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Motivation

Important application, e. g.,
Navigation systems for cars
Google Maps, Bing Maps, . . .
Timetable information

Many commercial systems
Use heuristic methods
Consider “reasonable” part of the network
Have no quality guarantees

Find methods for route planning in transportation networks with provably
optimal solutions regarding the quality of the routes.
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Problem

Request:
Find the best connection in a
transportation network

Idea:
Network as graph G = (V ,E)

Edge weights are travel times
Shortest paths in G equal quickest
connections
Classic problem (Dijkstra)

Problems:
Transport networks are huge
Dijkstra too slow (> 1 second)
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Speed-Up Techniques

Observations:
Dijkstra visits all nodes closer than the
target
Unnecessary computations
Many requests in a hardly changing
network

Idea:
Two-phase algorithm:

Offline: compute additional data during
preprocessing
Online: speed-up query with this data

3 criteria: preprocessing time and space,
speed-up over Dijkstra
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History I

Phase I: Theory (1959 - 1999):
Improve theoretical worst-case running time
By introduction of better data structures
Bidirectional search, A∗-search (goal-directed)

Phase II: Speed-up techniques (1999 - 2005):
Two approaches: goal-directed and hierarchical approach
Improvement on this for several inputs

Phase III: Road networks (2005 - 2008):
Focus on continent-sized road networks
DIMACS challenge in 2006
Speed-up factors in range of several millions over Dijkstra
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History II

Phase IV: Towards more realistic scenarios (2008-2012):
Time-dependency, multicriteria, alternative routes, . . .
Timetable information
Back to theory: why do things work?

Now: New challenges (since 2012):
Other metrics, e. g., energy consumption
Customizability (supporting user-centric route planning)
Multimodal
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Speed-Up Techniques

Many techniques:
Arc-Flags [Lau04]

Multi-Level Dijkstra [SWW00, HSW08]
Customizable Route Planning (CRP) [DGPW11]

ALT: A*, Landmarks, Triangle Inequality [GH05, GW05]

Reach [GKW07]

Contraction Hierarchies (CH) [GSSD08]

Transit Node Routing (TNR) [ALS13]

Hub Labeling (HL) [ADGW12]

. . .
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Shortcuts
[SWW99, SS05, GSSD08]

Observation:
Nodes with low degree are not important

Contract graph
Iteratively remove such nodes
Add shortcuts to preserve distances between
non-removed nodes

Query:
Bidirectional
Prune edges heading to less important nodes
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Contraction Hierarchies [GSSD08]

Idea: solely use contraction

Approach:
Heuristically order nodes by “importance”
Contract nodes in that order
Node v contracted by

1 forall the edges (u, v) and (v ,w) do
2 if (u, v ,w) unique shortest path then
3 add shortcut (u,w) with weight len(u, v) + len(v ,w);

Query only looks at edges to more important nodes
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Example: CH Preprocessing

2 3 2 1 2
2 6 1 3 54
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CH Query
Modified bidirectional Dijkstra
Upward graph G↑ := (V ,E↑) with E↑ := {(u, v) ∈ E : u < v}
downward graph G↓ := (V ,E↓) with E↓ := {(u, v) ∈ E : u > v}
Forward search in G↑ and backward search in G↓
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From Practice to Theory: WeakCH

Question: What is a good contraction order?
No guarantees on search space [GSSD08]

WeakCH [BCRW13]

Balanced separator nodes are important
→ resulting CH is called weak
O(nα) separators→ O(nα) nodes in the search space
Order is independent of metric
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(Multi-Level) Overlays [SWW00, HSW08]

Observation: many (long-distance) paths share large subpaths
Idea: precompute partial solutions

Overlay graph:
Select important nodes (separators,
path coverage, heuristic)
Compute shortcut-edges:

Skip unimportant nodes
Conserve distances to important nodes

Queries:
Multi-level Dijkstra variant
Ignore edges towards less important nodes s

t

analogous: hierarchies with several levels of nodes of varying importances
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Hub Labeling
Preprocessing:

For each node u, compute label L(u)
A set of hub nodes v and their distance dist(u, v) to u

Labels must fulfill cover property:
for every s, t-pair, the shortest path goes through
the intersection of L(s) ∩ L(t)

s–t query:
Find node v ∈ L(s) ∩ L(t) . . .

