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Motivation

Important applications, e.g.,
Navigation systems for cars
Apple Maps, Google Maps, Bing
Maps, OpenStreetMap, . . .
Timetable information

Dorothea Wagner – Route Planning Algorithms

September 8, 2017

Institute for Theoretical Informatics
Chair Algorithmics



Navigation Device for the World

Worldwide network composed of car, rail, flight, . . .
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Core Problem

Request:
Find the best connection in a
transportation network w.r.t. some metric

Idea:
Network as graph G = (V ,E)

Edge weights are according to metric
Shortest paths in G equal best
connections
Classic problem (Dijkstra 1959)

Problems:
Transport networks are huge
Dijkstra too slow (> 1 second)
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Speed-Up Techniques

Observations:
Dijkstra visits all nodes closer than the
target
Unnecessary computations
Many requests in a hardly changing
network

Idea:
Two-phase algorithm:

Offline: compute additional data during
preprocessing
Online: speed-up query with this data

3 criteria: preprocessing time and space,
speed-up over Dijkstra
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Showpiece of Algorithm Engineering
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Showpiece of Algorithm Engineering
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Realistic
scenarios

Real-world data

Performance guarantees & practical algorithms
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Speed-Up Techniques

Many techniques tuned for continent-sized road networks:
Arc-Flags [2004,2006,2009,2013]
Multi-Level Dijkstra [2000,2008,2009,2011]
ALT: A*, Landmarks, Triangle Inequality [1968,2005,2012]
Reach [2004,2007]
Contraction Hierarchies (CH, CCH) [2008,2013,2014,2016]
Transit Node Routing (TNR) [2007,2013]
Hub Labeling (HL) [2003,2011,2013,2014]

Timetable information:
Transfer Pattern [2010,2016]
Raptor [2013]
Connection Scan [2013,2014,2017]

Survey on “Route Planning in Transprotation Networks” [Bast et al.’16]
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Speedup Techniques [Bast et al.’16]
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In use at Apple, Bing, Google, TomTom, . . .
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Some Ideas
Partition Network

Shortcuts
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Overlays [Schulz et al.’00, Holzer et al.’08]

Observation: many (long-distance) paths share large subpaths
Idea: precompute partial solutions

Overlay graph:
Select important nodes (separators,
path coverage, heuristic)
Compute shortcut-edges:

Skip unimportant nodes
Conserve distances to important nodes

Queries:
Multi-level Dijkstra variant
Ignore edges towards less important nodes s

t

analogous: hierarchies with several levels of nodes of varying importances
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Contraction Hierarchies [Geisberger et al.’12]

Idea: Compute shortcuts by iteratively contracting nodes
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Contraction of x :
Remove x , add shortcuts among neighbors to maintain distances
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Contraction Hierarchies [Geisberger et al.’12]

Idea: Compute shortcuts by iteratively contracting nodes
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Delete longer edge in case of multi-edges
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Contraction Hierarchies [Geisberger et al.’12]

Idea: Compute shortcuts by iteratively contracting nodes
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Contraction Hierarchies [Geisberger et al.’12]

Idea: Compute shortcuts by iteratively contracting nodes
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Contraction Hierarchies [Geisberger et al.’12]

Idea: Compute shortcuts by iteratively contracting nodes
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If shorter path through remaining graph exists, remove shortcut
Search for such shorter paths is called witness search
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Contraction Hierarchies [Geisberger et al.’12]

Preprocessing example: Iteratively contract nodes
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Contraction Hierarchies [Geisberger et al.’12]

Preprocessing example: Iteratively contract nodes
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Contraction Hierarchies [Geisberger et al.’12]

Preprocessing example: Iteratively contract nodes
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Preprocessing example: Iteratively contract nodes
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Contraction Hierarchies [Geisberger et al.’12]

Preprocessing example: Iteratively contract nodes
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Order nodes by “importance”
Intuition: Nodes on more shortest paths are more important
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Contraction Hierarchies [Geisberger et al.’12]

