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Recent Development in Power Grids and Offshore A\‘(IT
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Challenges

® Increasingly distributed energy production
® Independent power producers

® Volatile power flows and flow directions

=- Operating the power grid gets more demanding

Strategies to cope with the challenges

B Network expansion

® Investment in advanced control units (e.g. FACTS, Switches)
for better utilization of existing grid
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Graph G = (V, E)
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Graph G = (V, E)

Vertex K
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AC vs. DC Conservation of Flow

DC model

V.I. P
1 .A. V
/
e —————————
: : : P b

14

® Same polarity

® Linear

® Convex

® Most digital devices use DC

® Allows the connection of
different AC systems

Dorothea Wagner — Algorithmic Challenges in Power Grids

® Periodically changing polarity

® Complex

® Non-convex
® Most homes are wired for AC

@ AC voltage levels conversion
easier = easier to distribute

iﬁ! Institute of Theoretical Informatics
A Algorithmics Group
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Constraints Polar PQV Rectangular PQV Rectangular IV

non-linear equations
Network with quadratic terms,
sin and cos functions

X Vi

quadratic

. linear constraints
equations

Voltage . . »
I z.f i non-convex linear (with additional
angle dif- inear .
g (arctan) constraints)
ferences : X C
_ , non-convex quadratic local quadratic, some are
Vertices linear . s
inequalities non-convex, some convex
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AC vs. DC Conservation of Flow ﬂ("'
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AC conservation of flow is subproblem of most power grid problems.
AC conservation of flow is already NP-hard on trees.

—Linearized AC conservation of flow is easy to solve.
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AC vs. DC Conservation of Flow

DC model

V,I, P v(1),
A
11 V 1
/
e ——
: : : P > [
—1 + —1
® No fast and robust solving
techniques
® AC model has to be solved
weekly; every 8 h, and 2 h; every
15 min, 5 min, 1 min, and 30 sec
= Different model simplifications
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AC vs. DC Conservation of Flow

linearized AC model

V, I, P v(t), i
L Vv
1 1
/
P
| | | bt
—1 4+ —1 -
® Normalization of the system ® No fast and robust solving
techniques
- Negltgctlon of res%tar;rc]:e, ® AC model has to be solved
relac |vet power-and other weekly; every 8 h, and 2 h; every
elements 15 min, 5 min, 1 min, and 30 sec
® Linear equation system = Different model simplifications
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@ Flow f: E — R with fet: V — R defined
as fret(U Z{u nee f(u, v) and flow value FIN, 1) =2 e, fet(u)
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MAXimMum POWER FLow (MPF) A\‘(IT
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A feasible power flow has to satisfy (additional) physical constraints:

® The Kirchhoff’s Current Law (KCL) which relates to flow
conservation, i.e., fnet(u) = 0 for all V' \ (Vg U V¢)
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} ( — O(s) + 0(1) ) = f(s, x) + f(x, 1)
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@ The value of the MaxiMum POWER FLOW is defined as
MPFWN) = max F(N, f)
with  being a feasible power flow meaning

® The Kirchhoff’s Current Law (KCL) which relates to flow
conservation, i.e., fnet(u) = 0 for all V' \ (Vg U V¢)

® In addition, the Kirchhoff’'s Voltage Law (KVL) with assignment of
potentials (voltage angles) 0: V — R
O(v) —0(u) = f(u, v) Y(u,v) € E
emin(u) S Q(U) S emax(u) VueV
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physical model
(AC linearization)

capacity constraints
Kirchhoff’s Current Law (KCL)
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MAXiMuM POWER FLOwW vs. MAXIMUM FLOW A\‘(IT

physical model
(AC linearization)

capacity constraints
Kirchhoff’s Current Law (KCL)
Kirchhoff’s Voltage Law: 7(u, v) = O(v) —0O(u) forall (u,v) € E
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physical model

