
1 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Institute of Theoretical Informatics - Research Group Algorithmics

Traffic Assignment in Transportation Networks

Dorothea Wagner - September 12, 2019

KIT – The Research University in the Helmholtz Association www.kit.edu

Shortest-Path Applications

2 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Important applications, e.g.,

Navigation systems for cars

Apple Maps, Google Maps, Bing Maps,
OpenStreetMap, . . .
Timetable information

Transportation and urban planning

Core Problem

3 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Request:
Find the best connection in a transportation
network w.r.t. some metric

Idea:
Network as graph G = (V ,E)

Edge weights are according to metric

Shortest paths in G equal best connections

Classic problem (Dijkstra 1959)

Problems:
Transport networks are huge

Dijkstra too slow (> 1 second)

Speed-Up Techniques

4 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Observations:

Dijkstra visits all nodes closer than the
target

Unnecessary computations

Many requests in a hardly changing network

Idea:
Two-phase algorithm:

Offline: compute additional data during
preprocessing
Online: speed-up query with this data

3 criteria: preprocessing time and space,
speed-up over Dijkstra

Showpiece of Algorithm Engineering

5 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Falsifiable
Hypotheses

Design

Experim
ent

A
n
a
lyze

Implemen
t

Showpiece of Algorithm Engineering

5 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Falsifiable
Hypotheses

Design

Experim
ent

A
n
a
lyze

Implemen
t

Realistic
scenarios

Real-world data

Performance guarantees & practical algorithms

State-of-the-Art

6 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Many techniques tuned for continent-sized road networks:

Arc-Flags (2004, 2006, 2009, 2013)

Multi-Level Dijkstra (2000, 2008, 2009, 2011, 2016)

ALT: A*, Landmarks, Triangle Inequality (1968, 2005, 2012)

Reach (2004, 2007)

Contraction Hierarchies (CH, CCH) (2008, 2013, 2014, 2016)

Transit Node Routing (TNR) (2007, 2013)

Hub Labeling (HL) (2003, 2011, 2013, 2014)

Timetable information:

Transfer Patterns (2010, 2016)

RAPTOR (2013)

Connection Scan (2013, 2014, 2017)

Trip-Based Public Transit Routing (2015, 2016)

Survey on “Route Planning in Transportation Networks” (Bast et al. 2016)

Next Steps

7 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

State of the art:
Portfolio of fast shortest-path algorithms
Different trade-offs between:

Preprocessing time and space
Query time
Implementation complexity
Versatility

⇒ Leverage these in transportation applications

Case study in this talk: traffic assignment
Major problem in transport and urban planning

Goal: analyze utilization of roads, trains, buses

Requires many shortest-path computations

Joint Work with

8 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Valentin Buchhold Tobias Zündorf

Moritz Baum Peter Sanders Jonas Sauer Ben Strasser

9 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

In Road Networks

Traffic Assignment in Road Networks

10 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Input:
Urban road network

Set of origin–destination pairs

Output:
Equilibrium flow pattern

i.e. flow on each segment

Assumption:
Motorists choose path with minimum travel time. . .

. . . but travel time changes with flow (congestion)

Traffic Assignment in Road Networks

10 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Input:
Urban road network

Set of origin–destination pairs

Output:
Equilibrium flow pattern

i.e. flow on each segment

Assumption:
Motorists choose path with minimum travel time. . .

. . . but travel time changes with flow (congestion)

Relation between Flow and Travel Time

11 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

link flow f

travel time t(f)

capacity fmax

free-flow
travel time

t0

Link cost function: t(f) = t0

(
1 + α

(
f

fmax

)β
)

(Bureau of Public Roads 1964)

Solution Algorithms

12 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Link-based methods:
Represent solution by link flows fe (flow on link e)
Feasible-direction methods

Start from initial solution
Generate feasible direction of descent
Shift current solution along descent direction

Examples: Frank-Wolfe (1956),
conjugate FW (2013), biconjugate FW (2013)

Solution Algorithms

13 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Path-based methods:
Represent solution by path flows Fk (flow on path k)

Maintain set K+
p of promising paths between each O-D pair p

In each iteration, process O-D pairs p one by one
1 Update K+

p (remove unpromising paths, insert new promising paths)
2 Equilibrate K+

p (shift flow between paths in K+
p)

Examples: PE (1968), GP (1994), PG (2009), ISP (2011)

o1 d1

o1 d1

o1 d2

o1 d2

o1 d3

o1 d4

Solution Algorithms

14 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Bush-based methods:
Represent solution by origin flows feo (flow on link e that originates at origin o)

Maintain bush Bo for each origin o

Bo is DAG that comprises promising paths from o to all destinations
In each iteration, process origins o one by one

