

Crossing Number of 3-Plane Drawings

joint work with Michael Hoffmann, Ignaz Rutter, Torsten Ueckerdt

Crossing Number of 3-Plane Drawings 2-Plane

joint work with Michael Hoffmann, Ignaz Rutter, Torsten Ueckerdt

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie

Def. A drawing is **2-plane** if every edge is crossed ≤ 2 .

Def. A drawing is **2-plane** if every edge is crossed ≤ 2 .

Def. A drawing is **2-plane** if every edge is crossed ≤ 2 .

Def. A drawing is **2-plane** if every edge is crossed ≤ 2 .

In terms of m = |E|: crossings

 $2|X| = |\{(e, x) \mid x \in X, e \in E, x \text{ on } e\}|$

In terms of m = |E|: crossings

 $2|X| = |\{(e, x) \mid x \in X, e \in E, x \text{ on } e\}| \le 2m$

 $|X| \leq m$

In terms of n = |V|:

In terms of n = |V|:

 $|X| \leq 5n - 10$

$$||c|| = # \bullet$$
-inc + #segment-inc

$$||c|| = # \bullet$$
-inc + #segment-inc

$$\|c\| = \# \bullet \text{-inc} + \# \text{segment-inc}$$

$$\mathcal{C}_i = \{ \mathsf{cell} \ c \colon \|c\| = i \}$$

 $\|c\| = \# \bullet -inc + \#segment-inc$ $C_i = \{cell \ c : \|c\| = i\}$

 \mathcal{C}_6

$$\|c\| = \# \bullet -inc + \#segment-inc$$

 $C_i = \{cell \ c : \|c\| = i\}$

$$\|c\| = \# \bullet$$
-inc + $\#$ segment-inc
 $C_i = \{ cell \ c : \|c\| = i \}$

$$\mathcal{C}_6 \quad \bigstar \quad \bigstar$$

l۲

$$\|c\| = \# \bullet$$
-inc + $\#$ segment-inc

$$\mathcal{C}_i = \{ \mathsf{cell} \ c \colon \|c\| = i \}$$

$$\|c\| = \# \bullet$$
-inc + $\#$ segment-inc

$$\mathcal{C}_i = \{ \mathsf{cell} \ c \colon \|c\| = i \}$$

$$\|c\| = \# \bullet$$
-inc + $\#$ segment-inc

$$\mathcal{C}_i = \{ \mathsf{cell} \ c \colon \|c\| = i \}$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = t \cdot (|V| - 2) + \sum_{i=1}^{\infty} (t + \frac{1-t}{4}i) |C_i| - |E|$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = t \cdot (|V| - 2) + \sum_{i=1}^{\infty} \left(t + \frac{1-t}{4}i\right) |\mathcal{C}_i| - |E|$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = t \cdot \frac{(|V| - 2)}{(|V| - 2)} + \sum_{i=1}^{\infty} (t + \frac{1-t}{4}i) |C_i| - |E|$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = t \cdot (|V| - 2) + \sum_{i=1}^{\infty} (t + \frac{1-t}{4}i) |C_i| - |E|$$

$$7 = t \cdot (10 - 2) + \frac{\sum_{i=1}^{\infty} w_{i,t} |C_i|}{\sum_{i=1}^{\infty} w_{i,t} |C_i|}$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = t \cdot (|V| - 2) + \sum_{i=1}^{\infty} (t + \frac{1-t}{4}i) |C_i| - |E|$$

$$7 = t \cdot (10 - 2) + \sum_{i=1}^{\infty} w_{i,t} |C_i| - 18$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = t \cdot (|V| - 2) + \sum_{i=1}^{\infty} (t + \frac{1-t}{4}i) |C_i| - |E|$$

$$7 = t \cdot (10 - 2) + \frac{\sum_{i=1}^{\infty} w_{i,t} |C_i|}{18}$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = \frac{\mathbf{t}}{\mathbf{t}} \cdot \left(|V| - 2\right) + \sum_{i=1}^{\infty} \left(\frac{\mathbf{t}}{\mathbf{t}} + \frac{1-t}{4}i\right) |\mathcal{C}_i| - |\mathbf{E}|$$

$$t = 5 \quad |V| \ge 3$$

$$X| = 5(|V| - 2) + \sum_{i=3}^{\infty} (5 - i) |C_i| - |E|$$

$$7 = t \cdot (10 - 2) + \sum_{i=1}^{\infty} w_{i,t} |C_i| - 18$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = t \cdot (|V| - 2) + \sum_{i=1}^{\infty} (t + \frac{1-t}{4}i) |C_i| - |E_i|$$

t = 5 |V| ≥ 3
X| = 5(|V| - 2) +
$$\sum_{i=3}^{\infty} (5 - i) |C_i| - |E|$$

Lemma: For every $t \in \mathbb{R}$ and every connected drawing of a graph G = (V, E) with $|E| \ge 1$, we have

$$|X| = t \cdot (|V| - 2) + \sum_{i=1}^{\infty} (t + \frac{1-t}{4}i) |C_i| - |E_i|$$

$$t = 5 \quad |V| \ge 3$$

|X| = 5(|V| - 2) + $\sum_{i=3}^{\infty} (5 - i) |C_i| - |E|$
|X| = 5(|V| - 2) + 2 \scale + \scale + \scale + \scale + \scale - \scale \scale - \s

Question: Is $|X| \le 3.\overline{3}n$ for every 2-plane drawing?

