

Algorithmic Challenges in Power Grids

Algorithms for Big Data · Indo-German Spring School · February 19th, 2019 Dorothea Wagner

The Netherlands

Poland

www.kit.edu

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

KIT – The Research University in the Helmholtz Association

Recent Development in Power Grids and Offshore

https://upload.wikimedia.org/wikipedia/commons/a/a1/Map_of_the_offshore_wind_power_farms_in_the_German_Bight.png

Institute of Theoretical Informatics Algorithmics Group

Karlsruhe Institute of Technolog

Recent Development in Power Grids and Offshore

Institute of Theoretical Informatics Algorithmics Group

Karlsruhe Institute of Technology

Challenges

- Increasingly distributed energy production
- Independent power producers
- Volatile power flows and flow directions
- \Rightarrow Operating the power grid gets more demanding

Strategies to cope with the challenges

- Network expansion
- Investment in advanced control units (e.g. FACTS, Switches) for better utilization of existing grid

[University of Washington, 1999]

Graph G = (V, E)

[University of Washington, 1999]

Graph G = (V, E)

[University of Washington, 1999]

Graph G = (V, E)

[University of Washington, 1999]

Graph G = (V, E)

[University of Washington, 1999]

Graph G = (V, E)

[University of Washington, 1999]

Graph G = (V, E)

[University of Washington, 1999]

Graph G = (V, E)

Karlsruhe Institute

[University of Washington, 1999]

Graph G = (V, E)

[University of Washington, 1999]

Graph G = (V, E)

Karlsruhe Institute of Technolo

[University of Washington, 1999]

Graph G = (V, E)

Conservation of Flow

- Same polarity
- Linear
- Convex
- Most digital devices use DC
- Allows the connection of different AC systems

- Periodically changing polarity
- Complex
- Non-convex
- Most homes are wired for AC
- AC voltage levels conversion easier \Rightarrow easier to distribute

Constraints	Polar PQV	Rectangular PQV	Rectangular IV
Network	non-linear equations with quadratic terms, sin and cos functions	quadratic equations	linear constraints
Voltage angle dif- ferences	linear	non-convex (arctan)	linear (with additional constraints)
Vertices	linear	non-convex quadratic inequalities	local quadratic, some are non-convex, some convex

- No fast and robust solving techniques
- AC model has to be solved weekly; every 8 h, and 2 h; every 15 min, 5 min, 1 min, and 30 sec
- \Rightarrow Different model simplifications

- Normalization of the system
- Neglection of resistance, reactive power and other elements
- Linear equation system

6

- No fast and robust solving techniques
- AC model has to be solved weekly; every 8 h, and 2 h; every 15 min, 5 min, 1 min, and 30 sec
- \Rightarrow Different model simplifications

Flow $f: E \to \mathbb{R}$ with $f_{net}: V \to \mathbb{R}$ defined as $f_{net}(u) := \sum_{\{u,v\} \in E} f(u, v)$ and flow value $F(\mathcal{N}, f) := \sum_{u \in V_G} f_{net}(u)$

Flow $f: E \to \mathbb{R}$ with $f_{net}: V \to \mathbb{R}$ defined as $f_{net}(u) := \sum_{\{u,v\} \in E} f(u, v)$ and flow value $F(\mathcal{N}, f) := \sum_{u \in V_G} f_{net}(u)$

The value of the MAXIMUM FLOW is defined as $MF(\mathcal{N}) = \max F(\mathcal{N}, f)$ with *f* being a feasible flow meaning

- Flow $f: E \to \mathbb{R}$ with $f_{\text{net}}: V \to \mathbb{R}$ defined as $f_{\text{net}}(u) := \sum_{\{u,v\} \in E} f(u, v)$ and flow value $F(\mathcal{N}, f) := \sum_{u \in V_G} f_{\text{net}}(u)$
- The value of the MAXIMUM FLOW is defined as

$$\mathsf{MF}(\mathcal{N}) = \max F(\mathcal{N}, f)$$

with *f* being a feasible flow meaning

$$f_{\text{net}}(u) = \sum_{\{u,v\}\in E} f(u,v) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$$