(AC linearization)

capacity constraints
Kirchhoff’s Current Law (KCL)
Kirchhoff’'s Voltage Law: f(u, v) = z(u, v)( — )forall (u,v) € E
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Physical Model = Maximum Switching Flow = Flow Model
(MPF) ( ) (MF)
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Physical Model < Maximum Switching Flow < Flow Model
(MPF) ( ) (MF)
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® The value of the IS
defined as
(N) = MaXscke MPF(N — S)
with  being a feasible power flow meaning

for(U) = 0 Yue V\ (VgU Vo)
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® The value of the IS
defined as
(N) = mangE MPF(N — S)
with  being a feasible power flow meaning
het(U) =0 Yue V\ (VgU Vg)
1f(u, v)| < z(u, v) - cap(u, v) Y(u,v) € E

z(u,v) € {0,1}

3
5/3
3
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® The value of the IS
defined as
(N) = MaXscke MPF(N — S)
with  being a feasible power flow meaning

fnet( )=O Vu € V\(VGU VC)
1f(u, v)| < z(u, v) - cap(u, v) Y(u,v) € E
z(u,v) - (B(v) — )= f(u, ) Y(u,v) € E

z(u,v) € {0,1}

§/3
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The MAXIMUM TRANSMISSION SWITCHING QAT
FLow (MTSF) Problem oo ooy e s

® The value of the MaxivuM TRANSMISSION SWITCHING FLOW is
defined as
MTSEWN) = maxsce MPE(WN — S)
with 7 being a feasible power flow meaning

fret(U) = 0 Yue V\ (VgU Vp)
1f(u, v)| < z(u, v) - cap(u, v) Y(u,v) € E
z(u,v) - (8(v) = e< )) = f(u, ) V(u,v) € E

z(u,v) € {0,1}

12  Dorothea Wagner — Algorithmic Challenges in Power Grids =.:= Institute of Theoretical Informatics
1 Algorithmics Group



The MAXIMUM TRANSMISSION SWITCHING AT
FLow (MTSF) Problem

The value of the IS
defined as
(N) := maxsce (N — S)
with 7 being a meaning
het(U) =0 Yue V\ (VgU Vp)
| | < : Y(u,v) € E
: ( - ) . Y(u,v) € E

€ {0,1}

IQX
N /N N /N

s switching always beneficial?y > /3
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The value of the IS
defined as
(N) := maxsce (N — S)
with 7 being a meaning
het(Uu) =0 Yue V\ (VgU Vp)
| | < : Y(u,v) € E
< ( - ) = Y(u,v) € E

€ {0,1}
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The AT

P ro b I e m stitute of Technology

Optimization Problem

Instance: A power grid \V.

Objective: Find a set S C E of switched edges such that MIPF(N — S)
IS maximum among all choices of switched edges S.
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Overview of the Results A\‘(IT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Graph Structure Complexity | Algorithm
5 penrose-minor-free polynomial-
oY . DTP
oS graphs time solvable
52 series-parallel
5 graphs Y, ||[NFHTE A

cacti with max

Z degree of 3 A\ | NP-hard 2-approx.
: 2-level trees @ NP-hard A
lanar graphs with
Fnax deggrepe of 3 ‘@ strongly NP-hard R

@ arbitrary graphs % non-APX A
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Dominating Theta Path (DTP)

Fix u,v € V and a u-v-path .
Susceptance Norm:

|7t|| = length of 7t

14  Dorothea Wagner — Algorithmic Challenges in Power Grids

SKIT

Karlsruhe Institute of Technology

Minimum Capacity:

cap,,,(7) = min{cap(e) | e € t}

iﬁ! Institute of Theoretical Informatics
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Dominating Theta Path (DTP) QAUAT

Karlsruhe Institute of Technology

Fix u,v € V and a u-v-path 7.
Susceptance Norm: Minimum Capacity:

|7t|| := length of 7t cap,,.,(7) := min{cap(e) | e € 7}

Angle Difference of :

= ||7T|| ) Capmin(ﬂ)
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Dominating Theta Path (DTP) QAUAT

Karlsruhe Institute of Technology

Fix u,v € V and a u-v-path 7.
Susceptance Norm: Minimum Capacity:

|7t|| := length of 7t cap,,.,(7) := min{cap(e) | e € 7}

Angle Difference of :