Obs: May assume no planar edges.

$$|X| = 5(n-2) + 2 \nabla + \square + A - \sum_{i=6}^{\infty} (i-5)|C_i| - m$$

Question: Is $|X| \le 3.\overline{3}n$ for every 2-plane drawing?

Obs: May assume no planar edges.

$$|X| = 5(n-2) + 2 \bigtriangledown + \square + \bigtriangleup - \sum_{i=6}^{\infty} (i-5)|\mathcal{C}_i| - m$$

Idea: bound $\bigtriangledown, \square, \bigstar$ in terms of $|X|$, *m* and $\sum_{i=6}^{\infty} (i-5)|\mathcal{C}_i|$

Question: Is $|X| \le 3.\overline{3}n$ for every 2-plane drawing?

Obs: May assume no planar edges.

$$|X| = 5(n-2) + 2 \checkmark + \square + \bigtriangleup - \sum_{i=6}^{\infty} (i-5)|\mathcal{C}_i| - m \quad (\star)$$

Idea: bound $\checkmark, \square, \bigstar$ in terms of $|X|$, *m* and $\sum_{i=6}^{\infty} (i-5)|\mathcal{C}_i|$

Observation:

$$|X| \ge 3$$
 $|X| \ge \square$
 $|X| \ge \square$
 $|X| \ge \bigstar$
 $|X| \le m$
 (\star)

Question: Is
$$|X| \le 3.\overline{3}n$$
 for every
2-plane drawing?
$$|X| = 5(n-2) + 2 \checkmark + \square + \bigstar \qquad \boxed{\sum_{i=6}^{\infty} (i-5)|\mathcal{C}_i| - m} \quad (\star)$$

Idea: bound $\bigvee, \square, \bigstar$ in terms of |X|, m and $\sum_{i=6}^{\infty} (i-5)|C_i|$

Observation:

$$|X| \ge 3$$
 $|X| \ge \square$
 $|X| \ge \square$
 $|X| \ge \bigstar$
 $|X| \le m$
 (\star)

to

Question: Is
$$|X| \le 3.\overline{3}n$$
 for every
2-plane drawing?Obs: May assume
no planar edges. $|X| = 5(n-2) + 2 \bigtriangledown + \square + \bigstar$ ≤ 0
 $-\sum_{i=6}^{\infty}(i-5)|C_i| - m$ (*)Idea: bound $\bigtriangledown, \square, \bigstar$ in terms of $|X|, m$ and $\sum_{i=6}^{\infty}(i-5)|C_i|$ Observation:
 $|X| \ge 3 \bigtriangledown$ Maximize $|X|$ in LP
 $|X|$ unboundedLP $|X| \ge \pounds$
 $|X| \le m$
 (\star) Idea: Need to
take cells of size
 ≥ 6 into account

1

 (\star)

Question: Is
$$|X| \le 3.\overline{3}n$$
 for every
2-plane drawing?Obs: May assume
no planar edges. $|X| = 5(n-2) + 2 \bigtriangledown + \square + \bigstar$ ≤ 0
 $-\sum_{i=6}^{\infty}(i-5)|C_i| - m$ (*)Idea: bound $\bigtriangledown, \square, \bigstar$ in terms of $|X|$, m and $\sum_{i=6}^{\infty}(i-5)|C_i|$ Observation:
 $|X| \ge 3 \bigtriangledown$ Maximize $|X|$ in LP $|X| \ge 1$ $|X|$ Idea: Need

 $LP \left\{ \begin{array}{ccc} |X| \ge 3 \bigtriangledown & \text{Maximize } |X| \text{ in LP} & |X| \text{ unbounded} \\ |X| \ge \square & |X| \\ |X| \ge \bigstar & \\ |X| \le m \\ (\star) & (\star) \end{array} \right. \left. \begin{array}{c} |X| \text{ in LP} & |X| \text{ unbounded} \\ |A| \text{ in LP} & |X| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} & |X| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} & |X| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} \\ |A| \text{ in LP} & |X| \text{ in LP} & |$

Question: Number of large cells?

Question: Number of large cells?

Question: Number of large cells?

Question: Number of large cells?

Question: Number of large cells?

Question: Sizes of large cells?

$\nabla | \mathbf{O} + \mathbf{I} | \mathbf{O} + \mathbf{i} | \mathbf{O} \leq \sum_{i \geq 6} i \cdot |\mathcal{C}_i|$

$$| \bigcirc + \square | \bigcirc + \bigtriangleup | \bigcirc \leq \sum_{i \ge 6} i \cdot |C_i|$$

Idea: count # of segments on large cells $\ge #$ segments

Second Attempt

Second Attempt

Want: $|X| \leq 3.\overline{3}n$

Second Attempt

Second Attempt