- Flow $f: E \to \mathbb{R}$ with $f_{\text{net}}: V \to \mathbb{R}$ defined as $f_{\text{net}}(u) := \sum_{\{u,v\} \in E} f(u, v)$ and flow value $F(\mathcal{N}, f) := \sum_{u \in V_G} f_{\text{net}}(u)$
- The value of the MAXIMUM FLOW is defined as $MF(\mathcal{N}) = \max F(\mathcal{N}, f)$

with *f* being a feasible flow meaning

$$f_{\text{net}}(u) = \sum_{\substack{\{u,v\} \in E \\ -\infty \leq f_{\text{net}}(u) \leq -d}} f(u, v) = 0 \quad \forall u \in V \setminus (V_G \cup V_C)$$
$$\forall u \in V_C$$

The MAXIMUM FLOW (MF) Problem

- Flow $f: E \to \mathbb{R}$ with $f_{\text{net}}: V \to \mathbb{R}$ defined as $f_{\text{net}}(u) := \sum_{\{u,v\} \in E} f(u, v)$ and flow value $F(\mathcal{N}, f) := \sum_{u \in V_G} f_{\text{net}}(u)$
- The value of the MAXIMUM FLOW is defined as $MF(\mathcal{N}) = \max F(\mathcal{N}, f)$

with *f* being a feasible flow meaning

$$f_{\text{net}}(u) = \sum_{\substack{\{u,v\} \in E}} f(u, v) = 0 \quad \forall u \in V \setminus (V_G \cup V_C) \\ -\infty \leq f_{\text{net}}(u) \leq -d \quad \forall u \in V_C \\ 0 \leq f_{\text{net}}(u) \leq \infty \quad \forall u \in V_G$$

The MAXIMUM FLOW (MF) Problem

- Flow $f: E \to \mathbb{R}$ with $f_{\text{net}}: V \to \mathbb{R}$ defined as $f_{\text{net}}(u) := \sum_{\{u,v\} \in E} f(u, v)$ and flow value $F(\mathcal{N}, f) := \sum_{u \in V_G} f_{\text{net}}(u)$
- The value of the MAXIMUM FLOW is defined as $MF(\mathcal{N}) = \max F(\mathcal{N}, f)$

with *f* being a feasible flow meaning

The MAXIMUM FLOW (MF) Problem

The Kirchhoff's Current Law (KCL) which relates to flow conservation, i.e., $f_{net}(u) = 0$ for all $V \setminus (V_G \cup V_C)$

- The Kirchhoff's Current Law (KCL) which relates to flow conservation, i.e., $f_{net}(u) = 0$ for all $V \setminus (V_G \cup V_C)$
- In addition, the Kirchhoff's Voltage Law (KVL) with assignment of potentials (voltage angles) $\theta: V \to \mathbb{R}$

- The Kirchhoff's Current Law (KCL) which relates to flow conservation, i.e., $f_{net}(u) = 0$ for all $V \setminus (V_G \cup V_C)$
- In addition, the Kirchhoff's Voltage Law (KVL) with assignment of potentials (voltage angles) $\theta: V \to \mathbb{R}$

 $\theta(v) - \theta(u) = f(u, v) \qquad \forall (u, v) \in E$

- The Kirchhoff's Current Law (KCL) which relates to flow conservation, i.e., $f_{net}(u) = 0$ for all $V \setminus (V_G \cup V_C)$
- In addition, the Kirchhoff's Voltage Law (KVL) with assignment of potentials (voltage angles) $\theta: V \to \mathbb{R}$
 - $\begin{array}{ll} \theta(v) \theta(u) = f(u, v) & \forall (u, v) \in E \\ \theta_{\min}(u) \leq \theta(u) \leq \theta_{\max}(u) & \forall u \in V \end{array}$