1 Update Bo (remove zero-flow links, insert new links giving rise to cheaper paths)
2 Equilibrate Bo (shift flow on Bo)

Examples: Algorithm B (2006), LUCE (2014), TAPAS (2010)

o1

d4

d1

d3

d2

Frank-Wolfe Algorithm

15 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Represents solution (before iteration i) by link flows f i = (f i
1, . . . , f i

|E |)

Main subroutine is all-or-nothing (AON) assignment
Process O-D pairs one by one
Assign one flow unit to each link on shortest path

FrankWolfe
1 Generate initial solution by performing free-flow AON assignment
2 while convergence criterion is not satisfied do
3 Update link costs based on current link flows
4 Perform AON assignment based on current link costs, yielding y i

5 Let descent direction d i be y i − f i

6 Determine how far current solution must be moved along descent direction
7 Move current solution along descent direction, i.e., set f i+1 = f i + λid i

⇒ Benefits particularly from recent advances in route planning

Frank-Wolfe Algorithm

15 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Represents solution (before iteration i) by link flows f i = (f i
1, . . . , f i

|E |)

Main subroutine is all-or-nothing (AON) assignment
Process O-D pairs one by one
Assign one flow unit to each link on shortest path

FrankWolfe
1 Generate initial solution by performing free-flow AON assignment
2 while convergence criterion is not satisfied do
3 Update link costs based on current link flows
4 Perform AON assignment based on current link costs, yielding y i

5 Let descent direction d i be y i − f i

6 Determine how far current solution must be moved along descent direction
7 Move current solution along descent direction, i.e., set f i+1 = f i + λid i

⇒ Benefits particularly from recent advances in route planning

State of the Art in Routing (Bast et al. 2016)

16 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

0.1 1 10 100 1,000 10,000

0.0001

0.001

0.01

0.1

1

10

100

1,000

Arc Flags

HH
HH*

SHARC

TNR with Arc Flags

HPML

CH

CCH

(customization)

TNR

HLC

CRP

Table Lookup
(PHAST)

Dijkstra’s Algorithm
Bidirectional Search

(customization)

(customization)

ALT

(customization)

CHASE

Hub Labels

Reach

REAL ReachFlags

HNR
CALT

Preprocessing time [min]

Q
ue

ry
tim

e
[m

s]

Speedup Techniques

17 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Two-phase:
Preprocessing (slow): compute additional
data

Query (fast): answer s–t queries using data
from preprocessing

Three-phase:
Preprocessing (slow): compute additional
weight-independent data

Customization (reasonably fast): introduce
weights

Query (fast): answer s–t queries using data
from preprocessing and customization

Speedup Techniques

17 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Two-phase:
Preprocessing (slow): compute additional
data

Query (fast): answer s–t queries using data
from preprocessing

Three-phase:
Preprocessing (slow): compute additional
weight-independent data

Customization (reasonably fast): introduce
weights

Query (fast): answer s–t queries using data
from preprocessing and customization

Shortest-Path Algorithm for Frank-Wolfe?

18 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Requirements:
Fast point-to-point shortest-path computations

Easy retrieval of actual shortest paths (not only distances)

Edge weights change in each iteration→ dynamic scenario

Best fit: customizable contraction hierarchies
Uses metric-independent nested dissection order

Customization: compute shortcut weights

Elimination tree query (requires no queue)

s

t

Shortest-Path Algorithm for Frank-Wolfe?

18 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Requirements:
Fast point-to-point shortest-path computations

Easy retrieval of actual shortest paths (not only distances)

Edge weights change in each iteration→ dynamic scenario

Best fit: customizable contraction hierarchies
Uses metric-independent nested dissection order

Customization: compute shortcut weights

Elimination tree query (requires no queue)

s

t

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:

Partitioning: compute nested dissection order
Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

7

8

3

5

2

1

10
0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:

Partitioning: compute nested dissection order
Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

7

8

3

5

2

1

10
0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

7

8

3

5

2

1

10
0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2
4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2
4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2
4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

19 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Preprocessing:
Partitioning: compute nested dissection order

Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors

1

2

2

3

4

5 7

8

63

5

2

1

7
10

0

5

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:

Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

∞

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight

Process edges in bottom-up fashion
Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

∞

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

∞

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

∞

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 05

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 01

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks

1

2
2

34

5
78

6

3

5

2

1

7

10 01

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks
1

2
s

2

3
t

4

5
78

6

3

5

2

1

7

10 01

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks
1

2
s

2

3
t

4

5
78

6

3

5

2

1

7

10 01

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks
1

2
s

2

3
t

4

5
78

6

3

5

2

1

7

10 01

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

20 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Customization:
Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks
1

2
s

2

3
t

4

5
78

6

3

5

2

1

7

10 01

r

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
2

34

5
78

6

3

5

2

1

7
r

10 01

µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
2

34

5
78

6

3

5

2

1

7
r

10 01

µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:

1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

2

3
t

4

5
78

6

3

5

2

1

7
r

10 01

µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

2

3
t

4

5
78

6
x

3

5

2

1

7
r

10 01

µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

20

3
t

4

5
78

6
x

3

5

2

1

7
r

10 01

µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

20

3
t

4

5
78

6
x

3

5

2

1
5

7
r

10 01

10
µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

20

3
t

0
4

5
78

6
x

3

5

2

1
5

7
r

10 01

10
µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

20

3
t

0
4

5
78 7

6
x

3

5

2

1
5

7
r

10 01

10
µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

20

3
t

0
4

5
78 7

6
x

3

5

2

1
5 8

7
r

10 01

10 7
µ = ∞

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

20

3
t

0
4

5
78 7

6
x

3

5

2

1
5 8

7
r

10 01

6 7
µ = 13

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

20

3
t

0
4

5
78 7

6
x

3

5

2

1
5 8

7
r

10 01

6 7
µ = 13

Customizable Contraction Hierarchies
(Dibbelt et al. 2016)

21 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path

1

2
s

2

3
t

4

5
78

6
x

3

5

2

1

7
r

10 01

µ = 13

Faster Batched One-to-One Shortest Paths
(Buchhold et al. 2018)

22 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Observation:
Processing similar OD-pairs in
succession improves locality

Size of sym. diff between search
spaces of u and v is equal to
u–v distance in elimination tree

Idea:
Partition elimination tree into few
cells with bounded diameter

Assign IDs according to DFS order

Reorder OD-pairs by src and dst cell

1

2
2

34

5
78

6

3

5

2

1

7

10 01

r

Faster Batched One-to-One Shortest Paths
(Buchhold et al. 2018)

22 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Observation:
Processing similar OD-pairs in
succession improves locality

Size of sym. diff between search
spaces of u and v is equal to
u–v distance in elimination tree

Idea:
Partition elimination tree into few
cells with bounded diameter

Assign IDs according to DFS order

Reorder OD-pairs by src and dst cell

1

2
2

34

5
78

6

3

5

2

1

7

10 01

r

Centralized Elimination Tree Searches
(Buchhold et al. 2018)

23 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Bundling together multiple runs:
k distance labels for each vertex

i-th label is distance from i-th src

Relaxation updates all labels at once

Choosing next vertex:
Forward/reverse tournament tree

Input sequences: paths from each
source to root in elimination tree
Single output sequence: order in
which we process vertices

Whenever two paths converge, we
block one of them

1

2
s0

2

3
t0

4

5
78

6

3

5

2

1

7
r

10 01

µ0 = ∞

µ1 = ∞

Centralized Elimination Tree Searches
(Buchhold et al. 2018)

23 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Bundling together multiple runs:
k distance labels for each vertex

i-th label is distance from i-th src

Relaxation updates all labels at once

Choosing next vertex:
Forward/reverse tournament tree

Input sequences: paths from each
source to root in elimination tree
Single output sequence: order in
which we process vertices

Whenever two paths converge, we
block one of them

1
s1

2
s0

2

3
t0

4
t1

5
78

6

3

5

2

1

7
r

10 01

µ0 = ∞

µ1 = ∞

Exploiting Parallelism
(Buchhold et al. 2018)

24 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Instruction-level parallelism:
128-/256-bit registers

Basic operations on multiple data
items simultaneously

We use SSE and AVX instructions

Core-level parallelism:
SP computations are independent

Assign OD-pairs to distinct cores

Cumulate flow units locally,
aggregate after computing all paths

Single-Threaded Traffic Assignment

25 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

algo sorted k SIMD S-morn S-even S-day L-peak

Dij ◦ 1 – 5753.22 8239.57 106 687.46 1648.98

Bi-Dij ◦ 1 – 2459.27 3265.95 44 078.13 907.85

CH ◦ 1 – 90.89 120.83 1048.10 86.58

CCH ◦ 1 – 41.50 55.02 698.16 49.01
CCH • 1 – 26.98 35.45 372.34 32.23
CCH • 4 – 31.73 42.10 452.73 40.03
CCH • 4 SSE 18.29 23.95 230.18 20.47
CCH • 8 – 34.39 45.32 472.77 42.69
CCH • 8 SSE 17.45 22.74 211.26 18.65
CCH • 8 AVX 15.30 19.94 175.72 15.89
CCH • 16 AVX 14.46 18.68 153.06 13.52
CCH • 32 AVX 14.12 18.20 132.54 11.44
CCH • 64 AVX 18.83 24.27 160.51 13.07

