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Shortest-Path Applications
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Important applications, e.g.,

Navigation systems for cars

Apple Maps, Google Maps, Bing Maps,
OpenStreetMap, . . .
Timetable information

Transportation and urban planning



Core Problem
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Request:
Find the best connection in a transportation
network w.r.t. some metric

Idea:
Network as graph G = (V ,E)

Edge weights are according to metric

Shortest paths in G equal best connections

Classic problem (Dijkstra 1959)

Problems:
Transport networks are huge

Dijkstra too slow (> 1 second)



Speed-Up Techniques
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Observations:

Dijkstra visits all nodes closer than the
target

Unnecessary computations

Many requests in a hardly changing network

Idea:
Two-phase algorithm:

Offline: compute additional data during
preprocessing
Online: speed-up query with this data

3 criteria: preprocessing time and space,
speed-up over Dijkstra
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Realistic
scenarios

Real-world data

Performance guarantees & practical algorithms



State-of-the-Art
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Many techniques tuned for continent-sized road networks:

Arc-Flags (2004, 2006, 2009, 2013)

Multi-Level Dijkstra (2000, 2008, 2009, 2011, 2016)

ALT: A*, Landmarks, Triangle Inequality (1968, 2005, 2012)

Reach (2004, 2007)

Contraction Hierarchies (CH, CCH) (2008, 2013, 2014, 2016)

Transit Node Routing (TNR) (2007, 2013)

Hub Labeling (HL) (2003, 2011, 2013, 2014)

Timetable information:

Transfer Patterns (2010, 2016)

RAPTOR (2013)

Connection Scan (2013, 2014, 2017)

Trip-Based Public Transit Routing (2015, 2016)

Survey on “Route Planning in Transportation Networks” (Bast et al. 2016)



Next Steps
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State of the art:
Portfolio of fast shortest-path algorithms
Different trade-offs between:

Preprocessing time and space
Query time
Implementation complexity
Versatility

⇒ Leverage these in transportation applications

Case study in this talk: traffic assignment
Major problem in transport and urban planning

Goal: analyze utilization of roads, trains, buses

Requires many shortest-path computations
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Valentin Buchhold Tobias Zündorf

Moritz Baum Peter Sanders Jonas Sauer Ben Strasser
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In Road Networks



Traffic Assignment in Road Networks
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Input:
Urban road network

Set of origin–destination pairs

Output:
Equilibrium flow pattern

i.e. flow on each segment

Assumption:
Motorists choose path with minimum travel time. . .

. . . but travel time changes with flow (congestion)
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Relation between Flow and Travel Time
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link flow f

travel time t(f )

capacity fmax

free-flow
travel time

t0

Link cost function: t(f ) = t0

(
1 + α

(
f

fmax

)β
)

(Bureau of Public Roads 1964)



Solution Algorithms
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Link-based methods:
Represent solution by link flows fe (flow on link e)
Feasible-direction methods

Start from initial solution
Generate feasible direction of descent
Shift current solution along descent direction

Examples: Frank-Wolfe (1956),
conjugate FW (2013), biconjugate FW (2013)



Solution Algorithms
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Path-based methods:
Represent solution by path flows Fk (flow on path k)

Maintain set K+
p of promising paths between each O-D pair p

In each iteration, process O-D pairs p one by one
1 Update K+

p (remove unpromising paths, insert new promising paths)
2 Equilibrate K+

p (shift flow between paths in K+
p )

Examples: PE (1968), GP (1994), PG (2009), ISP (2011)

o1 d1

o1 d1

o1 d2

o1 d2

o1 d3

o1 d4



Solution Algorithms
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Bush-based methods:
Represent solution by origin flows feo (flow on link e that originates at origin o)

Maintain bush Bo for each origin o

Bo is DAG that comprises promising paths from o to all destinations
In each iteration, process origins o one by one

1 Update Bo (remove zero-flow links, insert new links giving rise to cheaper paths)
2 Equilibrate Bo (shift flow on Bo)

Examples: Algorithm B (2006), LUCE (2014), TAPAS (2010)

o1

d4

d1

d3

d2



Frank-Wolfe Algorithm
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Represents solution (before iteration i) by link flows f i = (f i
1, . . . , f i

|E |)