 $(\theta(x) - \theta(s)) = f(s, x)$ $(\theta(t) - \theta(x)) = f(x, t)$

($\theta(t) - \theta(s)$) = f(s, t)potentials (voltage angles) $\theta: V \to \mathbb{R}$

 $\begin{aligned} \theta(v) - \theta(u) &= f(u, v) & \forall (u, v) \in E \\ \theta_{\min}(u) &\leq \theta(u) \leq \theta_{\max}(u) & \forall u \in V \end{aligned}$

 $\begin{array}{l} (\theta(x) - \theta(s)) = f(s, x) \\ (\theta(t) - \theta(x)) = f(x, t) \end{array} \right\} \quad (\theta(x) - \theta(s) + \theta(t) - \theta(x)) = f(s, x) + f(x, t) \\ \end{array}$

 $(\theta(t) - \theta(s)) = f(s, t)$ potentials (voltage angles) $\theta: V \to \mathbb{R}$

 $\begin{aligned} \theta(v) - \theta(u) &= f(u, v) & \forall (u, v) \in E \\ \theta_{\min}(u) &\leq \theta(u) \leq \theta_{\max}(u) & \forall u \in V \end{aligned}$

8

$$\begin{array}{l} (\theta(x) - \theta(s)) = f(s, x) \\ (\theta(t) - \theta(x)) = f(x, t) \end{array} \end{array} \right\} \quad (\qquad - \theta(s) + \theta(t) \qquad) = f(s, x) + f(x, t) \\ \end{array}$$

 $(\theta(t) - \theta(s)) = f(s, t)$ potentials (voltage angles) $\theta: V \to \mathbb{R}$

 $\begin{aligned} \theta(v) - \theta(u) &= f(u, v) & \forall (u, v) \in E \\ \theta_{\min}(u) &\leq \theta(u) \leq \theta_{\max}(u) & \forall u \in V \end{aligned}$

$$\begin{array}{l} (\theta(x) - \theta(s)) = f(s, x) \\ (\theta(t) - \theta(x)) = f(x, t) \end{array} \end{array} \right\} \quad (\qquad - \theta(s) + \theta(t) \qquad) = f(s, x) + f(x, t) \\ \end{array}$$

 $\begin{array}{ll} (\theta(t) - \theta(s)) = f(s,t) & \Leftrightarrow \\ \text{potentials (voltage angles)} \theta: V \to \mathbb{R} \\ \theta(v) - \theta(u) = f(u,v) \quad \forall (u,v) \in E \\ \theta_{\min}(u) \leq \theta(u) \leq \theta_{\max}(u) \quad \forall u \in V \end{array}$

- The value of the MAXIMUM POWER FLOW is defined as $MPF(\mathcal{N}) = \max F(\mathcal{N}, f)$ with *f* being a feasible power flow meaning
- The Kirchhoff's Current Law (KCL) which relates to flow conservation, i.e., $f_{net}(u) = 0$ for all $V \setminus (V_G \cup V_C)$
- In addition, the Kirchhoff's Voltage Law (KVL) with assignment of potentials (voltage angles) $\theta: V \to \mathbb{R}$

$$\begin{array}{ll} \theta(v) - \theta(u) = f(u, v) & \forall (u, v) \in E \\ \theta_{\min}(u) \leq \theta(u) \leq \theta_{\max}(u) & \forall u \in V \end{array}$$

MAXIMUM POWER FLOW vs. MAXIMUM FLOW

physical model

(AC linearization)

lower bound

flow model

upper bound

capacity constraints Kirchhoff's Current Law (KCL)

MAXIMUM POWER FLOW VS. MAXIMUM FLOW

physical model

(AC linearization)

lower bound

flow model

upper bound

capacity constraints

Kirchhoff's Current Law (KCL)

Kirchhoff's Voltage Law: f(u, v) =

 $\theta(v) - \theta(u)$ for all $(u, v) \in E$

Switching

Kirchhoff's Voltage Law: $f(u, v) = z(u, v)(\theta(v) - \theta(u))$ for all $(u, v) \in E$