. . . that minimizes dist(s, v)+ dist(v , t)

Observations:
Very simple query (can even be implemented in SQL)
Query performance depends only on label sizes
The “magic” lies in computing a small labeling efficiently

s

t
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Experimental Evaluation
Input: Road network of Europe

Approx. 18M nodes
Approx. 42M edges

Preprocessing Query

Algorithm Time [h:m] Space [GiB] Time [µs] Speedup

Dijkstra [Dij59] — — 2 550 000 —

ALT [GH05, GW05] 0:42 2.2 24 521 104
CRP [DGPW11] 1:00 0.5 1 650 1 545
Arc-Flags [Lau04] 0:20 0.3 408 6 250
CH [GSSD08] 0:05 0.2 110 23 181
TNR [ALS13] 0:20 2.1 1.25 2 040 000
HL [ADGW12] 0:37 18.8 0.56 4 553 571

In use at Bing, Google, TomTom, . . .
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New Challenges
More realistic metrics:

Turn costs, electro mobility
Points of interests
(nearest POIs, shortest via-POIs)
User customizable metrics
e.g., height restrictions, avoid freeways,
eco-friendliness, . . .

Fast customization time per metric

Very small space overhead

Multimodal networks:
Change the type of transportation during the journey
Allow only “reasonable” transfers
Several constraints to the shortest path
Multicriteria
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Route Planning for Electric Vehicles

Electric vehicles:
Future means of transportation
Run on regenerative energy sources

But:
Restricted battery capacity
Long recharging times
“Range anxiety”

⇒ Consider energy consumption in route planning applications

Task: Given start and destination in a road network,
find the route that minimizes energy consumption.
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Energy-Optimal Routes
Challenges:

Negative edge weights (recuperation)
Battery constraints (no over-, undercharging)

Energy consumption depends on battery state-of-charge (at the start):

−2 4 M
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Energy-Optimal Routes
Requirements for speedup techniques:

Shortcuts are functions, not scalar values
User-dependent consumption profiles (⇒ custom metrics)

Experiments:
Energy-optimal paths: 63 % extra time
Fastest paths: 62 % extra energy

⇒ Energy-optimal routes: follow slow roads

Trading travel time for energy consumption:
Consider constrained paths

E.g., find the fastest path such that the battery does not run out
NP-hard

Energy can be saved driving below speed limit
Additional instructions to the driver

[BDPW13, BDHS+14]

time

consumption
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Including Charging Stops

Task: Find the fastest path such that the battery does not run out.
Recharging allowed at some nodes (but requires charging time).
Realistic models of charging stations:

Charging power varies
Super chargers
Battery swapping stations

Approach:
Extension of bicriteria search
Propagates charging functions
CHArge: Combination with CH and A*

Optimal routes in seconds / minutes

Heuristic approaches (based on CHArge)
Near-optimal solutions in well below a second
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Custom Metrics

Problem
Preprocessing is metric-dependent
State-of-the-art algorithms tailored to travel time
heavily exploit ‘hierarchy’ of road categories

Naive solution
Compute preprocessing for each metric, e. g.

Distance
Pedestrian
Travel time, but don’t use toll roads
Travel time, avoid left turns, height restrictions, avoid tolls, . . .

Preprocessing and query time increase significantly
Higher space overhead
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From Theory to Practice:
Customizable Contraction
Hierarchies [DSW14]

Idea:
CH topology is the same regardless of metric
Quickly introduce new metric
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From Theory to Practice:
Customizable Contraction
Hierarchies [DSW14]

Idea:
CH topology is the same regardless of metric
Quickly introduce new metric

8

do this for all lower triangles
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What is a Timetable?