Query example: Bidirectional upward search
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Contraction Hierarchies [Geisberger et al.’12]

Query example: Bidirectional upward search
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For every original shortest path, there is a shortest up-down path
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New Challenges
Energy Consumption of Electric Vehicles:

Restricted battery capacity
“Range anxiety”

User-Customizable Metrics

Timetable Information:
Shortest paths in a timetable graph
Timetable graphs differ from road graphs
Incorporate unrestricted walking

Multimodal Route Planning:
Change the type of transportation
during the journey
Constrained vs multicriteria shortest paths 28
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Route Planning for Electric Vehicles
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Route Planning for Electric Vehicles
Recuperation: Negative edge costs (no negativen cycles)
Battery constraints: Battery has a limited capacity

SoC function maps SoC (“state of charge”) at source to SoC at target

Example:
min. SoC 0, max. SoC 4
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Speedup techniques have to evaluate functions [Eisner et al.’11]
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Energy-Optimal Routes [Baum et al.’13]

Shortcuts are functions, not scalar values
Bidirectional search more complicated
(unknown state-of-charge at target)
User-dependent consumption profiles
(⇒ custom metrics)

s

t

time

consumption

5 kWh

20min

3 kWh

35min

Experiments:
Fast queries (few milliseconds)
Fast customization (few seconds)

But: Energy-optimal routes follow slow roads
Energy-optimal paths: 63 % extra time
Fastest paths: 62 % extra energy

⇒ Consider tradeoff between speed and energy consumption

Find the fastest path such that the battery does not run out: NP-hard
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Constrained Shortest Paths

Energy can be saved driving below speed limit
Additional instructions to the driver
Simple approach: One edge per speed value

⇒ Bicriteria Dijkstra on multigraph.

360 s 0.5 kWh
450 s 0.4 kWh

city, 5 km

150 s 1.4 kWh
190 s 1.1 kWh

motorway, 5 km

450 s 1.4 kWh
600 s 0.9 kWh

rural, 10 km

(0, 0) (450, 0.4)
(360, 0.5)

(510, 1.9)
(550, 1.6)
(640, 1.5)

(960, 3.3)
(1 000, 3.0)
(1 090, 2.9)
(1 110, 2.8)
(1 150, 2.5)
(1 240, 2.4)

Worst case: n vertices with k parallel edges produce Θ(kn) solutions

Simple implementation, but impractical running times
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Realistic Model [Baum et al.’17]

Idea: Use continuous tradeoff functions instead of samples

Times limits x , x (speed limit, traffic flow, . . . )

More accurate model
Less complex solution space

TFP: Tradeoff Function Propagating Algorithm
Extends Bicriteria Dijkstra to tradeoff functions

CHAsp = CH & A* & TFP:

Combines TFP with speedup techniques

Experiments:
Moderate preprocessing effort (Europe ∼3 h; Germany ∼30 min)
Fast exact queries for typical ranges (<1 sec)
Even faster heuristics (<100 ms, average error <1%)
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Including Charging Stops [Baum et al.’15]

Recharging allowed at some nodes (but requires charging time).
Realistic models of charging stations:

Charging power varies
Super chargers
Battery swapping stations

Challenges:
1 Recuperation, battery constraints
2 Energy efficient driving vs. time consuming charging stops

Detour for reaching a charging station
3 Charging is not uniform

Interrupt charging and take another station later

100%

0%

20%

40%

80%

60%

0 1 2 3 4 5 6 7

SoC

time
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Observations

Find the fastest route from s to t:

t

Reachable area
Charging station

s ?
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Observations

Find the fastest route from s to t:

t

Reachable area
Charging station

Next charging station might be
positioned in wrong direction

s
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Observations

Find the fastest route from s to t:

Reachable area
Charging station

s

Fast charging station / swapping station

Partial recharging, even if the
target is already reachable

t
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Observations

Find the fastest route from s to t:

Reachable area
Charging station Fast charging station / swapping station

s
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Observations

Find the fastest route from s to t:

Reachable area
Charging station Fast charging station / swapping station

s
t

Fastest route may contain cycles
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Observations

Find the fastest route from s to t:

Reachable area
Charging station

s

Larger battery ⇒ simpler problem ?

t

More options to consider
Larger search space

?
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Charging Function Propagation

CFP Algorithm
Based on bicriteria Dijkstra
If no charging station has been used: label = tuple (travel time, SoC)
Per vertex: Maintain set of Pareto-optimal labels

Problem: When reaching a charging station: How long to stay?
Depends on the remaining path to target
Optimal state-of-charge for departure yet unknown

Solution:
Delay this decision!
Keep track of last passed charging station
Labels represent charging tradeoffs
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CHArge

CHArge = CH & A* & CFP:

Combines CFP with speedup techniques
Can handle arbitrary charging station types

Experiments:
Moderate preprocessing times
Europe ∼30 min; Germany ∼5 min
Fast queries on continental-sized networks
Europe ∼1 min; Germany ∼1 sec
Even better results possible, using heuristics
Europe ∼0.1–1 sec; Germany ∼20–100 ms
often optimal solutions, mean error ∼1%
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Range Visualization

Visualize area reachable by an EV

Goals:
Exact visualization
Polygons with few segments
Fast Computation

Subproblems:
1 Compute reachable

subgraph [Baum et al.’15]
2 Compute polygon

for visualization [Baum et al.’16]

Experiments: Polygons with ∼1 000 segments in <100 ms

Dorothea Wagner – Route Planning Algorithms

September 8, 2017

Institute for Theoretical Informatics
Chair Algorithmics



Range Visualization

Visualize area reachable by an EV

Goals:
Exact visualization
Polygons with few segments
Fast Computation

Subproblems:
1 Compute reachable

subgraph [Baum et al.’15]
2 Compute polygon

for visualization [Baum et al.’16]

Experiments: Polygons with ∼1 000 segments in <100 ms

Dorothea Wagner – Route Planning Algorithms

September 8, 2017

Institute for Theoretical Informatics
Chair Algorithmics



Customizable Route Planning



Customizable Route Planning



Real-World Metrics
Distance
Pedestrian
Travel time, but don’t use toll roads
Travel time, avoid left turns, height restrictions, . . .
Traffic Congestion, accidents, . . .

Problem
Preprocessing is metric-dependent
State-of-the-art algorithms tailored to travel time
heavily exploit ‘hierarchy’ of road categories

Naive solution
Compute preprocessing for each metric
Preprocessing and query time increase significantly
Higher space overhead

⇒ Metric customization
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Shortest Path Computation

Two-phase:
Preprocessing (slow): compute
additional data
Query (fast): answer st-queries using
data from preprocessing

Three-phase:
Preprocessing (slow): compute
additional weight-independent data
Customization (reasonably fast):
introduce weights
Query (fast): answer st-queries using
data from preprocessing and
customization
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CH Revisited

Metric-dependent orders:
Node order determines CH performance
Many ordering algorithms exist
Some fast, some slow, some specific to certain graph classes, . . .
But: Best order depends on the weights

Metric-independent orders:
Is there an order that is good for every weight?
(but not necessarily best)
Core idea of 3-phase CH
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Nested Dissection (ND)

ND ordering from recursive O(nβ) balanced separators
yields elimination tree of height O(nβ)
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Consequences [Bauer et al.’13, Dibbelt et al.’16]

Theoretical guarantee:
ND-ordering yields search space guarantee of O(nβ) nodes
O(
√

n) rec. balanced separators yield guarantee of O(n) edges
Planar graphs have O(

√
n) recursive balanced separators

Practical impact:
Contraction ordering that is weight-independent
Minimum vs maximum contraction hierarchies
Customizable contraction hierarchies (CCH)
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CCH : Three-Phase Approach

