

The Impact of Route Planning Algorithms in Practice

SEA 2018, L'Aquila

Dorothea Wagner | June 28, 2018

KARLSRUHE INSTITUTE OF TECHNOLOGY - INSTITUTE OF THEORETICAL INFORMATICS - GROUP ALGORITHMICS

www.kit.edu

Important applications, e.g.,

- Navigation systems for cars
- Apple Maps, Google Maps, Bing Maps, OpenStreetMap, ...
- Timetable information

Navigation Device for the World

Worldwide network composed of car, rail, flight, ...

Core Problem

Request:

 Find the best connection in a transportation network w.r.t. some metric

Idea:

- Network as graph G = (V, E)
- Edge weights are according to metric
- Shortest paths in G equal best connections
- Classic problem (Dijkstra 1959)

Problems:

- Transport networks are huge
- Dijkstra too slow (> 1 second)

Speed-Up Techniques

Observations:

- Dijkstra visits all nodes closer than the target
- Unnecessary computations
- Many requests in a hardly changing network

Idea:

- Two-phase algorithm:
 - Offline: compute additional data during preprocessing
 - Online: speed-up query with this data
- 3 criteria: preprocessing time and space, speed-up over Dijkstra

Showpiece of Algorithm Engineering

Showpiece of Algorithm Engineering

State-of-the-Art

Many techniques tuned for continent-sized road networks:

- Arc-Flags [2004,2006,2009,2013]
- Multi-Level Dijkstra [2000,2008,2009,2011,2016]
- ALT: A*, Landmarks, Triangle Inequality [1968,2005,2012]
- Reach [2004,2007]
- Contraction Hierarchies (CH, CCH) [2008,2013,2014,2016]
- Transit Node Routing (TNR) [2007,2013]
- Hub Labeling (HL) [2003,2011,2013,2014]

Timetable information:

- Transfer Pattern [2010,2016]
- Raptor [2013]
- Connection Scan [2013,2014,2017]
- Trip-Based Public Transit Routing [2015,2016]

Survey on "Route Planning in Transprotation Networks" [Bast et al.'16]

Speedup Techniques [Bast et al.'16]

In use at Apple, Bing, Google, TomTom, ...

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Basic Techniques

Partition Network

Shortcuts

New Challenges

Energy Consumption of Electric Vehicles:

- Restricted battery capacity
- "Range anxiety"

Customizable Metrics and Time-Dependency:

- User preferences
- Traffic congestion
- Historic travel time data

Timetable Information:

- Shortest paths in a timetable graph
- Timetable graphs differ from road graphs

Multimodal Route Planning:

- Incorporate unrestricted walking
- Change mode of transportation during the journey

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- Recuperation: Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

- **Recuperation:** Negative edge costs (no negativen cycles)
- Battery constraints: Battery has a limited capacity

SoC function maps SoC ("state of charge") at source to SoC at target

Example:

min. SoC 0, max. SoC 4

Speedup techniques have to evaluate functions [Eisner et al.'11]

Energy-Optimal Routes [Baum et al.'13]

- Shortcuts are functions, not scalar values
- Bidirectional search more complicated (unknown state-of-charge at target)
- User-dependent consumption profiles (⇒ custom metrics)

Experiments:

- Fast queries (few milliseconds)
- Fast customization (few seconds)

But: Energy-optimal routes follow slow roads

- Energy-optimal paths: 63 % extra time
- Fastest paths: 62 % extra energy

 \Rightarrow Consider tradeoff between speed and energy consumption

Find the fastest path such that the battery does not run out: $\mathcal{NP}\text{-hard}$

Constrained Shortest Paths

(960, 3.3)

000, 3.0) 090, 2.9)

- Energy can be saved driving below speed limit
- Additional instructions to the driver
- Simple approach: One edge per speed value
- \Rightarrow Bicriteria Dijkstra on multigraph.