= ||7T|| ) Capmin(’n)

Dominating Theta Path (DTP):

= min{ | tis a u-v-path}
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Computing DTP A\‘(IT

Karlsruhe Institute of Technology

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex
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Computing DTP A\‘(IT

Karlsruhe Institute of Technology

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

8
VIPF = &x
3
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Karlsruhe Institute of Technology
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Computing DTP A\‘(IT

Karlsruhe Institute of Technology

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

8
VIPF = &x
3
(0,00)
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Computing DTP A\‘(IT

Karlsruhe Institute of Technology

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

8
VIPF = &x
3
(0,00)—=(1,x)
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Computing DTP A\‘(IT

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

<
U
T
I
wl|oo
>
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3 Capmin(ﬂ))
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Computing DTP A\‘(IT

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

<
U
T
I
wl|oo
>

L E ﬂ('l ,4X)
(0,00)t—=(1,x)— (2,)
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Computing DTP A\‘(IT

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

MPF = £x
» (1,3x)
L E o (1,4) —> (2,)
(0,00)t=(1,x)—> (2,x)
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Computing DTP A\‘(IT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

MPF = £x
» (1,3x)
L E o (1,4) —> (2,)
(0,00)=(1,x)—> (2,x) —> (3,X)
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Computing DTP A\‘(IT

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

8
VIPF = &x
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Computing DTP A\‘(IT

stitute of Technology

Description:
® Bicriterial Dijkstra with labels (||7t

B at most |E| labels per vertex

3 Capmin(ﬂ))

8
MPF = &x
3
=1-3x =3x
V|
=2 -X =2Xx
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Computing DTP A\‘(IT

Karlsruhe Institute of Technology

Description:

® Bicriterial Dijkstra with labels (||7t

3 Capmin(ﬂ))

B at most |E| labels per vertex

MIPF = 4x
=1-3x =3x
V|
=2 -X =2Xx
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Computing DTP A\‘(IT

stitute of Technology

Description:

® Bicriterial Dijkstra with labels (||7t|| , cap,., (7))

B at most |E| labels per vertex

Change the capacities

=

3
3 MPF = £x
Rofion-gihe)
1 1
3X/X  3X/x X/ x
»(1,2x)
L E —» (1,X) —» (2,X)
(0,00)t—=(1,x)— (2,x) X
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Computing DTP A\‘(IT

Karlsruhe Institute of Technology

Description:

® Bicriterial Dijkstra with labels (||7t

| » CAPmin (7-[))

B at most |E| labels per vertex

® DTPs from s do not VIPE = 8y
have to form a tree 3
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Computing DTP A\‘(IT

Karlsruhe Institute of Technology

Description:

| ) Capmin (7T))

® Bicriterial Dijkstra with labels (||7t

B at most |E| labels per vertex

B DTPsfrom s do not
have to form a tree

B Optimal switches do not
have to lie on the DTP
If the structure is not
penrose-minor free
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Penrose Graphs A\‘(IT

Karlsruhe Institute of Technology

u u
v v

e girdle vertices dart extension

e tip vertices Kite extension

All cases show penrose graphs, where u and v are either generators or consumers, but not
both the same. They are a combination of a (i.e., diamond graph with an additional
edge on one of the tip vertices) and a (i.e., diamond graph with an additional edge
on one of the girdle vertices).
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Flexible AC Transmission Systems (FACTS) ﬂ("'

Karlsruhe Institute of Technology

2 ST
v I\ V
< N

A\ \
YAVAVAvara~ae 8V H7.g
\/ S\

PRODUCER ... . f§ 12
FACTS...
B are control units,
B increase maximum load,

® are expensive.
FoOweER URID

PRO
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Influence of Conductivity

L
-
—]

Karlsruhe Institute of Technology

Influences of Conductivity

® Conductance of the material/conductor
(Temperature increases resistance and decreases conductivity)

® Length of the line/cable
® Wire gauge
In the linear AC-Model the conductivity can be changed by

the € R. To change the we
use FACTS.
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The Maximum FACTS FLow (MFF) Problem QAT