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $\mathsf{MTSF}(\mathcal{N}) := \max_{S \subseteq E} \mathsf{MPF}(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

$$f_{\mathsf{net}}(u) = 0 \qquad \qquad \forall u \in V \setminus (V_G \cup V_C)$$

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $\mathsf{MTSF}(\mathcal{N}) := \max_{S \subseteq E} \mathsf{MPF}(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

$$f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$$
$$|f(u, v)| \le z(u, v) \cdot \operatorname{cap}(u, v) \qquad \forall (u, v) \in E$$

z(*u*, *v*) ∈ {0, 1}

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $\mathsf{MTSF}(\mathcal{N}) := \max_{S \subseteq E} \mathsf{MPF}(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

 $f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \le z(u, v) \cdot cap(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \in \{0, 1\}$

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $\mathsf{MTSF}(\mathcal{N}) := \max_{S \subseteq E} \mathsf{MPF}(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

 $f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \le z(u, v) \cdot cap(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \in \{0, 1\}$

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $MTSF(\mathcal{N}) := \max_{S \subseteq E} MPF(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

 $f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \le z(u, v) \cdot cap(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \in \{0, 1\}$

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $MTSF(\mathcal{N}) := \max_{S \subseteq E} MPF(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

 $f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \le z(u, v) \cdot cap(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $MTSF(\mathcal{N}) := \max_{S \subseteq E} MPF(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

 $f_{\text{net}}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \le z(u, v) \cdot \operatorname{cap}(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$

 $z(u, v) \in \{0, 1\}$

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $MTSF(\mathcal{N}) := \max_{S \subseteq E} MPF(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

 $f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \le z(u, v) \cdot cap(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \in \{0, 1\}$

 $\begin{array}{c} 0/1 \\ 0/1 \\ 0/1 \\ 0/1 \\ 0/1 \\ 1/1 \\ 1/3 \\ 1/1 \\ 1/3 \\ 1/1 \\ 1/3 \\ 1/1 \\ 1/3 \\$

The value of the MAXIMUM TRANSMISSION SWITCHING FLOW is defined as

 $MTSF(\mathcal{N}) := \max_{S \subseteq E} MPF(\mathcal{N} - S)$

with *f* being a feasible power flow meaning

 $f_{\text{net}}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \le z(u, v) \cdot \operatorname{cap}(u, v) \qquad \forall (u, v) \in E$ $z(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$

 $z(u, v) \in \{0, 1\}$

Optimization Problem MTSF

Instance: A power grid \mathcal{N} .

Objective: Find a set $S \subseteq E$ of switched edges such that MPF($\mathcal{N} - S$) is maximum among all choices of switched edges *S*.

Overview of the MTSF Results

		Graph Structure	Complexity	Algorithm
	lenerator, e load	penrose-minor-free graphs	polynomial- time solvable	DTP [Grastien et al., 2018]
	one g	graphs	(Grastien et al., 2018)	X
lexity	arbitrary generators, arbitrary loads	cacti with max degree of 3	NP-hard [Lehmann et al., 2014]	2-approx. [Grastien et al., 2018]
comp		2-level trees	NP-hard [Lehmann et al., 2014]	X
		planar graphs with max degree of 3	strongly NP-hard [Lehmann et al., 2014]	X
	V _C = 2,	arbitrary graphs) non-APX [Lehmann et al., 2014]	X

Dominating Theta Path (DTP)

[Section 5; Grastien et al., 2018]

Fix $u, v \in V$ and a u-v-path π .

Susceptance Norm:

 $\|\pi\| := \text{length of } \pi$

Minimum Capacity:

$$\mathsf{cap}_{\min}(\pi) := \min\{\mathsf{cap}(e) \mid e \in \pi\}$$

Dominating Theta Path (DTP)

[Section 5; Grastien et al., 2018]

Fix $u, v \in V$ and a u-v-path π .