Worst case: *n* vertices with *k* parallel edges produce $\Theta(k^n)$ solutions

Simple implementation, but impractical running times

Idea: Use continuous tradeoff functions instead of samples

- Times limits <u>x</u>, x (speed limit, traffic flow, ...)
- More accurate model
- Less complex solution space

TFP: Tradeoff Function Propagating Algorithm

Extends Bicriteria Dijkstra to tradeoff functions

CHAsp = CH & A* & TFP:

Combines TFP with speedup techniques

- Moderate preprocessing effort (Europe ~3 h; Germany ~30 min)
- Fast exact queries for typical ranges (<1 sec)</p>
- Even faster heuristics (<100 ms, average error <1%)</p>

Idea: Use continuous tradeoff functions instead of samples

- Times limits <u>x</u>, x (speed limit, traffic flow, ...)
- More accurate model
- Less complex solution space
- **TFP:** Tradeoff Function Propagating Algorithm
 - Extends Bicriteria Dijkstra to tradeoff functions

CHAsp = CH & A* & TFP:

Combines TFP with speedup techniques

- Moderate preprocessing effort (Europe ~3 h; Germany ~30 min)
- Fast exact queries for typical ranges (<1 sec)</p>
- Even faster heuristics (<100 ms, average error <1%)</p>

Karlsruhe Institute of Technology

Idea: Use continuous tradeoff functions instead of samples

- Times limits <u>x</u>, x (speed limit, traffic flow, ...)
- More accurate model
- Less complex solution space

TFP: Tradeoff Function Propagating Algorithm

Extends Bicriteria Dijkstra to tradeoff functions

CHAsp = CH & A* & TFP:

Combines TFP with speedup techniques

- Moderate preprocessing effort (Europe ~3 h; Germany ~30 min)
- Fast exact queries for typical ranges (<1 sec)</p>
- Even faster heuristics (<100 ms, average error <1%)</p>

Karlsruhe Institute of Technology

Idea: Use continuous tradeoff functions instead of samples

- Times limits <u>x</u>, x (speed limit, traffic flow, ...)
- More accurate model
- Less complex solution space

TFP: Tradeoff Function Propagating Algorithm

Extends Bicriteria Dijkstra to tradeoff functions

CHAsp = CH & A* & TFP:

Combines TFP with speedup techniques

- Moderate preprocessing effort (Europe ~3 h; Germany ~30 min)
- Fast exact queries for typical ranges (<1 sec)</p>
- Even faster heuristics (<100 ms, average error <1%)</p>

Including Charging Stops [Baum et al.'15]

- Recharging allowed at some nodes (but requires charging time).
- Realistic models of charging stations:
 - Charging power varies
 - Super chargers
 - Battery swapping stations

Challenges:

- Recuperation, battery constraints
- Energy efficient driving vs. time consuming charging stops
 - Detour for reaching a charging station
- Oharging is not uniform
 - Interrupt charging and take another station later

Observations

Find the fastest route from s to t:

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Find the fastest route from s to t:

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Observations

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Find the fastest route from *s* to *t*:

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Find the fastest route from *s* to *t*:

Reachable area

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Find the fastest route from s to t:

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

stitute for Theoretical Informatics

Find the fastest route from s to t: S $\hat{\mathbf{A}}$ Ø Reachable area Fast charging station / swapping station Charging station

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Find the fastest route from s to t:

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Reachable area

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Find the fastest route from s to t:

Reachable area

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Fast charging station / swapping station

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Charging station

Find the fastest route from s to t:

Reachable area

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Find the fastest route from s to t:

• Larger battery \Rightarrow simpler problem ?

Reachable area

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Find the fastest route from s to t:

Charging station

Dorothea Wagner - The Impact of Route Planning Algorithms in Practice June 28, 2018

Charging Function Propagation

CFP Algorithm

- Based on bicriteria Dijkstra
- If no charging station has been used: label = tuple (travel time, SoC)
- Per vertex: Maintain set of Pareto-optimal labels

Problem: When reaching a charging station: How long to stay?

