz. If z is
adjacent to either x or y on the cycle, then we have now only one new smaller cycles, which
is not triangulated. Otherwise we have two such cycles. We then proceed recursively with
these smaller cycles.

A.3. Maximal planar graphs

When generating maximal planar graphs, we hope to have a non-Hamiltonian graph and
thus aim for many separating triangles. Therefore, as described in Algorithm 7, we start
with a random Apollonian network, since it has by definition many separating triangles,
and then apply a random number of edge flips. An Apollonian network is generated by
a process of recursive subdivision of a triangle into three smaller triangles. We generate
an Apollonian networks by randomly choosing the triangle of the current graph that gets
subdivided next. An edge xy in a maximal planar graph is always on the boundary of
two triangles xyu, xyz. An edge flip in a maximal planar graph takes an edge xy, removes
it and in return adds the edge uz, connecting the two other vertices u and z of the two
former triangles. We apply a random number of edge flips on randomly chosen edges of
the Apollonian network to get a maximal planar graph.

89

90 . Appendix

Algorithm: generateMaxPlanarGraph

Data: number of vertices n
Result: maximal planar graph with n vertices
1 G create Apollonian network recursively and randomly
2 r random number between 0 and 3n� 6
3 for i from 0 to r do
4 flip random edge of G
5 return G

Algorithm 7: Algorithm to generate a random maximal planar graph.

A.4. Hamiltonian planar graphs

To generate Hamiltonian maximal planar graph, we take two maximal outerplanar graphs,
identify their spines and then flip those edges that exist twice. Edges of the outer cycle of
the second outerplanar graph are removed. The whole process is illustrated in Figure A.1.
In (a), the dotted edge in the right outerplanar graph also exists in the left. Hence, as
shown in Figure A.1 (b), we take the edge obtained by a flip of the dotted edge instead.

(a) (b) (c)

Figure A.1.: Starting with two maximal outerplanar graphs in (a), we remove the outer
cycle of the second graph and also flip its edges that already appear in the
first, shown in (b), and then merge the two graphs in (c).

A.5. 1-planar graphs

We generate 1-planar graphs using planar graphs. We process the vertices of a random
maximal planar graph in a random order and check whether we can add an edge in a
quadrangle, formed by two triangles. Figure A.2 shows a maximal planar graph, where
the edge xz can not be added, since it already exists. However, the edge xy can be added
and the edges uv and xy produce one crossing.

x

z

y

u

v

Figure A.2.: At x the edge xz can not be added, since it already exists, however, the edge
xy can be added to get two edges crossing only each other.

Bekos et al. [BKZ15] produced 1-planar graphs by starting with planar triconnected
quadrangulation and then augmented each face with two crossing edges.

90

B. Further experiment results 91

A.6. K-trees

To generate a K � tree with n vertices, we start with a complete graph with K vertices
and then iteratively choose a random clique C of size K, add a vertex and connect it to
all vertices of C. We stop once we have n vertices.

A.7. Random graphs

We use the Erdös-Rényi model to generate random graphs or more precisely the variant
of Gilbert [Gil59]. To get a random graph G(n, p) with n vertices, we take each edge of
the complete graph Kn into the graph with probability p.

A.8. Shu✏ing

We shu✏e each graph after the generation in order to prevent a bias of the algorithms
towards the generation process. We represent graphs in our implementation with an array
of vertices, where each vertex contains an array of its incident edges. To shu✏e a graph
we permute the vertex array and the edge array of each vertex.

B. Further experiment results

In this section we provide additional results to those presented in Chapter 4.

B.1. 1-planar graphs

In addition to Section 4.5, we report further results on 1-planar graphs. Figure B.3
shows the winning heuristic combination for 1-planar graphs with 200 graphs of sizes
n = 50, 100, 150. As already discussed, conGreedy-ceilFloor performed (nearly) always
best.

k 1 2 3 4 5 6 7 8

50

100

150

conGreedy

ceilFloor

n

conGreedy+

Figure B.3.: Winning heuristic on 1-planar graphs. Rows stop at k where average number
of crossings was below 1 for the first time for the best heuristic.