Susceptance Norm:

 $\|\pi\| := \text{length of } \pi$

Minimum Capacity:

 $\mathsf{cap}_{\min}(\pi) \coloneqq \min\{\mathsf{cap}(e) \mid e \in \pi\}$

Angle Difference of π :

 $\Delta \theta(\pi) := \|\pi\| \cdot \operatorname{cap}_{\min}(\pi)$

Dominating Theta Path (DTP)

[Section 5; Grastien et al., 2018]

Fix $u, v \in V$ and a u-v-path π .

Susceptance Norm:

 $\|\pi\| := \text{length of } \pi$

Minimum Capacity:

 $\mathsf{cap}_{\min}(\pi) := \min\{\mathsf{cap}(e) \mid e \in \pi\}$

Angle Difference of π :

 $\Delta \theta(\pi) := \|\pi\| \cdot \operatorname{cap}_{\min}(\pi)$

Dominating Theta Path (DTP):

 $\Delta \theta_{\min}(u, v) := \min\{\Delta \theta(\pi) \mid \pi \text{ is a } u - v - path\}$

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |*E*| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

 $MPF = \frac{8}{3}X$

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

- Bicriterial Dijkstra with labels $(||\pi||, cap_{min}(\pi))$
- at most |E| labels per vertex

MPF = 3x= MTSF

Penrose Graphs

[Section 5; Grastien et al., 2018]

girdle verticestip vertices

dart extension
kite extension

All cases show penrose graphs, where *u* and *v* are either generators or consumers, but not both the same. They are a combination of a kite graph (i.e., diamond graph with an additional edge on one of the tip vertices) and a dart graph (i.e., diamond graph with an additional edge on one of the girdle vertices).

Flexible AC Transmission Systems (FACTS)

Influence of Conductivity

The MAXIMUM FACTS FLOW (MFF) Problem x/xX/X2x/4Physical Model \leq Maximum FACTS Flow < Flow Model (MPF) (MFF) (MF) $\forall (i,j) \in E$ X/X<u>13</u> 3 $\frac{13}{3}x/5x$ $\frac{10}{3}x/4x$ b(s, v) = 1.25 $\frac{13}{2}x/5x$ $\forall (u, v) \in E : f(u, v) = b(u, v) (\theta(v) - \theta(u))$

The value of the Maximum Flexible AC Transmission Switching Flow (MFF) is defined as $MFF(\mathcal{N}, k) := \max_{E' \subseteq E, b} MPF(\mathcal{N}) \quad |E'| \leq k$ with *f* being a feasible power flow meaning

$$f_{\mathsf{net}}(u) = 0$$
 $\forall u \in V \setminus (V_G \cup V_C)$

The value of the Maximum Flexible AC Transmission Switching Flow (MFF) is defined as $MFF(\mathcal{N}, k) := \max_{E' \subseteq E, b} MPF(\mathcal{N}) \quad |E'| \leq k$ with *f* being a feasible power flow meaning

$$f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$$
$$|f(u, v)| \le cap(u, v) \qquad \forall (u, v) \in E$$

k = 1

The MAXIMUM FACTS FLOW (MFF) Problem [Lehmann et al., 2015]

The value of the Maximum Flexible AC Transmission Switching Flow (MFF) is defined as $MFF(\mathcal{N}, k) := \max_{E' \subseteq E, b} MPF(\mathcal{N}) \quad |E'| \leq k$ with *f* being a feasible power flow meaning

$$f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$$
$$|f(u, v)| \le cap(u, v) \qquad \forall (u, v) \in E$$
$$b(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$$

k = 1

The value of the Maximum Flexible AC Transmission Switching Flow (MFF) is defined as $MFF(\mathcal{N}, k) := \max_{E' \subseteq E, b} MPF(\mathcal{N}) |E'| \leq k$ with *f* being a feasible power flow meaning $f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \leq cap(u, v) \qquad \forall (u, v) \in E$ $b(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$ $b(u, v) \in \left[\frac{3}{4}, \frac{5}{4}\right] \qquad \forall (u, v) \in E'$