- Depends on the remaining path to target
- Optimal state-of-charge for departure yet unknown

Solution:

- Delay this decision!
- Keep track of last passed charging station
- Labels represent charging tradeoffs

CHArge

CHArge = CH & A* & CFP:

- Combines CFP with speedup techniques
- Can handle arbitrary charging station types

Experiments:

- Moderate preprocessing times Europe ~30 min; Germany ~5 min
- Fast queries on continental-sized networks Europe ~1 min; Germany ~1 sec
- Even better results possible, using heuristics Europe ~0.1–1 sec; Germany ~20–100 ms often optimal solutions, mean error ~1%

Range Visualization

Visualize area reachable by an EV

Goals:

- Exact visualization
- Polygons with few segments
- Fast Computation

Subproblems:

- Compute reachable subgraph [Baum et al.'15]
- Compute polygon for visualization [Baum et al.'16]

Experiments: Polygons with ${\sim}1\,000$ segments in ${<}100\,\text{ms}$

Range Visualization

Visualize area reachable by an EV

Goals:

- Exact visualization
- Polygons with few segments
- Fast Computation

Subproblems:

- Compute reachable subgraph [Baum et al.'15]
- Compute polygon for visualization [Baum et al.'16]

COURSE DE COURSE

Experiments: Polygons with ${\sim}1\,000$ segments in ${<}100\,\text{ms}$

Time-Dependency

Real-World Weights

Practice:

- Traffic congestion
- Accidents
- Road constructions/closures, ...
- Driver prefers scenic routes, right-turns, ...
- Driver dislikes highways, a specific road X, ...
- Historic travel time data

Consequences:

- Weights change unexpectedly and/or depend on the user
- Changes shortest path structure
- Invalidates preprocessed data

Shortest Path Computation

Karlsruhe Institute of Technology

Two-phase:

- Preprocessing (slow): compute additional data
- Query (fast): answer st-queries using data from preprocessing

Shortest Path Computation

Two-phase:

- Preprocessing (slow): compute additional data
- Query (fast): answer st-queries using data from preprocessing

Three-phase:

- Preprocessing (slow): compute additional weight-independent data
- Customization (reasonably fast): introduce weights
- Query (fast): answer st-queries using data from preprocessing and customization

Customizable Route Planning

Customizable Multi-level Dijkstra (MLD) [Delling et al. '11, '13, '15]

- Metric independent partition of the graph
- Customization: Compute clique per cell
- Multi-level Dijkstra queries

Customizable Contraction Hierarchies (CCH) [Dibbelt et al. '14, '16]

- Uses metric independent nested dissection order
- Customization: Compute shortcut weights
- Elimination-tree query (requires no queue)

Historic Traffic Data

Karbruhe Institute of Technology

Motivation:

- Traffic around urban centers follows predictable patterns
- $\hfill \ensuremath{\,\bullet\)}$ In the morning everyone rushes to work \rightarrow traffic jam
- At noon less traffic
- $\hfill \ensuremath{\,\bullet\)}$ In the evening everyone goes home \rightarrow jam in the other direction
- But not on Sunday

Historic Traffic Data

Motivation:

- Traffic around urban centers follows predictable patterns
- $\hfill \ensuremath{\,\bullet\)}$ In the morning everyone rushes to work \rightarrow traffic jam
- At noon less traffic
- In the evening everyone goes home \rightarrow jam in the other direction
- But not on Sunday

- Exact patterns vary from region to region
- lacksquare ightarrow aggregate historic data to make a prediction for each weekday
- Historic traffic aware routing? \Rightarrow Time-dependent shortest paths

Handling Time-Dependency

Schedule-based public transit networks

- Trains depart and arrive at discrete times
- Time-expanded graph:
 - Model discrete events as nodes
 - Connect subsequent events by arcs (by same train or at same stop)

Handling Time-Dependency

Schedule-based public transit networks

- Trains depart and arrive at discrete times
- Time-expanded graph:
 - Model discrete events as nodes
 - Connect subsequent events by arcs (by same train or at same stop)

Time-dependent road networks

- Can enter an edge at any moment
- Infinite time-expanded graph
- \Rightarrow Not what we want

