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Overview

Introduction to graph editing
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Introduction to graph clustering

Cluster editing
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Graph Classes

Graph G is part of a graph class if it fulfills certain properties.

Examples:

Trees
Planar graphs
Chordal graphs
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Graph Classes

Graph G is part of a graph class if it fulfills certain properties.

Examples:

Trees
Planar graphs
Chordal graphs
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Editing

Given a graph G – what is the smallest number of operations that
need to be applied such that G is part of a graph class H?

Possible operations:
Delete an edge
Insert an edge
Delete a node
Insert a node

u

vy z

x

w

a

Can assign costs to operations – minimize sum of costs.
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Example: Spanning Forest

Spanning Forest
Given a graph G = (V ,E), find a maximal set F ⊆ E such that
H = (V ,F ) is a forest.

Equivalent:
find a set of minimum size of edges X such that G \ X is a forest.

As editing problem:
Operations: edge deletion
Target class: forest

Costs: edge weights

O(m + n) (e.g. BFS, DFS)
u

vy z

x

w

a10 8 2

57

3

9 1 4
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Example: Maximum Spanning Forest

Maximum Spanning Forest
Given a weighted graph G = (V ,E , ω), find a set F ⊆ E of maximum
weight such that H = (V ,F ) is a forest.

Equivalent:
find a set of minimum weight of edges X such that G \ X is a forest.

As editing problem:
Operations: edge deletion
Target class: forest
Costs: edge weights

Kruskal’s algorithm: O(m log n)
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w

a10 8 2

57
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Example: Chordal Completion

Chordal Graph
A graph G = (V ,E) is chordal iff all cycles of four or more vertices
have a chord, i.e., an edge that is not part of the cycle but connects
two vertices of it.

Minimum Chordal Completion:
Operation: edge insertion
Target class: chordal graphs A B

CDE

Treewidth
One less than the size of the largest clique in a chordal completion
with smallest clique number.
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Example: Independent Set

Maximum Independent Set
Given a graph G = (V ,E), find a set I ⊆ V of maximum size such
that the graph induced by I has no edges.

Equivalent:
Find a minimum set of nodes X such that G \ X has no edges.

As editing problem:
Allowed operations:
node deletions
Target class: graphs
without edges

u

vy z

x

w

a

NP-complete.
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Graph Clustering: A First Intuition

graph with a particular edge structure

identify subgraphs that are significantly dense
external sparsity→ more significant

−→ decomposition into dense subgraphs

(= Clustering)

8 Dorothea Wagner – Graph Editing Problems and their Application in Graph Clustering
February 13-14, 2017

Institute of Theoretical Informatics
Group Algorithmics



Graph Clustering: A First Intuition

graph with a particular edge structure
identify subgraphs that are significantly dense

external sparsity→ more significant

−→ decomposition into dense subgraphs

(= Clustering)

8 Dorothea Wagner – Graph Editing Problems and their Application in Graph Clustering
February 13-14, 2017

Institute of Theoretical Informatics
Group Algorithmics



Graph Clustering: A First Intuition

graph with a particular edge structure
identify subgraphs that are significantly dense
external sparsity→ more significant

−→ decomposition into dense subgraphs

(= Clustering)

8 Dorothea Wagner – Graph Editing Problems and their Application in Graph Clustering
February 13-14, 2017

Institute of Theoretical Informatics
Group Algorithmics



Graph Clustering: A First Intuition

graph with a particular edge structure
identify subgraphs that are significantly dense
external sparsity→ more significant

−→ decomposition into dense subgraphs

(= Clustering)

8 Dorothea Wagner – Graph Editing Problems and their Application in Graph Clustering
February 13-14, 2017

Institute of Theoretical Informatics
Group Algorithmics



Graph Clustering: A First Intuition

graph with a particular edge structure
identify subgraphs that are significantly dense
external sparsity→ more significant

−→ decomposition into dense subgraphs

(= Clustering)

8 Dorothea Wagner – Graph Editing Problems and their Application in Graph Clustering
February 13-14, 2017

Institute of Theoretical Informatics
Group Algorithmics



Graph Clustering: A First Intuition

graph with a particular edge structure
identify subgraphs that are significantly dense
external sparsity→ more significant

−→ decomposition into dense subgraphs

(= Clustering)