In order to compare the performances on 1-planar graphs to the performances on planar
graphs, we also tested the heuristics more extensively for k = 2, 3. Figures B.4 and B.5
show the best performances of all vertex order heuristics in combination with an edge
distribution heuristic as well as the two best full drawing heuristics for k = 2 and 3,
respectively.

Concerning k = 2 and in contrast to the results on planar graphs (see Section 4.4), we
observe that earDecomp is no longer always the best choice. The connectivity based
heuristics performed best with ceilFloor, and randDFS and treeBFS performed best
with circ. Furthermore, we observe that for larger n conGreedy+-ceilFloor performs
slightly better than conGreedy-ceilFloor.

Concerning k = 3, the main di↵erence to the results on planar graphs is that on 1-
planar graphs conCro performed way better than smlDgrDFS, while it was the opposite on
maximal planar graphs. Furthermore, in contrast to k = 2, we see that again conGreedy+

performs better alone than in combination with an edge distribution heuristic.

91

92 . Appendix

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200

av
g.

 #
 c

ro
ss

in
gs

n

conCro-ceilFloor
conGreedy+
conGreedy+-ceilFloor
conGreedy-ceilFloor
randDFS-circ
smlDgrDFS+
smlDgrDFS-earDecomp
treeBFS-circ

Figure B.4.: Average number of crossings achieved by selection of heuristic combinations
for 1-planar graphs and two pages.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 20 40 60 80 100 120 140 160 180 200

av
g.

 #
 c

ro
ss

in
gs

n

conCro-ceilFloor
conGreedy+
conGreedy+-ceilFloor
conGreedy-ceilFloor
randDFS-circ
smlDgrDFS+
smlDgrDFS-circ
treeBFS-circ

Figure B.5.: Average number of crossings achieved by selection of heuristic combinations
for 1-planar graphs and three pages.

B.2. Hypercubes and t-ary d-cubes

Figure B.6 shows the winning heuristic combination on hypercubes for k = 1 to d �
1 = pn(Qd). We observe that conGreedy was always the best vertex order heuristic in
combination with one or two of the greedy edge distribution heuristics. For k = d� 2 and
d � 1, ceilFloor and eLen achieved the same results. This aligns with the observations
in Section 4.7.

Figure B.7 shows the winning heuristic combination on t-ary d-cubes Q(t, d) for k = 1 to
10. In Section 4.7 we have seen that conCro was often the best heuristic for k = d + 1.
We observe now that it sometimes also for other k the best choice.

B.3. Random graphs

Figures B.8 and B.9 show the best performing heuristic combination in terms of average
crossings on random graphs with linear and quadratic number of edges in terms of n, if

92

C. Tools and machines 93

k 1 2 3 4 5 6

Q5

Q6

Q7

conGreedy

ceilFloor

eLen

circQ8

7

Figure B.6.: Winning heuristic on hypercubes Qd. A split corner represents that two
heuristics performed equally good.

k 1 2 3 4 5 6

Q(3, 2)

conGreedy

ceilFloor

circ

7

Q(3, 3)

Q(3, 4)

Q(3, 5)

8 9 10

Q(4, 2)

Q(4, 3)

Q(4, 4)

Q(5, 2)

Q(5, 3)

Q(6, 2)

Q(6, 3)

conGreedy+ (only)

conCro

Figure B.7.: Winning heuristic on t-ary d-cubes Q(t, d).

conGreedy and conGreedy+ are excluded. Settings for the experiment were again 200
graphs for each k and a or p.

C. Tools and machines

We implemented our graphs, book drawings, algorithms and experiments in an object-
oriented manner in Java, version 8. Our experiments were run on a private computer
with Windows 7 (64bit), an Intel Core i5-4670 (quad-core, 3,4Ghz) and 8GB RAM. We
generated our diagrams with Microsoft Excel 2013 and Inkscape. We used Ipe to create
our figures.