Karlsruhe / 10 min

Mannheim / 9 min

8:00→ 8:31

Frankfurt / 12 min

8:31→ 9:08

Rome / 10 min

Milan / 12 min

8:31→ 11:00
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Existing Approaches
list of connections and stops

query
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Timetable Queries

departure time

travel time

Inherently time-dependent: discrete departure times
More query scenarios:

Depart now: earliest arrival time?
Depart later: shortest travel time?
Profile queries: set of journeys with varying departure times
Multicriteria: number of transfers, price, . . .

Different network structure: less hierarchical, less well-separated,
very different schedules at night, . . .
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Connection Scan (CSA) [DPSW13]

Output: earliest arrival time
Input: timetable, source stop, source time, target stop

*missing in the example: footpaths and minimum change times

time table graph is a DAG
faster than Dijkstra, better use of modern processor architectures
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Experimental Evaluation

Input: timetable
London: 5 M connections, 21 k stops
Germany: 46 M connections, 252 k stops

Algorithm Time [ms] speed-up.

Lo
nd

on TE Dijkstra [PSWZ08] 44.8 —
TD Dijkstra [PSWZ08] 10.9 4.1
CSA [DPSW13] 1.8 24.9

D
E

TE Dijkstra [PSWZ08] 2960.2 —
CSA [DPSW13] 298.6 9.9
CSAccel [SW14] 8.7* 340.2

Intel Xeon E5-2670, 2.6 GHz, 64 GiB DDR3-1600 RAM, 20 MiB L2 cache

*preprocessing: 30 min, 256.4 MiB
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Navigation Device for the World

Worldwide network composed of car, rail, flight, . . .
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Multimodal Routing

Up to now:

Restricted to one transportation network
Time-independent and time-dependent (separately)

What we really want is planning a journey by

Choosing source and destination
Desired means of transportation
(car, train, flight, . . . )
. . . in a mixed network
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Adapting Speed-Up Techniques
[Paj09], [KLPC11]

Bidirectional search
easily adaptable (time-dependency is hard)
Goal-directed search
ALT adaptable but low speed-ups,
Arc-Flags turns out difficult
Contraction
adaptable with some restrictions

Contracted graph is called the Core

two promising approaches:
Access-node routing (ANR)
adapting ideas from transit-node routing (table lookups)

User-constrained CH (UCCH)
augmenting contraction hierarchies
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Multiple Transportation Modes

Problem: Unrestricted journeys allow arbitrary transfers

s t

subway line

subway line

private car

Not all sequences of transportation modes are reasonable
Preferred mode of transport varies between users
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Multiple Transportation Modes

Problem: Unrestricted journeys allow arbitrary transfers

s t

subway line

subway line

cycle hire

Not all sequences of transportation modes are reasonable
Preferred mode of transport varies between users
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Solution

“Label Constrained Shortest Path Problem” (LCSPP)

Define alphabet of transportation mode
Finite-state automaton describes
sequences of vehicles
Every path must fulfill the
requirements imposed by the automaton

f t

cf

Algorithms for LCSPP
Dijkstra on the product graph with the automaton works but is
slow [BJM00]

Speed-up techniques: ANR [DPW09], SDALT [KLPC11]

Automaton as input during the query: UCCH [DPW12b]
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User-constrained CH (UCCH) [DPW12b]

Multimodal CH:
Contraction introduces shortcuts with label sequences
Witness search depends on constraints
requires a-priori knowledge of the constraint automata

Idea: do not contract nodes with incident link-edges.

Contraction and witness search are limited to each modality
⇒ Preprocessing independent of mode sequence constraints
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Example: UCCH Preprocessing
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UCCH

Preprocessing
Linked nodes are not contracted thus contained in the core
Shortcuts between core nodes preserve distances
allows using the road network between rail stations

Query
CH search on the component
Label constrained search on the core
Engineering yields further improvement
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Experimental Evaluation

Networks:
road: europe & north america (50 M nodes, 125 M edges)
train: europe (31 k stops, 1.6 M connections)
flight: Star Alliance (1 172 airports, 28 k connections)

Preprocessing Query

Algorithm Time [h:m] Space [MiB] Time [ms] Speedup

ro
ad

&
fli

gh
t Dijkstra — — 33 862.00 1

ANR [DPW09] 3:04 14 050 1.07 31 551
UCCH [DPW12b] 1:18 542 0.67 50 540

al
l

th
re

e Dijkstra — — 35 261.00 1
ANR [DPW09] — — —.00 —
UCCH [DPW12b] 1:27 558 70.52 500

Intel Xeon E5430, 2.66 GHz, 32 GiB RAM, 12 MiB L2 cache
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Solution?