8 Dorothea Wagner – Graph Editing Problems and their Application in Graph Clustering
February 13-14, 2017

Institute of Theoretical Informatics
Group Algorithmics



Graph Clustering: A First Intuition

clusters

graph with a particular edge structure
identify subgraphs that are significantly dense
external sparsity→ more significant

−→ decomposition into dense subgraphs (= Clustering)
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Applications in Biology

molecular structure of a protein
(Ca2+ /Calmodulin-dependent kinase II (CaMKII)

source: protein database www.rcsb.org)

cluster ≈ functional unit (domain) of a protein
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Applications in Biology

protein interactions
(source: Max-Delbrück-Centre for molecular medicine, www.mdc-berlin.de)

cluster ≈ isolatable seat of disease
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Applications in Social Network
Analysis

static snapshot: edges = 3 months of emails
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From Intuition to Formalization

Paradigm of Graph Clustering
Intra-cluster density vs. inter-cluster sparsity

⇓

Mathematical Formalization
quality measures for clusterings
models for communities – cliques, quasi-cliques, . . .

Many exist, optimization generally (NP-)hard

There is no single, universally best strategy
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Postulations to a Measure
Given a graph G and a clustering C, a quality measure should behave
as follows:

more intra-edges⇒ higher quality

less inter-edges⇒ higher quality
cliques must never be separated
clusters must be connected
random clusterings should have bad quality
disjoint cliques should approach maximum quality
locality of the measure (being better/worse in one part does not
depend on what is done in other part of graph)
double the instance, what should happen . . . same result
comparable results across instances
fulfill the desiderata of the application
. . .

Kleinberg: An impossibility theorem for clustering [Kle02]
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Formalization via Bottleneck
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Quality of the clustering, upper cluster:

inter-cluster sparsity: 2 edges for cutting off 7 nodes (cheap)
intra-cluster density: best addit. cut:
intra-cluster density: 3 edges for cutting off 4 nodes (expensive)
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Examples: Conductance, Expansion

conductance of a cut (C,V \ C):

ϕ(C,V \ C) :=
ω(E(C,V \ C))

min
{∑

v∈C

ω(v),
∑

v∈V\C

ω(v)
}

(i.e.: thickness of bottleneck which cuts off C)

inter-cluster conductance (C) := 1−maxC∈C ϕ(C,V \ C)
(i.e.: 1− worst bottleneck induced by some C ∈ C)

intra-cluster conductance (C) := minC∈C minP]Q=C ϕ|C(P,Q)
(i.e.: best bottleneck still left uncut inside some C ∈ C)

expansion of a cut (C,V \ C):

ψ(C,V \ C) :=
ω(E(C,V \ C))

min
{
|C|, |V \ C|

}
(i.e.: in ϕ, replace ω(v) by 1; intra- and inter-cluster expansion analogously)
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Formalization: Counting Edges
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Measuring clustering quality by counting edges:
inter-cluster sparsity: 6 edges of ca. 800 node pairs (few)

intra-cluster density: 53 edges of 99 node pairs (many)
example: quality measure coverage = # intra-cluster edges

# edges

≈ 0.9
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Example: Coverage
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coverage: cov(C) := # intra-cluster edges
# edges ≈ 0.9

(i.e.: fraction of covered edges)

only one cluster⇒ coverage = 1.0
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A Promising Remedy

”. . . if we subtract from [coverage] the expected value [. . . ],
we do get a useful measure.” [NG04]

Modularity

mod(C) := cov(C) − E(cov(C))

=
# intra-cluster edges

|#edges|
− 1

4|#edges|2
∑
C∈C

(∑
v∈C

deg(v)

)2

NP-hard to optimize [BDG+08]
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Modularity in Practice

easy to use & implement
reasonable behavior on many practical instances
 heavily used in various fields:

ecosystem exploration
collaboration analyses
biochemistry
structure of the internet (AS-graph, www, routers)

close to human intuition of quality [GGHW10]

scaling behavior (double instance, result differs) [folklore]

non-locality of optimal clustering [folklore]

resolution limit (no tiny and large clusters at the same time)[FB07]

large sparse graph high values, balanced clusters [GdMC10]
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Surprise

G = (V ,E), |E | = m, clustering C, ie intracluster edges
Random G with m edges

Surprise

S(C) := Prob(G has at least ie intracluster edges in C)

=
m∑

i=ie

(ip
i

)
·
(p−ip

m−i

)(p
m

) ,

where p :=
(n

2

)
and ip #intra-cluster node pairs. [AMM05]

Urn model: ip white, p − ip black balls, draw m balls w/o replacement

NP-hard to optimize [FKW14]
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Cluster Editing

Ideal clustering: Disjoint cliques.