Multi-Threaded Traffic Assignment

26 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

S-morn S-day

algo cores cust query total cust query total

CH 1 36.12 54.06 90.89 49.52 997.60 1048.10
16 36.46 3.95 40.48 50.24 67.66 118.01

CCH 1 1.77 11.77 14.12 2.40 129.34 132.54
2 1.13 6.58 8.02 1.54 68.96 70.93
4 0.61 3.85 4.62 0.83 36.42 37.48
8 0.32 2.53 2.94 0.43 19.28 19.85

12 0.28 2.09 2.44 0.38 13.42 13.91
16 0.38 1.99 2.43 0.42 10.60 11.10

Traffic Assignment in Road Networks

27 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Summary:
Traffic assignment in only 2.4 sec.
Makes interactive apps practical

Road traffic centers
Monitoring and controlling road
traffic in real time

Ongoing and future research:
Sample demand in early iterations

Realistic demand data generation

Time-dependent travel-time profiles

28 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

In Timetable Networks

Assignments for Timetable Networks

29 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Objective:

Determine the utilization of vehicles in the network

For optimizing existing networks

For planning new lines

Data Basis:

Set of O-D pairs (as before)
Timetable network

Consisting of lines and stops
Not represented as graph

Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

8:00

8:30

Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

8:30

9:00

Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

8:00

8:30

9:00 9:10 9:20 9:40

Trip 1:

Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

9:00

9:30

10:00 10:10 10:20 10:40

Trip 2:

Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

9:40
10:05

10:20

10:40

Trip 3:
10:15 10:25

10:50

(different line)

Route Planning on Timetable Networks

31 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Types of Algorithms:
Graph based

Transform timetable into time-dependent or time-expanded graph
Graph algorithms are applicable
But: Graphs get huge, special structure of timetable is lost

Timetable based
Operate directly on timetable
Exploit knowledge of the network (chronological order, repetition of trips, ...)

Special Algorithms for timetables:

RAPTOR

CSA

Transfer Patterns

Trip-Based

Route Planning on Timetable Networks

31 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Types of Algorithms:
Graph based

Transform timetable into time-dependent or time-expanded graph
Graph algorithms are applicable
But: Graphs get huge, special structure of timetable is lost

Timetable based
Operate directly on timetable
Exploit knowledge of the network (chronological order, repetition of trips, ...)

Special Algorithms for timetables:

RAPTOR

CSA

Transfer Patterns

Trip-Based

Route Planning on Timetable Networks

31 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Types of Algorithms:
Graph based

Transform timetable into time-dependent or time-expanded graph
Graph algorithms are applicable
But: Graphs get huge, special structure of timetable is lost

Timetable based
Operate directly on timetable
Exploit knowledge of the network (chronological order, repetition of trips, ...)

Special Algorithms for timetables:

RAPTOR

CSA

Transfer Patterns

Trip-Based

Methods for Public Transit Traffic Assignments?

32 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Requirements:
Fast shortest-path computations

Easy retrieval of actual shortest paths
Realistic assessment of a journeys quality: Perceived Travel Time

Time in vehicle
Time spent waiting
Number of transfers
Delay robustness
...

Best fit: CSA respectively MEAT
Fast one-to-many queries

Natural integration of delay robustness

Methods for Public Transit Traffic Assignments?

32 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Requirements:
Fast shortest-path computations

Easy retrieval of actual shortest paths
Realistic assessment of a journeys quality: Perceived Travel Time

Time in vehicle
Time spent waiting
Number of transfers
Delay robustness
...

Best fit: CSA respectively MEAT
Fast one-to-many queries

Natural integration of delay robustness

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

33 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Basic idea:

Maintain earliest arrival times per stop

Sort connections by their departure time

Scan through the connections once

Special properties:

Does not require a queue

Uses chronological order of connections instead

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

de
p.

tim
e

ar
r.

tim
e

de
p.

st
op

ar
r.

st
op

de
p.

tim
e

ar
r.

tim
e

de
p.

st
op

ar
r.

st
op

de
p.

tim
e

ar
r.

tim
e

de
p.

st
op

ar
r.

st
op

+∞ +∞+∞ +∞ +∞

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
40

9:
55

fr
om

1

to
3

fr
om

3

to
4

fr
om

3

to
4

+∞ +∞+∞ +∞ +∞

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
40

9:
55

fr
om

1

to
3

fr
om

3

to
4

fr
om

3

to
4

+∞ +∞8:00 +∞ +∞

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
40

9:
55

fr
om

1

to
3

fr
om

3

to
4

fr
om

3

to
4

+∞ +∞8:00 +∞ +∞

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
40

9:
55

fr
om

1

to
3

fr
om

3

to
4

fr
om

3

to
4

+∞ +∞8:00 9:25 +∞

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
40

9:
55

fr
om

1

to
3

fr
om

3

to
4

fr
om

3

to
4

+∞ +∞8:00 9:25 +∞

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
40

9:
55

fr
om

1

to
3

fr
om

3

to
4

fr
om

3

to
4

+∞ +∞8:00 9:25 +∞

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
40

9:
55

fr
om

1

to
3

fr
om

3

to
4

fr
om

3

to
4

+∞ +∞8:00 9:25 9:55

Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

34 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time

0 1 2 3 4

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
40

9:
55

fr
om

1

to
3

fr
om

3

to
4

fr
om

3

to
4

+∞ +∞8:00 9:25 9:55

High efficiency since modern processors are optimized for linear memory scans

Minimum Expected Arrival Time (MEAT)
(Dibbelt et al. 2013, 2018)