Approach: Encode time-dependency in edge weights

Linearly interpolate between a finite set of breakpoints

Arrival Time Function

Approach: Encode time-dependency in edge weights

Linearly interpolate between a finite set of breakpoints

Two Views

Two views on the same information

•
$$f(x) = g(x) + x$$

This talk: use most convenient view for current task

Properties of TD functions

FIFO: First-In-First-Out

- Per road segment: If we depart later, we arrive later
- Property of most, realistic TD networks
- Formally for arrival time function *f*:

$$f(x) < f(y)$$
 for $x < y$

• \Rightarrow *f* is bijection and *f*⁻¹ exists

Properties of TD functions

FIFO: First-In-First-Out

- Per road segment: If we depart later, we arrive later
- Property of most, realistic TD networks
- Formally for arrival time function *f*:

$$f(x) < f(y)$$
 for $x < y$

• \Rightarrow *f* is bijection and *f*⁻¹ exists

Periodicity

- After period Π (24h in the examples) traffic patterns repeat
- Formally for travel time function g:

$$g(x) = g(x + k\Pi)$$
 for all integers k

Time-dep. Speedup Techniques

Many speedup techniques have been adapted for time-dependency:

- ArcFlags: Flag arcs if optimal at some point in time
- ALT: Avoid time-dependency during preprocessing, by using lower bounds on functions
- TD-HL would require too much space (time-independent HL already very expensive in space)
- Shortcut/Overlay-based techniques require additional operations on TD functions
- TD-CRP: Requires profile-queries during customization
- Time-Dependent-Sampling uses multiple time-independent CHs (cannot guarantee correctness)

Time-dependent Shortcuts

- Linking: Needed to build shortcuts
- Merging: Needed to reduce multi-edges

Linking : Computing h(x) = g(f(x))

Function <i>f</i> Dep.Time Arr.Time	Function <i>g</i> Dep.Time Arr.Time	-
6:00 7:00	8:00 10:00	-
12:00 14:00	10:00 11:00	
18:00 19:00	15:00 17:00	

Linking : Computing h(x) = g(f(x))

Func Dep.Time	tion <i>f</i> Arr.Time	Funct Dep.Time	ion <i>g</i> Arr.Time
6:00	7:00	8:00	10:00
12:00	14:00	10:00	11:00
18:00	19:00	15:00	17:00

Function h				
Dep.Time	Mid.Time	Arr.Time		
6:00	7:00	?		
?	8:00	10:00		
?	10:00	11:00		
12:00	14:00	?		
?	15:00	17:00		
18:00	19:00	?		

Linking : Computing h(x) = g(f(x))

Func Dep.Time	tion <i>f</i> Arr.Time	Funct Dep.Time	Function <i>g</i> Dep.Time Arr.Time	
6:00	7:00	8:00	10:00	
12:00	14:00	10:00	11:00	
18:00	19:00	15:00	17:00	

Function h				
Dep.Time	Mid.Time	Arr.Time		
6:00	7:00	<i>g</i> (7:00)		
$f^{-1}(8:00)$	8:00	10:00		
$f^{-1}(10:00)$	10:00	11:00		
12:00	14:00	<i>g</i> (14:00)		
$f^{-1}(15:00)$	15:00	17:00		
18:00	19:00	<i>g</i> (19:00)		

Linking : Computing h(x) = g(f(x))

Function <i>f</i> Dep.Time Arr.Time		Function <i>g</i> Dep.Time Arr.Time	
6:00	7:00	8:00	10:00
12:00	14:00	10:00	11:00
18:00	19:00	15:00	17:00

Function h				
Dep.Time	Mid.Time	Arr.Time		
6:00	7:00	9:00		
pprox6:51	8:00	10:00		
\approx 8:34	10:00	11:00		
12:00	14:00	15:48		
13:12	15:00	17:00		
18:00	19:00	21:00		

Linking : Computing h(x) = g(f(x))

Funct Dep.Time	tion <i>f</i> Arr.Time	Funct Dep.Time	Function <i>g</i> Dep.Time Arr.Time	
6:00	7:00	8:00	10:00	
12:00	14:00	10:00	11:00	
18:00	19:00	15:00	17:00	

Function <i>h</i>		
6:00	0.00	
0.00	9.00	
≈6:51	10:00	
≈8:34	11:00	
12:00	15:48	
13:12	17:00	
18:00	21:00	