Preprocessing
Compute ND-order
Solve balanced graph bisection subproblem
Compute fill-in (shortcuts)

Customization
Add weights to shortcuts

Enumerate lower triangles in CH

Query
Existing CH-query works unmodified
Alternative: Elimination-tree query
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Elimination-Tree-Query

While not at the root do:
If s comes before t in the order:

Relax outgoing arcs of s in its search space
s ← parent(s)

Else:
Relax outgoing arcs of t in its search space
t ← parent(t)

Advantage:
No queue
Works with negative weights

But:
Local queries are not faster than long
distance queries
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Experimental Evaluation
Instance:

Standard DIMACS Europe benchmark, travel time metric
≈ 18M nodes, ≈42M directed edges
26.5% degree 1, 18.7% degree 2

Results:
Plain Dijkstra: ≈ 2s

CH-preprocessing: ≈ 5min - 6h
CH-query: ≈ 0.107ms

CCH-customization (16 threads): ≈ 420ms
CCH-query: ≈ 0.413ms
CCH-query (+perfect witness search): ≈ 0.161ms

CRP-customization (12 threads): ≈ 370ms
CRP-query: ≈ 1.65ms
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Multimodal Route Planning

Many modes of transportation

Many different set of rules
and many more modes and variations exist
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Multimodal Route Planning

Fixed Schedule

Available on Demand
Shared Personal

Electro

Many modes of transportation
Many different set of rules
and many more modes and variations exist
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Unrestricted Walking

Common Algorithms & Walking Restrictions:

Algorithm Footpaths

RAPTOR [Delling et al. ’12/’14] Transitively closed
CSA [Dibbelt et al. ’13/’14] Transitively closed
Trip-Based Routing [Witt ’15] Transitively closed
Transfer Patterns [Bast et al. ’10/’16] Max. 400 meters
Frequency-Based [Bast, Storandt ’14] Max. 15 minutes
Public Transit Labeling [Delling et al. ’15] As specified by the timetable

Problems:
Transitively close graph⇒ limited walking
(e.g. walking ≤ 15 min⇒ avg. degree > 100)

Unrestricted walking reduces travel times significantly [Wagner & Zündorf ’17]

Open problem: Efficient algorithms
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Multiple Transportation Modes

Problem: Unrestricted routes allow arbitrary transfers

s t

subway line

subway line

private car

Not all sequences of transportation modes are reasonable
Label constrained shortest paths
Dijkstra’s algorithm on product of network and finite-state automaton
Adopt speed-up techniques
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Multiple Transportation Modes

Problem: Unrestricted routes allow arbitrary transfers

s t

subway line

subway line

cycle hire

Not all sequences of transportation modes are reasonable
Label constrained shortest paths
Dijkstra’s algorithm on product of network and finite-state automaton
Adopt speed-up techniques

[Delling et al.’09, Dibbelt et al.’12]
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Multiple Transportation Modes

Shortcoming

s t

subway line

subway line

cycle hire

Restrictions must be known in advance
User might not know them
Only one route is computed (no alternatives)

Goal: compute a useful set of multimodal journeys
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Multiple Transportation Modes

Train, Bus, Tube, Taxi, Walking, Cycling
Optimize w.r.t. multiple criteria:
travel time, costs, emissions,
# of mode changes, walking duration . . .

Pareto solution set too large

⇒ Reduce to most relevant journeys

Preliminary results
Grade by relevance
Fuzzy filter

[Delling et al.’13]
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Conclusion & Outlook
Success story for algorithm engineering

Fast route planning on road and timetable networks
Metric matters
Multimodal route planning expensive

Many new challenges
Scalability and quality in multimodal route planning
Incorporating alternative mobility concepts
Robustness, adjustable to unforeseen traffic situations
Personalized route planning
Eco-friendliness
Autonomous driving
Traffic control
. . .
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Thanks for your attention!

Falsifiable
Hypotheses

Design

Experim
ent

A
n
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Implemen
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