35 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Extension of CSA:
Can handle probabilistic delays of public transit vehicles
Enables delay robust journey planning
Computes expected arrival times instead of absolute arrival times

Interpretation of the result:
Consider all journeys that contribute to the expected value
These journeys represent fall back plans:

Minimum Expected Arrival Time (MEAT)
(Dibbelt et al. 2013, 2018)

35 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Extension of CSA:
Can handle probabilistic delays of public transit vehicles
Enables delay robust journey planning
Computes expected arrival times instead of absolute arrival times

Interpretation of the result:
Consider all journeys that contribute to the expected value
These journeys represent fall back plans:

Karlsruhe Hbf

8:00

8:51 Hannover Hbf
12:31

12:36

13:13 Braunschweig

13:16

13:24

14:00

Berlin-Spandau

Berlin Hbf

Wolfsburg Hbf

Minimum Expected Arrival Time (MEAT)
(Dibbelt et al. 2013, 2018)

35 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Extension of CSA:
Can handle probabilistic delays of public transit vehicles
Enables delay robust journey planning
Computes expected arrival times instead of absolute arrival times

Interpretation of the result:
Consider all journeys that contribute to the expected value
These journeys represent fall back plans:

Karlsruhe Hbf

8:00

8:51 Hannover Hbf
12:31

12:36

13:13 Braunschweig

13:16

13:24

14:00

Berlin-Spandau

Berlin Hbf

Wolfsburg Hbf

Minimum Expected Arrival Time (MEAT)
(Dibbelt et al. 2013, 2018)

35 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Extension of CSA:
Can handle probabilistic delays of public transit vehicles
Enables delay robust journey planning
Computes expected arrival times instead of absolute arrival times

Interpretation of the result:
Consider all journeys that contribute to the expected value
These journeys represent fall back plans:

Karlsruhe Hbf

8:00

8:51 Hannover Hbf
12:31

12:36

13:13 Braunschweig

13:16

13:24

14:00

Berlin-Spandau

Berlin Hbf

Wolfsburg Hbf

Minimum Expected Arrival Time (MEAT)
(Dibbelt et al. 2013, 2018)

35 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Extension of CSA:
Can handle probabilistic delays of public transit vehicles
Enables delay robust journey planning
Computes expected arrival times instead of absolute arrival times

Interpretation of the result:
Consider all journeys that contribute to the expected value
These journeys represent fall back plans:

Karlsruhe Hbf

8:00

8:51 Hannover Hbf
12:31

12:36

13:13 Braunschweig

13:16

13:24

14:00

Berlin-Spandau

Berlin Hbf

Wolfsburg Hbf

Perceived Arrival Time (PAT)

36 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Further extending CSA:

Represents the perceived cost of a journey

Builds upon MEAT
Also includes weighted costs for

Walking
Changing vehicles
Waiting at a stop

Properties:

As efficient as plain CSA

Requires only a single scan of the connection array

Builds the foundation of an efficient CSA based assignment algorithm

Perceived Arrival Time (PAT)

36 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Further extending CSA:

Represents the perceived cost of a journey

Builds upon MEAT
Also includes weighted costs for

Walking
Changing vehicles
Waiting at a stop

Properties:

As efficient as plain CSA

Requires only a single scan of the connection array

Builds the foundation of an efficient CSA based assignment algorithm

CSA Based Assignment (Briem et al. 2017)

37 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Algorithm overview:

Partition O-D pairs by destination

Handle destinations independently of each other
For each destination:

1 Compute PATs from everywhere to the destination

Using a single scan of all connections
In reverse (descending order of arrival time, starting from the destination)

2 Simulate Passenger movements through the network

Also using a single scan of all connections
In normal order (ascending order of arrival time)
Use PATs to decide if passengers use a connection or not

3 Refine the resulting journeys

CSA Based Assignment (Briem et al. 2017)

37 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Algorithm overview:

Partition O-D pairs by destination

Handle destinations independently of each other
For each destination:

1 Compute PATs from everywhere to the destination
Using a single scan of all connections
In reverse (descending order of arrival time, starting from the destination)

2 Simulate Passenger movements through the network

Also using a single scan of all connections
In normal order (ascending order of arrival time)
Use PATs to decide if passengers use a connection or not