Merging : $h(x) = \min\{f(x), g(x)\}$

Merging : $h(x) = \min\{f(x), g(x)\}$

Merging : $h(x) = \min\{f(x), g(x)\}$

Complexity

|f| = # breakpoints of function f

Linking:

- Space: |*h*| ≤ |*f*| + |*g*|
- Time: *O*(|*f*| + |*g*|)
 - Coordinated sweep of both functions

Merging:

- Space: $|h| \le 2 \cdot (|f| + |g|)$
- Time: *O*(|*f*| + |*g*|)
 - Also coordinated sweep

Multimodal Route Planning

Many modes of transportation

Institute for Theoretical Informatics Chair Algorithmics

Multimodal Route Planning

- Many modes of transportation
- Many different set of rules
- and many more modes and variations exist

Common Algorithms & Walking Restrictions:

Algorithm F	Footpaths
RAPTOR [Delling et al. '12/'14] T CSA [Dibbelt et al. '13/'14] T Trip-Based Routing [Witt '15] T Transfer Patterns [Bast et al. '10/'16] M Frequency-Based [Bast, Storandt '14] M Public Transit Labeling [Delling et al. '15] A	Transitively closed Transitively closed Transitively closed Max. 400 meters Max. 15 minutes As specified by the timetable

Common Algorithms & Walking Restrictions:

Algorithm	Footpaths
RAPTOR [Delling et al. '12/'14]	Transitively closed
CSA [Dibbelt et al. '13/'14]	Transitively closed
Trip-Based Routing [Witt '15]	Transitively closed
Transfer Patterns [Bast et al. '10/'16]	Max. 400 meters
Frequency-Based [Bast, Storandt '14]	Max. 15 minutes
Public Transit Labeling [Delling et al. '15]	As specified by the timetable

Problems:

- Transitively close graph ⇒ limited walking (e.g. walking < 15 min ⇒ avg. degree > 100)
- Unrestricted walking reduces travel times significantly [Wagner & Zündorf '17]
- Open problem: Efficient algorithms

Problem: Unrestricted routes allow arbitrary transfers

Problem: Unrestricted routes allow arbitrary transfers

Not all sequences of transportation modes are reasonable

Multiple Transportation Modes [Delling et al.'09, Dibbelt et al.'12]

Problem: Unrestricted routes allow arbitrary transfers

- Not all sequences of transportation modes are reasonable
- Label constrained shortest paths
- Dijkstra's algorithm on product of network and finite-state automaton
- Adopt speed-up techniques

Shortcoming

Shortcoming

Shortcoming

- Restrictions must be known in advance
- User might not know them
- Only one route is computed (no alternatives)

Goal: compute a useful set of multimodal journeys

Multiple Transportation Modes [Delling et al.'13]

- Train, Bus, Tube, Taxi, Walking, Cycling
- Optimize w.r.t. multiple criteria: travel time, costs, emissions, # of mode changes, walking duration ...
- Pareto solution set too large

Multiple Transportation Modes [Delling et al.'13]

- Train, Bus, Tube, Taxi, Walking, Cycling
- Optimize w.r.t. multiple criteria: travel time, costs, emissions, # of mode changes, walking duration ...
- Pareto solution set too large
- \Rightarrow Reduce to most relevant journeys

Multiple Transportation Modes [Delling et al.'13]

- Train, Bus, Tube, Taxi, Walking, Cycling
- Optimize w.r.t. multiple criteria: travel time, costs, emissions, # of mode changes, walking duration ...
- Pareto solution set too large
- \Rightarrow Reduce to most relevant journeys

Preliminary results

- Grade by relevance
- Fuzzy filter

Conclusion & Outlook

Success story for algorithm engineering

- Fast route planning on road and timetable networks
- Metric matters
- Multimodal route planning expensive

Many new challenges

- Scalability and quality in multimodal route planning
- Incorporating alternative mobility concepts
- Robustness, adjustable to unforeseen traffic situations
- Personalized route planning
- Eco-friendliness
- Autonomous driving
- Traffic control

Thanks for your attention!