Problems of LCSPP

s t

subway line

subway line

cycle hire

Restrictions must be known in advance
User might not know them
Only a single (best?) journey is computed (no alternatives)

Goal: compute a useful set of multimodal journeys

Dorothea Wagner – Route Planning Algorithms in Transportation Networks
May 18, 2015, Warsaw, Poland

Institute for Theoretical Informatics
Chair Algorithmics



Solution?

Problems of LCSPP

s t?

Restrictions must be known in advance
User might not know them
Only a single (best?) journey is computed (no alternatives)

Goal: compute a useful set of multimodal journeys

Dorothea Wagner – Route Planning Algorithms in Transportation Networks
May 18, 2015, Warsaw, Poland

Institute for Theoretical Informatics
Chair Algorithmics



Solution?

Problems of LCSPP

s t?

Restrictions must be known in advance
User might not know them
Only a single (best?) journey is computed (no alternatives)

Goal: compute a useful set of multimodal journeys

Dorothea Wagner – Route Planning Algorithms in Transportation Networks
May 18, 2015, Warsaw, Poland

Institute for Theoretical Informatics
Chair Algorithmics



Multicriteria Multimodal Routing
Idea: compute multicriteria, multimodal Pareto sets

Optimize arrival time plus
Various (per mode of transport) ”convenience criteria“
for example # transfers (trains), walking time, taxi costs, etc.

criteria: arrival time, # transfers, walking time 69 journeys.

Known problem: Pareto set sizes explode in the number of criteria

[DDP+13]
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Relevant Journeys

the three top-rated journeys.

10 min of walking to arrive 10 sec earlier?
1 hour of bus drive to walk 10 sec less?

Rate the journeys using fuzzy logic [FA04]
Journeys with a higher rating are more relevant
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Reducing the Amount of Work

Problem: queries are slow (> 1 s)

many irrelevant journeys⇒ can we avoid computing them?

Filter already during the algorithm
MCR-hf: fuzzy filter
MCR-hb: Pareto filter, but discrete criteria

Restricted walking (arbitrary heuristic)
MCR-tx-ry : max x minutes of walking between vehicles and
max. y at source/target

Reduce the dimension/number of criteria
MR-x : increase for every x minutes of walking the #transfers by +1
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Experimental Evaluation
London, multimodal:

Roads: 260 k nodes, 1.4 M edges
Subway, bus, tram, . . .
21 k stops, 5 M connections
564 cycle hire station

Criteria: arrival time, # transfers, walking time

Quality-6
Algorithm # Sol. Time [ms] Avg. Sd.

MCR 29.1 1 438.7 100 % 0 %

MCR-hf 10.9 699.4 89 % 11 %
MCR-hb 9.0 456.7 91 % 10 %

MCR-t10-r15 13.2 885.0 30 % 31 %
MR-10 4.3 39.4 45 % 29 %

Intel Xeon E5-2670, 2.6 GHz, 64 GiB DDR3-1600 RAM, 20 MiB L2 cache
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Conclusion

Summary
Algorithm Engineering: combination of theory and practice
(Very) fast route planning on road and timetable networks
Considered metric matters
Multimodal route planning is more expensive

Network offers many interesting trade-offs between criteria
Multicriteria optimization useful, to allow the user to chose his journey

Outlook
Formalization of quality for multimodal journeys done?
Scalability: multimodal multicriteria for worldwide routing?
Additional questions: delay-robustness, park & ride, . . . ?
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Thank you for your attention!
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