3 Refine the resulting journeys

CSA Based Assignment (Briem et al. 2017)

37 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Algorithm overview:

Partition O-D pairs by destination

Handle destinations independently of each other
For each destination:

1 Compute PATs from everywhere to the destination
Using a single scan of all connections
In reverse (descending order of arrival time, starting from the destination)

2 Simulate Passenger movements through the network
Also using a single scan of all connections
In normal order (ascending order of arrival time)
Use PATs to decide if passengers use a connection or not

3 Refine the resulting journeys

CSA Based Assignment (Briem et al. 2017)

38 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Passenger Movement Simulation:

PAT of each connection is known

Passengers are generated at their origin

Passengers move towards their destination
(One connection at a time)

Whether a connection is used, depends on the connections PAT
While getting closer to the destination:

Paths of individual passengers converge
More and more passengers collect at the same stops
All passengers at stop can use the same connections
Computation for this connection is only performed once

⇒ Synergy effects as more passengers gather at the same stops

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Time: 0:00

destination

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c
1 :

9:00 – 9:30 c2: 9:35 – 10:30

11:30

PAT: 11:10

PAT:
PAT:

PAT:
PAT: 11:30

11:00

11:00

1 min

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:00

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c2: 9:35 – 10:30

PAT: 11:10

PAT:
PAT:

PAT: 11:30

11:00

11:00

destination

c
1 :

9:00 – 9:3011:30

PAT:

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

1 Generate passengers with origin at the departure stop of c

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:00

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c2: 9:35 – 10:30

PAT: 11:10

PAT:
PAT:

PAT: 11:30

11:00

11:00

destination

c
1 :

9:00 – 9:3011:30

PAT:

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

2 Decide which passengers enter the connection

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:00

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c2: 9:35 – 10:30

PAT: 11:10

PAT:
PAT:

PAT: 11:30

11:00

11:00

destination

c
1 :

9:00 – 9:3011:30

PAT:

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

3 Decide which passengers leave the trip

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:00

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c2: 9:35 – 10:30

PAT: 11:10

PAT:
PAT:

PAT: 11:30

11:00

11:00

destination

c
1 :

9:00 – 9:3011:30

PAT:

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:35

destination

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c
1 :

9:00 – 9:3011:30

PAT: 11:10

PAT:
PAT:

PAT:

11:00

11:00
c2: 9:35 – 10:30

PAT: 11:30

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

1 Generate passengers with origin at the departure stop of c

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:35

destination

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c
1 :

9:00 – 9:3011:30

PAT: 11:10

PAT:
PAT:

PAT:

11:00

11:00
c2: 9:35 – 10:30

PAT: 11:30

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

2 Decide which passengers enter the connection

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:35

destination

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c
1 :

9:00 – 9:3011:30

PAT: 11:10

PAT:
PAT:

PAT:

11:00

11:00
c2: 9:35 – 10:30

PAT: 11:30

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

3 Decide which passengers leave the trip

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:35

destination

5 min

10 min

15 min

c4: 10:10 – 10:40

c3: 9:40 –10:30
c5 : 10:32 –11:00

c
1 :

9:00 – 9:3011:30

PAT: 11:10

PAT:
PAT:

PAT:

11:00

11:00
c2: 9:35 – 10:30

PAT: 11:30

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:40

destination

5 min

10 min

15 min

c4: 10:10 – 10:40

c5 : 10:32 –11:00

c
1 :

9:00 – 9:30 c2: 9:35 – 10:30

11:30

PAT: 11:10

PAT:
PAT:

PAT: 11:30

11:00

c3: 9:40 –10:30

PAT: 11:00

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

1 Generate passengers with origin at the departure stop of c

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:40

destination

5 min

10 min

15 min

c4: 10:10 – 10:40

c5 : 10:32 –11:00

c
1 :

9:00 – 9:30 c2: 9:35 – 10:30

11:30

PAT: 11:10

PAT:
PAT:

PAT: 11:30

11:00

c3: 9:40 –10:30

PAT: 11:00

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

2 Decide which passengers enter the connection

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

39 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

1 min
Time: 9:40

destination

5 min

10 min

15 min

c4: 10:10 – 10:40

c5 : 10:32 –11:00

c
1 :

9:00 – 9:30 c2: 9:35 – 10:30

11:30

PAT: 11:10

PAT:
PAT:

PAT: 11:30

11:00

c3: 9:40 –10:30

PAT: 11:00

Passenger Movement Simulation Example:

Process connections in ascending order by departure time
For each connection c:

3 ...