Main subroutine is all-or-nothing (AON) assignment
Process O-D pairs one by one
Assign one flow unit to each link on shortest path

FrankWolfe
1 Generate initial solution by performing free-flow AON assignment
2 while convergence criterion is not satisfied do
3 Update link costs based on current link flows
4 Perform AON assignment based on current link costs, yielding y i

5 Let descent direction d i be y i − f i

6 Determine how far current solution must be moved along descent direction
7 Move current solution along descent direction, i.e., set f i+1 = f i + λid i

⇒ Benefits particularly from recent advances in route planning
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State of the Art in Routing (Bast et al. 2016)
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Speedup Techniques
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Two-phase:
Preprocessing (slow): compute additional
data

Query (fast): answer s–t queries using data
from preprocessing

Three-phase:
Preprocessing (slow): compute additional
weight-independent data

Customization (reasonably fast): introduce
weights

Query (fast): answer s–t queries using data
from preprocessing and customization
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Shortest-Path Algorithm for Frank-Wolfe?
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Requirements:
Fast point-to-point shortest-path computations

Easy retrieval of actual shortest paths (not only distances)

Edge weights change in each iteration→ dynamic scenario

Best fit: customizable contraction hierarchies
Uses metric-independent nested dissection order

Customization: compute shortcut weights

Elimination tree query (requires no queue)

s
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Customizable Contraction Hierarchies
(Dibbelt et al. 2016)
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Preprocessing:

Partitioning: compute nested dissection order
Recursively split graph into two parts
Place separator vertices at end of order

Contraction: shortcut vertices in this order
Temporarily remove vertex from graph
Add shortcut edges between its neighbors
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Customization:

Assign orig edges their input weight
Process edges in bottom-up fashion

Enumerate all lower triangles
Check if it improves edge weight

Query algorithm:
Bidirectional Dijkstra

Only relax edges to higher ranks
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Alternative query algorithm:
Based on elimination tree

Elimination tree efficiently encodes
CCH search space of each vertex

Elimination tree search:
1 Compute LCA x of s and t

2 Scan all vertices on s–x path

3 Scan all vertices on t–x path

4 Scan all vertices on x–r path

5 Reset labels on s–r and t–r path
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Faster Batched One-to-One Shortest Paths
(Buchhold et al. 2018)
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Observation:
Processing similar OD-pairs in
succession improves locality

Size of sym. diff between search
spaces of u and v is equal to
u–v distance in elimination tree

Idea:
Partition elimination tree into few
cells with bounded diameter

Assign IDs according to DFS order

Reorder OD-pairs by src and dst cell

1

2
2

34

5
78

6

3

5

2

1

7

10 01

r



Faster Batched One-to-One Shortest Paths
(Buchhold et al. 2018)

22 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Observation:
Processing similar OD-pairs in
succession improves locality

Size of sym. diff between search
spaces of u and v is equal to
u–v distance in elimination tree

Idea:
Partition elimination tree into few
cells with bounded diameter

Assign IDs according to DFS order

Reorder OD-pairs by src and dst cell

1

2
2

34

5
78

6

3

5

2

1

7

10 01

r



Centralized Elimination Tree Searches
(Buchhold et al. 2018)
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Bundling together multiple runs:
k distance labels for each vertex

i-th label is distance from i-th src

Relaxation updates all labels at once

Choosing next vertex:
Forward/reverse tournament tree

Input sequences: paths from each
source to root in elimination tree
Single output sequence: order in
which we process vertices

Whenever two paths converge, we
block one of them
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Exploiting Parallelism
(Buchhold et al. 2018)
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Instruction-level parallelism:
128-/256-bit registers

Basic operations on multiple data
items simultaneously

We use SSE and AVX instructions

Core-level parallelism:
SP computations are independent

Assign OD-pairs to distinct cores

Cumulate flow units locally,
aggregate after computing all paths



Single-Threaded Traffic Assignment
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algo sorted k SIMD S-morn S-even S-day L-peak