93

94 . Appendix

ka 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

5

6

7

8

9

ka 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

5

6

7

8

9

10

n = 100

ka 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

5

6

7

8

9

10

n = 150

10

n = 50

slope ceilFloorrandDFS earDecompconCro eLen circ

Figure B.8.: Winning heuristics in terms of average number of crossings on random graphs
with linear number of edges and with conGreedy and conGreedy+ excluded.

94

C. Tools and machines 95

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

slope ceilFloorrandDFS earDecompconCro eLen circ

0.1

p

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

p

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

p

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 50

n = 100

n = 150

Figure B.9.: Winning heuristics in terms of average number of crossings on random
graphs with quadratic number of edges and with conGreedy and conGreedy+

excluded.

95

	Contents
	1 Introduction
	1.1 Book drawings and book embeddings
	1.2 Motivation
	1.3 Related work
	1.4 Outline

	2 The problem
	2.1 Basic results
	2.1.1 Trees
	2.1.2 Biconnected components
	2.1.3 Outerplanar graphs
	2.1.4 Fixed vertex order

	2.2 NP-hardness
	2.2.1 Book embedding
	2.2.2 Crossing number

	2.3 Exact solution
	2.3.1 SAT
	2.3.2 Weighted MAX-SAT

	2.4 Counting crossings
	2.4.1 Counting and reporting
	2.4.2 Open edges sweep
	2.4.3 Transformation to two-layer cross counting
	2.4.4 Evaluation

	3 Heuristic approaches
	3.1 Vertex order heuristics
	3.1.1 Depth-first search
	3.1.2 Breath-first search
	3.1.3 Max-neighboring
	3.1.4 Connectivity

	3.2 Edge distribution heuristics
	3.2.1 Greedy
	3.2.2 Slope
	3.2.3 Ear decomposition

	3.3 Full drawing heuristics

	4 Evaluation of heuristics
	4.1 Linear number of edges
	4.1.1 Experimental results

	4.2 Outerplanar graphs
	4.3 Cartesian product of cycles
	4.3.1 Experimental results

	4.4 Planar graphs
	4.4.1 Finding Hamiltonian cycle
	4.4.2 Distributing perfectly
	4.4.3 Average number of crossings

	4.5 1-planar graphs
	4.5.1 Experimental results

	4.6 K-trees
	4.6.1 Experimental results

	4.7 Hypercubes and t-ary d-cubes
	4.7.1 Experimental results

	4.8 Complete graphs
	4.9 Complete bipartite graphs
	4.9.1 Experimental results

	4.10 Quadratic number of edges
	4.11 Conclusion

	5 Optimisation
	5.1 Greedy optimisation
	5.1.1 Greedy vertex order optimisation
	5.1.2 Greedy edge distribution optimisation
	5.1.3 Greedy book drawing optimisation
	5.1.4 Evaluation

	5.2 Evolutionary algorithms
	5.2.1 Mimicing evolution in nature
	5.2.2 Implementation
	5.2.3 Algorithms

	5.3 Evaluation of optimisation algorithms
	5.4 Force-based optimisation
	5.4.1 Mean & median iteration vertex order
	5.4.2 Force-based edge distribution

	5.5 Further approaches
	5.5.1 Graph partitioning & clustering
	5.5.2 Maximal independent set

	6 Summary and outlook
	Bibliography
	Appendix
	A Graph generation
	A.1 Trees
	A.2 Outerplanar graphs
	A.3 Maximal planar graphs
	A.4 Hamiltonian planar graphs
	A.5 1-planar graphs
	A.6 K-trees
	A.7 Random graphs
	A.8 Shuffling

	B Further experiment results
	B.1 1-planar graphs
	B.2 Hypercubes and t-ary d-cubes
	B.3 Random graphs

	C Tools and machines