4 Move disembarking passengers to their next stop

CSA Based Assignment (Briem et al. 2017)

40 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Journey Refinement: (Remove unwanted cycles)

Cycle definition: Visiting a stop more than once

Assigning cycles might be undesirable

Journey with cycle can have minimum PAT

High waiting cost leads to cycles

CSA Based Assignment (Briem et al. 2017)

40 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

10:01 – 10:06

destination

origin

9:00 – 9:20

9:21 – 9:33

9:35 – 9:40

9:41 – 9:50 9:51 – 10:00

10:08 – 10:20
10:21 – 10:40

Journey Refinement: (Remove unwanted cycles)

Cycle definition: Visiting a stop more than once

Assigning cycles might be undesirable

Journey with cycle can have minimum PAT

High waiting cost leads to cycles

CSA Based Assignment (Briem et al. 2017)

40 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

10:01 – 10:06

destination

origin

9:00 – 9:20

9:21 – 9:33

9:35 – 9:40

9:41 – 9:50 9:51 – 10:00

10:08 – 10:20
10:21 – 10:40

origin

destination
8:21 – 8:30

8:35 – 9:009:02 – 9:20

9:21 – 9:30
9:40 – 10:00

Journey Refinement: (Remove unwanted cycles)

Cycle definition: Visiting a stop more than once

Assigning cycles might be undesirable

Journey with cycle can have minimum PAT

High waiting cost leads to cycles

CSA Based Assignment (Briem et al. 2017)

41 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Benchmark Instance:

Greater region of Stuttgart

Reaching as far as Frankfurt, Basel or Munich

Comprises the traffic of one day

Number of vertices 15 115
Number of stops 13 941
Number of edges 33 890
Number of edges without loops 18 775
Number of connections 780 042
Number of trips 47 844
Number of passenger 1 249 910

CSA Based Assignment (Briem et al. 2017)

42 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Running Time and Passenger Multiplier:

Algorithm assigns only one journey per O-D pair

However probabilistic distribution of journeys is desired

Solution: simulate multiple passengers per O-D pair

CSA Based Assignment (Briem et al. 2017)

42 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

0 100 200 300 400 500
0

120

240

360

480

600

0

120

240

360

480

600 Total
Assignment
Cycle Elimination

PAT
Setup

Passenger Multiplier

Ti
m

e
[s

ec
]

Running Time and Passenger Multiplier:

Algorithm assigns only one journey per O-D pair

However probabilistic distribution of journeys is desired

Solution: simulate multiple passengers per O-D pair

CSA Based Assignment (Briem et al. 2017)

43 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Comparison with Visum:

Commercial tool for traffic planning

The computation in Visum takes ~30 minutes (8 threads)

The CSA based assignment takes 39 seconds (4 threads)

Both assignments look similar

VISUM CSA Based Assignment

Quantity min mean max min mean max

Total travel time [min] 2.98 46.885 429.00 2.98 47.199 429.00
Time spent in vehicle [min] 0.02 21.059 380.00 0.02 21.231 323.97
Time spent walking [min] 2.00 22.394 149.00 2.00 22.476 149.00
Time spent waiting [min] 0.00 3.432 217.02 0.00 3.492 217.02

Trips per passenger 1.00 1.771 6.00 1.00 1.746 8.00
Connections per passenger 1.00 9.396 109.00 1.00 9.474 97.00
Passengers per connection 0.00 12.740 1 290.10 0.00 12.847 1 233.60

CSA Based Assignment (Briem et al. 2017)

43 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Comparison with Visum:

Commercial tool for traffic planning

The computation in Visum takes ~30 minutes (8 threads)

The CSA based assignment takes 39 seconds (4 threads)

Both assignments look similar

VISUM CSA Based Assignment

Quantity min mean max min mean max

Total travel time [min] 2.98 46.885 429.00 2.98 47.199 429.00
Time spent in vehicle [min] 0.02 21.059 380.00 0.02 21.231 323.97
Time spent walking [min] 2.00 22.394 149.00 2.00 22.476 149.00
Time spent waiting [min] 0.00 3.432 217.02 0.00 3.492 217.02

Trips per passenger 1.00 1.771 6.00 1.00 1.746 8.00
Connections per passenger 1.00 9.396 109.00 1.00 9.474 97.00
Passengers per connection 0.00 12.740 1 290.10 0.00 12.847 1 233.60

Ongoing Research

44 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Multimodal Assignments:

Goal: Consider multiple modes of transportation at once

Problem: Combining timetable and non-timetable networks is hard

ULTRA: (Baum et al. 2019)

Enables UnLimited TRAnsfers for many Public Transit algorithms

Is also combinable with the CSA based assignment (Sauer et al. 2019)

First efficient assignment for public transit with secondary transfer mode

Consider Vehicle capacities:

Similar to assignments on road networks

PAT depends on utilization

Iterative approach

Ongoing Research

44 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Multimodal Assignments:

Goal: Consider multiple modes of transportation at once

Problem: Combining timetable and non-timetable networks is hard
ULTRA: (Baum et al. 2019)