V(i,f) € E
10
?X/SX
10
?X/SX
Y(u,v) € E: f(u,v) =
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The Maximum FACTS FLow (MFF) Problem QAT

V(i,j) € E
11
?X/SX
11
?X/SX
Y(u,v) € E: f(u,v) =
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The Maximum FACTS FLow (MFF) Problem QAT

V(i,j) € E
7
EX/SX
7
EX/SX
Y(u,v) € E: f(u,v) =
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The Maximum FACTS FLow (MFF) Problem QAT

V(i,j) € E
13
3 X / 5x
13
?X / 5x
Y(u,v) € E: f(u,v) =
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Physical Model = Maximum FACTS Flow = Flow Model
(MPF) (MFF) (MF)
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Physical Model < Maximum FACTS Flow < Flow Model
(MPF) (MFF) (MF)
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The Maximum FACTS FLow (MFF) Problem QAUAT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® The value of the Maximum Flexible AC Transmission Switching
Flow (MFF) is defined as
MFF(WN, k) := maxg/cg, MPE(N) E'| < k
with f being a feasible power flow meaning

fer(U) = 0 Yue V\ (VgU Vo)

S t
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The Maximum FACTS FLow (MFF) Problem QAUAT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® The value of the Maximum Flexible AC Transmission Switching
Flow (MFF) is defined as
MFF(WN, k) := maxg/cg, MPE(N) E'| < k
with f being a feasible power flow meaning

| f(u, v)| < cap(u, v) Y(u,v) € E
k=1 X
S t
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The Maximum FACTS FLow (MFF) Problem QAUAT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® The value of the Maximum Flexible AC Transmission Switching
Flow (MFF) is defined as
MFF(WN, k) := maxg/cg, MPE(N) E'| < k
with f being a feasible power flow meaning

[f(u, v)| < cap(u, v) Y(u,v) € E
- (8(v) — 6(u)) = f(u, v) Y(u,v) € E
k=1
3/3
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The Maximum FACTS FLow (MFF) Problem AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® The value of the Maximum Flexible AC Transmission Switching
Flow (MFF) is defined as
MFF(WN, k) := maxg/cg, MPE(N) E'| < k
with f being a feasible power flow meaning

for(U) = O Yue V\ VGUV)

( c
[f(u, v)| < cap(u, v) Y(u,v) €
- (6(v) = 8(v)) = f(u, v) V(u,v) €
Y(u,v) € E’
k=1
3/3
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The Maximum FACTS FLow (MFF) Problem AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® The value of the Maximum Flexible AC Transmission Switching
Flow (MFF) is defined as
MFF(WN, k) := maxg/cg, MPE(N) E'| < k
with f being a feasible power flow meaning

for(U) = O Yue V\ VGUV)

( c
[f(u, v)| < cap(u, v) Y(u,v) €
- (6(v) = 8(v)) = f(u, v) V(u,v) €
Y(u,v) € E’
k=1
5 /3
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The Maximum FACTS FLow (MFF) Problem AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® The value of the Maximum Flexible AC Transmission Switching
Flow (MFF) is defined as
MFF(WN, k) := maxg/cg, MPE(N) E'| < k
with f being a feasible power flow meaning

for(U) = O Yue V\ VGUV)

( c
[f(u, v)| < cap(u, v) Y(u,v) €
- (6(v) = 8(v)) = f(u, v) V(u,v) €
Y(u,v) € E’
k=1
5 /3
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The Maximum FACTS FLow (MFF) Problem QAT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Optimization Problem MFF

Instance: A power grid \V.

Objective: Find a set £/ C E of edges with FACTS and a susceptance
configuration with e € E’ such that MPF(N) is maxi-
mum among all choices of FACTS placements and suscep-
tance configurations while complying with |E’| < k.
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The OpTIMAL FACTS FLow (OFF) Problem QAUAT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

® The value of the OpPTIMAL POWER FLOW (OPF) is defined as
OPFW) = miny(N, f)

with 7 being a feasible power flow and the generator cost function vy.