Dij ◦ 1 – 5753.22 8239.57 106 687.46 1648.98

Bi-Dij ◦ 1 – 2459.27 3265.95 44 078.13 907.85

CH ◦ 1 – 90.89 120.83 1048.10 86.58

CCH ◦ 1 – 41.50 55.02 698.16 49.01
CCH • 1 – 26.98 35.45 372.34 32.23
CCH • 4 – 31.73 42.10 452.73 40.03
CCH • 4 SSE 18.29 23.95 230.18 20.47
CCH • 8 – 34.39 45.32 472.77 42.69
CCH • 8 SSE 17.45 22.74 211.26 18.65
CCH • 8 AVX 15.30 19.94 175.72 15.89
CCH • 16 AVX 14.46 18.68 153.06 13.52
CCH • 32 AVX 14.12 18.20 132.54 11.44
CCH • 64 AVX 18.83 24.27 160.51 13.07



Multi-Threaded Traffic Assignment
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S-morn S-day

algo cores cust query total cust query total

CH 1 36.12 54.06 90.89 49.52 997.60 1048.10
16 36.46 3.95 40.48 50.24 67.66 118.01

CCH 1 1.77 11.77 14.12 2.40 129.34 132.54
2 1.13 6.58 8.02 1.54 68.96 70.93
4 0.61 3.85 4.62 0.83 36.42 37.48
8 0.32 2.53 2.94 0.43 19.28 19.85

12 0.28 2.09 2.44 0.38 13.42 13.91
16 0.38 1.99 2.43 0.42 10.60 11.10



Traffic Assignment in Road Networks
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Summary:
Traffic assignment in only 2.4 sec.
Makes interactive apps practical

Road traffic centers
Monitoring and controlling road
traffic in real time

Ongoing and future research:
Sample demand in early iterations

Realistic demand data generation

Time-dependent travel-time profiles
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In Timetable Networks



Assignments for Timetable Networks
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Objective:

Determine the utilization of vehicles in the network

For optimizing existing networks

For planning new lines

Data Basis:

Set of O-D pairs (as before)
Timetable network

Consisting of lines and stops
Not represented as graph



Timetable networks
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Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips



Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips



Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

8:00

8:30



Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

8:30

9:00



Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

8:00

8:30

9:00 9:10 9:20 9:40

Trip 1:



Timetable networks

30 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

9:00

9:30

10:00 10:10 10:20 10:40

Trip 2:



Timetable networks
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Network components:

Set of stops (representing stops, stations, platforms, ...)

Set of elementary connections

Partition of the set of connections into trips

9:40
10:05

10:20

10:40

Trip 3:
10:15 10:25

10:50

(different line)



Route Planning on Timetable Networks
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Types of Algorithms:
Graph based

Transform timetable into time-dependent or time-expanded graph
Graph algorithms are applicable
But: Graphs get huge, special structure of timetable is lost

Timetable based
Operate directly on timetable
Exploit knowledge of the network (chronological order, repetition of trips, ...)

Special Algorithms for timetables:

RAPTOR

CSA

Transfer Patterns

Trip-Based
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Methods for Public Transit Traffic Assignments?

32 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Requirements:
Fast shortest-path computations

Easy retrieval of actual shortest paths
Realistic assessment of a journeys quality: Perceived Travel Time

Time in vehicle
Time spent waiting
Number of transfers
Delay robustness
...