Enables UnLimited TRAnsfers for many Public Transit algorithms

Is also combinable with the CSA based assignment (Sauer et al. 2019)

First efficient assignment for public transit with secondary transfer mode

Consider Vehicle capacities:

Similar to assignments on road networks

PAT depends on utilization

Iterative approach

Ongoing Research

44 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Multimodal Assignments:

Goal: Consider multiple modes of transportation at once

Problem: Combining timetable and non-timetable networks is hard
ULTRA: (Baum et al. 2019)

Enables UnLimited TRAnsfers for many Public Transit algorithms

Is also combinable with the CSA based assignment (Sauer et al. 2019)

First efficient assignment for public transit with secondary transfer mode

Consider Vehicle capacities:

Similar to assignments on road networks

PAT depends on utilization

Iterative approach

45 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

In Combined Networks

Next steps: True Multimodal Assignments

46 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

State of the art:
Applications already handle different modes of transportation
However: mode choice and assignment sequentially

1 Choose travel mode
2 Select route for chosen mode of transportation

Integrate mode choice with route assignment:

Integrate both assignment types

Combine O-D for road networks and for public transit

Algorithms assigns both: journey and travel mode

47 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Thank you for your attention!

References I

48 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Bar-Gera, H. (2010). Traffic assignment by paired alternative segments.
Transportation Research Part B: Methodological, 44(8–9):1022–1046.

Bast, H., Delling, D., Goldberg, A. V., Müller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., and Werneck, R. F. (2016). Route planning in transportation
networks. In Kliemann, L. and Sanders, P., editors, Algorithm Engineering:
Selected Results and Surveys, volume 9220 of Lecture Notes in Computer
Science, pages 19–80. Springer.

Baum, M., Buchhold, V., Sauer, J., Wagner, D., and Zündorf, T. (2019). UnLimited
TRAnsfers for Multi-Modal Route Planning: An Efficient Solution. In 27th Annual
European Symposium on Algorithms (ESA 2019), Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

Briem, L., Buck, S., Ebhart, H., Mallig, N., Strasser, B., Vortisch, P., Wagner, D.,
and Zündorf, T. (2017). Efficient Traffic Assignment for Public Transit Networks.
In 16th International Symposium on Experimental Algorithms (SEA 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

References II

49 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Buchhold, V., Sanders, P., and Wagner, D. (2018). Real-time traffic assignment
using fast queries in customizable contraction hierarchies. In D’Angelo, G.,
editor, Proceedings of the 17th International Symposium on Experimental
Algorithms (SEA’18), volume 103 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 27:1–27:15. Schloss Dagstuhl.

Bureau of Public Roads (1964). Traffic Assignment Manual. U.S. Department of
Commerce.

Dafermos, S. (1968). Traffic Assignment and Resource Allocation in
Transportation Networks. PhD thesis, Johns Hopkins University.

Dial, R. B. (2006). A path-based user-equilibrium traffic assignment algorithm that
obviates path storage and enumeration. Transportation Research Part B:
Methodological, 40(10):917–936.

Dibbelt, J., Pajor, T., Strasser, B., and Wagner, D. (2013). Intriguingly Simple and
Fast Transit Routing. In International Symposium on Experimental Algorithms,
pages 43–54. Springer.

References III

50 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Dibbelt, J., Pajor, T., Strasser, B., and Wagner, D. (2018). Connection Scan
Algorithm. Journal of Experimental Algorithmics (JEA), 23(1):1–7.

Dibbelt, J., Strasser, B., and Wagner, D. (2016). Customizable contraction
hierarchies. ACM Journal of Experimental Algorithmics, 21(1):1.5:1–1.5:49.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271.

Florian, M., Constantin, I., and Florian, D. (2009). A new look at projected gradient
method for equilibrium assignment. Transportation Research Record,
2090(1):10–16.

Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110.

Gentile, G. (2014). Local user cost equilibrium: A bush-based algorithm for traffic
assignment. Transportmetrica A: Transport Science, 10(1):15–54.

Jayakrishnan, R., Tsai, W. K., Prashker, J., and Rajadhyaksha, S. (1994). Faster
path-based algorithm for traffic assignment. Transportation Research Record,
1443:75–83.

References IV

51 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Kumar, A. and Peeta, S. (2011). An improved social pressure algorithm for static
deterministic user equilibrium traffic assignment problem. In Proceedings of the
90th Transportation Research Board Annual Meeting (TRB’11).

Mitradjieva, M. and Lindberg, P. O. (2013). The stiff is moving – conjugate
direction frank-wolfe methods with applications to traffic assignment.
Transportation Science, 47(2):280–293.

Sauer, J., Wagner, D., and Zündorf, T. (2019). Efficient Computation of
Multi-Modal Public Transit Traffic Assignments using ULTRA. In Proceedings of
the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM.

	In Road Networks
	References