Optimization Problem OFF

Instance: A power grid V.

Objective: Find a set £/ C E of edges with FACTS and a susceptan-
ce configuration with e € E’ such that OPF(N) is mini-
mum among all choices of FACTS placements and suscep-
tance configurations while complying with |E’| < k.
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OPTIMAL FACTS FLow (OFF) A\‘(IT

Karlsruhe Institute of Technology
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OPTIMAL FACTS FLow (OFF) A\‘(IT

Karlsruhe Institute of Technology

13

optimize with regards to:
Conservation of Flow

Power Flow Constraint
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OPTIMAL FACTS FLow (OFF) A\‘(IT

Karlsruhe Institute of Technology

optimize with regards to:
Conservation of Flow

Power Flow Constraint

minimize Costs
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OPTIMAL FACTS FLow (OFF) A\‘(IT

Karlsruhe Institute of Technology

optimize with regards to:
Conservation of Flow v

Power Flow Constraint  /

Physical Model

minimize Costs
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OPTIMAL FACTS FLow (OFF) A\‘(IT

Karlsruhe Institute of Technology

optimize with regards to:
Conservation of Flow v v

Power Flow Constraint X

Physical Model

minimize Costs

Flow Model
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OPTIMAL FACTS FLow (OFF) A\‘(IT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

optimize with regards to:
Conservation of Flow v v

Power Flow Constraint X

Physical Model

minimize Costs

Flow Model
upper bound
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OPTIMAL FACTS FLow (OFF) ﬂ(".

Karlsruhe Institute of Technology

m—— FACTS

optimize with regards to:
Conservation of Flow v v Vv

Power Flow Constraint X

Physical Model

minimize Costs

Flow Model
upper bound
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OPTIMAL FACTS FLow (OFF) ﬂ(".

stitute of Technology

m—— FACTS

optimize with regards to:
Conservation of Flow v v Vv

Power Flow Constraint X

f(u, v) = - (O(u) = O(v))

Physical Model

minimize Costs

Flow Model
upper bound
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&(IT

Karlsruhe Institute of Technology

Matchmg the FIow Model

FACTS are expensive — how many do we need?

1. How many FACTS are necessary for globally optimal power flows? Which
edges need to have a FACTS?

2. For a given number of available FACTS, is there a positive effect on flow
costs and operability when approaching grid capacity limits?

Left Figure:
2 http://www.lichtenwald-mentaltraining.de/files/bild_licht_im_wald.jpg
Institute of Theoretical Informatics
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Globally Optimal Power Flows A\‘(IT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Can we become as good as the Flow Model
with fewer FACTS?
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Feedback Forest Set A\‘(IT

Karlsruhe Institute of Technology

“= foedback forest set

25 Dorothea Wagner — Algorithmic Challenges in Power Grids iﬁ! Institute of Theoretical Informatics
- Algorithmics Group



Feedback Forest Set &‘(IT

Karlsruhe Institute of Technology

“= foedback forest set

A set of trees (forest)
remains!
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Feedback Forest Set &‘(IT

Karlsruhe Institute of Technology

‘ 14 feedback forest set
‘ ” : A set of trges (forest)
10

9 3 |

6 ‘ ‘ remains!
O g
> (

12
G

19
3

If the graph without FACTS represents a forest all flows represent
feasible power flows.
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Generalized Algorithmic Idea A\‘(IT

stitute of Technology

Idea
® Decompose the graph G at the cut-vertex v, into subgraphs B;

® The feasible power flows  does not change for the subgraphs B,

® If we have a feasible power flows for each block B; and combine the
subgraphs at v, this leads to a feasible power flows again

26  Dorothea Wagner — Algorithmic Challenges in Power Grids iﬁ! Institute of Theoretical Informatics
- Algorithmics Group



Generalized Algorithmic Idea A\‘(IT

stitute of Technology

Idea
® Decompose the graph G at the cut-vertex v, into subgraphs B;

® The feasible power flows  does not change for the subgraphs B,

® If we have a feasible power flows for each block B; and combine the
subgraphs at v, this leads to a feasible power flows again