Idea: Edge editing to disjoint cliques – Cluster Editing.
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Cluster Editing
“How many edges must be inserted or deleted to arrive at disjoint
cliques?”

Task: find clustering with minimum cluster editing set [BB13, BBK08]

NP-complete
popular in biology
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Cluster Editing
“How many edges must be inserted or deleted to arrive at disjoint
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Forbidden Subgraphs
Disjoint cliques⇔ no P3 as node-induced subgraph

Generalization:
No P4 or C4 as node-induced subgraph
= Quasi-Threshold Graph
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Quasi-Threshold Graphs

Trivially perfect graphs
Dense? Sparse? – Both!

Max. diameter 2
Central hub per component
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Why Quasi-Threshold Editing?

Components of quasi-threshold graphs are communities [NG13]

Real world graphs are not quasi-threshold graphs
 Find quasi-threshold graph with small edge edit distance
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Algorithmic Results

General
Cluster Editing
Quasi-Threshold Editing
Threshold Editing
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Approaches

P3-free editing and P4/C4-free editing are NP-complete
⇒ no efficient exact algorithms in general

Alternative approaches:
Average case instead of worst case analysis
Randomization
Approximative solutions
Fixed parameter tractability (FPT)
Empirical studying of heuristics on benchmarks
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Fixed Parameter Tractability

Goal: Limit the explosion of the running time: O(f (k) · nO(1)).
Challenge: Identifying a suitable, “small” parameter k .

⊕: Optimal, provable running time
	: Exponential running time

Hope:
Obtain a small kernel in polynomial time
“Tolerable” f (k)
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Formal Definition

Parameterized Problem
L ⊆ Σ∗ × Σ∗ (usually ⊆ Σ∗ × N)

Fixed-parameter tractable
L ∈ FPT iff (x , k) ∈ L can be decided in time f (k) · |x |O(1) where f is
a computable function only depending on k .

Kernelization

(x , k) 7→ (x ′, k ′), with
k ′ ≤ k , |x ′| ≤ g(k)

(x , k) ∈ L iff (x ′, k ′) ∈ L
Reduction in polynomial time
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General Results

Graph classes defined by a finite set of (finite) forbidden induced
subgraphs:

Editing FPT in number of edits k , O
(
ν2k · nν+1

)
, ν maximum

number of nodes in a forbidden subgraph. [Cai96]
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Example: P3-free, k = 3

B

A C

D

E

F

G

G

−{A,B} −{B,C} +{A,C}

⇒ Found solution. If not: need to search the full tree.
If nothing found at level k : impossible with k edits.

Time O(3k · poly(n))
Best known: O(1.62k + m + n) [Böc12]
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30 Dorothea Wagner – Graph Editing Problems and their Application in Graph Clustering
February 13-14, 2017

Institute of Theoretical Informatics
Group Algorithmics



Example: P3-free, k = 3

B

A C

D

E

F

G

G

−{A,B} −{B,C} +{A,C}

⇒ Found solution. If not: need to search the full tree.
If nothing found at level k : impossible with k edits.

Time O(3k · poly(n))
Best known: O(1.62k + m + n) [Böc12]
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30 Dorothea Wagner – Graph Editing Problems and their Application in Graph Clustering
February 13-14, 2017

Institute of Theoretical Informatics
Group Algorithmics



Example: P3-free, k = 3

B

A C

D

E

F

G

G

−{A,B} −{B,C} +{A,C}

⇒ Found solution. If not: need to search the full tree.
If nothing found at level k : impossible with k edits.

Time O(3k · poly(n))
Best known: O(1.62k + m + n) [Böc12]
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FPT-based editing

Show for a graph that k is exact solution:
show solution with k
show impossibility with k − 1

Branching rules can be optimized automatically [GGHN03]

Bounding possible to limit explored branches.
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Lower Bounds: P3-free, k = 3

B

A C

D

E
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G

G

−{A,B} −{B,C} +{A,C}

Lower Bound: 0
Remaining operations: 3
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Lower Bounds: P3-free, k = 3
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Cluster Editing

There is a 2k -kernel (k = number of edits) [CM12]

Heuristics exist [BB13]
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Quasi-Threshold Editing

Quasi-Threshold Editing Problem
Given a graph G find a quasi-threshold graph with minimum edge
editing (insertion + deletion) distance to G.