Best fit: CSA respectively MEAT
Fast one-to-many queries

Natural integration of delay robustness
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Connection Scan (CSA) (Dibbelt et al. 2013, 2018)

33 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Basic idea:

Maintain earliest arrival times per stop

Sort connections by their departure time

Scan through the connections once

Special properties:

Does not require a queue

Uses chronological order of connections instead



Connection Scan (CSA) (Dibbelt et al. 2013, 2018)
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Given: Timetable as array of connections, departure stop, departure time
Objective: Earliest arrival time at the destination

stop-id

earliest arrival time

Connections
sorted by

departure time
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High efficiency since modern processors are optimized for linear memory scans
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Extension of CSA:
Can handle probabilistic delays of public transit vehicles
Enables delay robust journey planning
Computes expected arrival times instead of absolute arrival times

Interpretation of the result:
Consider all journeys that contribute to the expected value
These journeys represent fall back plans:
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Further extending CSA:

Represents the perceived cost of a journey

Builds upon MEAT
Also includes weighted costs for

Walking
Changing vehicles
Waiting at a stop

Properties:

As efficient as plain CSA

Requires only a single scan of the connection array

Builds the foundation of an efficient CSA based assignment algorithm
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Algorithm overview:

Partition O-D pairs by destination

Handle destinations independently of each other
For each destination:

1 Compute PATs from everywhere to the destination

Using a single scan of all connections
In reverse (descending order of arrival time, starting from the destination)

2 Simulate Passenger movements through the network

Also using a single scan of all connections
In normal order (ascending order of arrival time)
Use PATs to decide if passengers use a connection or not

3 Refine the resulting journeys
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Passenger Movement Simulation:

PAT of each connection is known

Passengers are generated at their origin

Passengers move towards their destination
(One connection at a time)

Whether a connection is used, depends on the connections PAT
While getting closer to the destination:

Paths of individual passengers converge
More and more passengers collect at the same stops
All passengers at stop can use the same connections
Computation for this connection is only performed once

⇒ Synergy effects as more passengers gather at the same stops
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Journey Refinement: (Remove unwanted cycles)

Cycle definition: Visiting a stop more than once

Assigning cycles might be undesirable

Journey with cycle can have minimum PAT

High waiting cost leads to cycles
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Benchmark Instance:

Greater region of Stuttgart

Reaching as far as Frankfurt, Basel or Munich

Comprises the traffic of one day

Number of vertices 15 115
Number of stops 13 941
Number of edges 33 890
Number of edges without loops 18 775
Number of connections 780 042
Number of trips 47 844
Number of passenger 1 249 910
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Running Time and Passenger Multiplier:

Algorithm assigns only one journey per O-D pair

However probabilistic distribution of journeys is desired

Solution: simulate multiple passengers per O-D pair
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Comparison with Visum:

Commercial tool for traffic planning

The computation in Visum takes ~30 minutes (8 threads)

The CSA based assignment takes 39 seconds (4 threads)

Both assignments look similar

VISUM CSA Based Assignment

Quantity min mean max min mean max

Total travel time [min] 2.98 46.885 429.00 2.98 47.199 429.00
Time spent in vehicle [min] 0.02 21.059 380.00 0.02 21.231 323.97
Time spent walking [min] 2.00 22.394 149.00 2.00 22.476 149.00
Time spent waiting [min] 0.00 3.432 217.02 0.00 3.492 217.02

Trips per passenger 1.00 1.771 6.00 1.00 1.746 8.00
Connections per passenger 1.00 9.396 109.00 1.00 9.474 97.00
Passengers per connection 0.00 12.740 1 290.10 0.00 12.847 1 233.60
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Multimodal Assignments:

Goal: Consider multiple modes of transportation at once

Problem: Combining timetable and non-timetable networks is hard

ULTRA: (Baum et al. 2019)

Enables UnLimited TRAnsfers for many Public Transit algorithms

Is also combinable with the CSA based assignment (Sauer et al. 2019)

First efficient assignment for public transit with secondary transfer mode

Consider Vehicle capacities:

Similar to assignments on road networks

PAT depends on utilization

Iterative approach
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In Combined Networks
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State of the art:
Applications already handle different modes of transportation
However: mode choice and assignment sequentially

1 Choose travel mode
2 Select route for chosen mode of transportation

Integrate mode choice with route assignment:

Integrate both assignment types

Combine O-D for road networks and for public transit

Algorithms assigns both: journey and travel mode



47 Sept. 12, 2019 D. Wagner - Traffic Assignment in Transportation Networks Institute of Theoretical Informatics
Research Group Algorithmics

Thank you for your attention!
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