26  Dorothea Wagner — Algorithmic Challenges in Power Grids iﬁ! Institute of Theoretical Informatics
- Algorithmics Group



Generalized Algorithmic Idea A\‘(IT

stitute of Technology

Idea
® Decompose the graph G at the cut-vertex v, into subgraphs B;

® The feasible power flows  does not change for the subgraphs B,

® If we have a feasible power flows for each block B; and combine the
subgraphs at v, this leads to a feasible power flows again

26  Dorothea Wagner — Algorithmic Challenges in Power Grids iﬁ! Institute of Theoretical Informatics
- Algorithmics Group



Generalized Algorithmic Idea A\‘(IT

stitute of Technology

Idea
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® If we have a feasible power flows for each block B; and combine the
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Feedback Set A\‘(IT

Karlsruhe Institute of Technology

Feedback Forest Set
Feedback Cactus Set
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Feedback Set A\‘(IT

Karlsruhe Institute of Technology

Feedback Forest Set
Feedback Cactus Set

{

A set of Cacti re-
mains!
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Feedback Set A\‘(IT

Karlsruhe Institute of Technology

Feedback Forest Set

If the remaining graph is a cactus and the capacities on the cycles
are suitably bounded then there is for every flow a cost-equivalent
feasible power flow.

27  Dorothea Wagner — Algorithmic Challenges in Power Grids iﬁ! Institute of Theoretical Informatics
- Algorithmics Group



The Wind Farm Cable Layout Problem ﬂ("'

Karlsruhe Institute of Technology
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The Wind Farm Cable Layout Problem ﬂ("'

Karlsruhe Institute of Technolo
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The Wind Farm Cable Layout Problem ... ... N{JIT

Karlsruhe Institute of Technolo
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The Wind Farm Cable Layout Problem ﬂ(IT
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Given MW Vs set of substations (each with capacity),
Vr set of turbines (each with unit production),
E set of edges (possible connections),
for each edge: cable types (each with cost and capacity)
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Given m Vg set of substations (each with capacity),
® V7 set of turbines (each with unit production),

----- E set of edges (possible connections),
= for each edge: cable types (each with cost and capacity)
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Given m Vg set of substations (each with capacity),
® V7 set of turbines (each with unit production),

----- E set of edges (possible connections),
= for each edge: cable types (each with cost and capacity)

find for each edge: the cable type

—————< 2 Wind Turbines; $ 100
e < 6 Wind Turbines; $ 140
s << 9 Wind Turbines; $ 162
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Given m Vs set of substations (each with capacity),

® V7 set of turbines (each with unit production),

----- E set of edges (possible connections),

= for each edge: cable types (each with cost and capacity)

find for each edge: the cable type
minimizing  total cable cost
|
—————< 2 Wind Turbines; $ 100 \
e < 6 Wind Turbines; $ 140
s < 9 Wind Turbines; $ 162
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Karlsruhe Institute of Technology

Given m Vg set of substations (each with capacity),
® V7 set of turbines (each with unit production),
----- E set of edges (possible connections),
= for each edge: cable types (each with cost and capacity)

find for each edge: the cable type

minimizing  total cable cost

Subject to  cable capacity constraints S 2l e 0

e < 6 Wind Turbines; $ 140

SUbStatlon Capacrty Constra|nts—§ 9 Wind Turbines; $ 162
flow conservation constraints
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Ut Vi ® Substation capacity: 2
@ Edge lengths: 2 (edge ujvz: 3)

@ Cable types: A
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Ut Vi ® Substation capacity: 2
@ Edge lengths: 2 (edge ujvz: 3)
@ Cable types: A
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Switches. ..
® increase maximum load, _.
® are control units. R

Full Farm

FACTS...

® increase maximum load, i
® are control units,

® are expensive.

< 2 Wind Turbines; $ 100
=== < 6 Wind Turbines; $ 140
mm < 9 Wind Turbines; $ 162

AN AN ==
Optimal Windfarm Cabling. . . ?g
® significantly decreases the
overall building costs,
® allows multiple cable types.
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