Quasi-Threshold Recognition:
Certifying recognition in linear time. [Chu08]

Simpler certifying recognition algorithm [BHSW15]

Exact editing:
Is NP-hard [NG13]

Is FPT O
(
6k (|V |+ |E |)

)
[Cai96]

Polynomial kernel exists (O
(
k7
)

vertices) [DP15]

Heuristic editing:
First editing heuristic – Ω

(
|V |2

)
[NG13]

Faster editing heuristic: Quasi-Threshold Mover (QTM) [BHSW15]
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Skeleton Forests

Quasi-Threshold Graphs
Quasi-threshold graphs are exactly the transitive closure of rooted
forests.
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Certifying Algorithms

Certifying Algorithm
A certifying algorithm is an algorithm that produces, with each output,
a certificate or witness (easy-to-verify proof) that the particular output
has not been compromised by a bug. [MMNS11]

Quasi-Threshold Recognition:

Positive proof: A skeleton forest such that the graph is its
transitive closure.
Negative proof: An induced P4 or C4.
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Quasi-Threshold Recognition

1 p(u) parent of node u, init with −1;
2 foreach u ∈ V sorted by degree in decreasing order do
3 foreach non-processed neighbor c of u do
4 if p(u) = p(c) then
5 Set p(c) to u;
6 else
7 Construct P4 or C4;

8 Mark u as processed;

1

2

3

4

5

6

7

q p

x
u

c
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Algorithm Engineering

Algorithms

implement

design

experim
ent

an
al

yz
e
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Initial Editing Heuristic

Use recognition
Resolve errors locally

q p

x
u

c

Use triangles and depth for decisions
 High number of edits but yields good initialization
Time: Triangle counting O(α · |E |) + linear
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QTM: Basic Idea
Modify skeleton forest using local moving

For each node apply move:
Choose parent
Adopt children

such that #edits is minimum among choices.

a

v

b c

p

x y

Count (non-)neighbors below and above every node, select best.

Simple idea:
Count (non-)neighbors below and above each node using a
(single) DFS
Select best node

Problem: time O(|V |) per node, O
(
|V |2

)
per round.
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QTM: Fast Local Moving
Parents: neighbors and nodes with children that should be adopted

Adopt children that have more neighbors than non-neighbors
How to evaluate children:

Start at neighbors of node to move

(blue)

Bottom-up scan with surplus of neighbors
Limited DFS when surplus exists
 visit O(1) nodes per neighbor

Find best parent:
Bottom-up scan from potential parents

Time:
Amortized O(d log(d)) per node
O(|E | log dmax) per round
4 rounds enough in practice
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Evaluation: Comparison to previous
heuristic

On large networks previous heuristic too slow.

QTM:

Name |V | [K] |E | [K] Edits [K] Time [s]
Caltech [TMP12] 0.77 16.66 11.6 < 0.1
Orkut [LK14] 3 072 117 185 103 426 866.4
uk-2002 [BV04] 18 520 261 787 31 218 1 638.0
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Evaluation: Synthetic networks

Generation:

Generate quasi-threshold graphs
Introduce edit difference by random edge deletions and
insertions

Result:

QTM results as close or closer than generated quasi-threshold
graphs
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Case study: Caltech network

Caltech Facebook network from September 2005 [TMP12]

Nodes: 769 university members (mostly students)
Edges: friendship on Facebook
Anonymized node attributes:

Dormitory
Class year
Gender
Major
High school

Dormitory, year correlated with edges
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Colored by dorm



Colored by year



Conclusion

Many problems can be formulated using graph editing
Clustering – different formalizations using edge editing
Both exact (FPT) and heuristic algorithms available

Outlook
Many more possible editing problems, e.g. P5, C5 – no good
heuristics known
Other variants using core-periphery structure even allow
overlapping communities [BHK15]
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Thank you!
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Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau.

Exact Algorithms for Cluster Editing: Evaluation and Experiments.
In Catherine C. McGeoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08), volume 5038 of Lecture
Notes in Computer Science, pages 289–302. Springer, June 2008.

Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Höfer, Zoran Nikoloski, and Dorothea Wagner.

On Modularity Clustering.
IEEE Transactions on Knowledge and Data Engineering, 20(2):172–188, February 2008.
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