k = 1

20

The value of the Maximum Flexible AC Transmission Switching Flow (MFF) is defined as $MFF(\mathcal{N}, k) := \max_{E' \subseteq E, b} MPF(\mathcal{N}) |E'| \leq k$ with *f* being a feasible power flow meaning $f_{net}(u) = 0 \qquad \forall u \in V \setminus (V_G \cup V_C)$ $|f(u, v)| \leq cap(u, v) \qquad \forall (u, v) \in E$ $b(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v) \qquad \forall (u, v) \in E$ $b(u, v) \in \left[\frac{3}{4}, \frac{5}{4}\right] \qquad \forall (u, v) \in E'$

k = 1

The value of the Maximum Flexible AC Transmission Switching Flow (MFF) is defined as $\mathsf{MFF}(\mathcal{N}, k) := \max_{E' \subset E, \mathbf{b}} \mathsf{MPF}(\mathcal{N}) \qquad |E'| \le k$ with f being a feasible power flow meaning $\forall u \in V \setminus (V_G \cup V_C)$ $f_{\rm net}(u) = 0$ $|f(u, v)| \leq \operatorname{cap}(u, v)$ $\forall (u, v) \in E$ $b(u, v) \cdot (\theta(v) - \theta(u)) = f(u, v)$ $\forall (u, v) \in E$ $b(u, v) \in \left[\frac{3}{4}, \frac{5}{4}\right]$ $\forall (u, v) \in E'$

k = 1

Optimization Problem MFF

Instance: A power grid \mathcal{N} .

Objective: Find a set $E' \subseteq E$ of edges with FACTS and a susceptance configuration b(e) with $e \in E'$ such that MPF(\mathcal{N}) is maximum among all choices of FACTS placements and susceptance configurations while complying with $|E'| \leq k$.

The OPTIMAL FACTS FLOW (OFF) Problem

The value of the OPTIMAL POWER FLOW (OPF) is defined as $OPF(\mathcal{N}) = \min \gamma(\mathcal{N}, f)$

with *f* being a feasible power flow and the generator cost function γ .

Optimization Problem OFF

- **Instance:** A power grid \mathcal{N} .
- **Objective:** Find a set $E' \subseteq E$ of edges with FACTS and a susceptance configuration b(e) with $e \in E'$ such that $OPF(\mathcal{N})$ is minimum among all choices of FACTS placements and susceptance configurations while complying with $|E'| \leq k$.

optimize with regards to:

Power Flow Constraint

optimize with regards to: **Conservation of Flow**

Power Flow Constraint

minimize Costs

minimize Costs

Physical Model

Flow Model

minimize Costs

Physical Model

Algorithmics Group

Dorothea Wagner – Algorithmic Challenges in Power Grids 22

Matching the Flow Model [Leibfried et al.& Mchedlidze et al., 2015]

FACTS are expensive – how many do we need?

- 1. How many FACTS are necessary for globally optimal power flows? Which edges need to have a FACTS?
- 2. For a given number of available FACTS, is there a positive effect on flow costs and operability when approaching grid capacity limits?

Left Figure: ² http://www.lichtenwald-mentaltraining.de/files/bild_licht_im_wald.jpg

Institute of Theoretical Informatics Algorithmics Group

Globally Optimal Power Flows [Leibfried et al.& Mchedlidze et al., 2015]

FACTS

Can we become as good as the Flow Model with fewer FACTS?

Feedback Forest Set [Leibfried et al.& Mchedlidze et al., 2015]

Feedback Forest Set [Leibfried et al.& Mchedlidze et al., 2015]

feedback forest set

A set of trees (*forest*) remains!

Feedback Forest Set [Leibfried et al.& Mchedlidze et al., 2015]

If the graph without FACTS represents a forest all flows represent feasible power flows.

- Decompose the graph G at the cut-vertex v_c into subgraphs B_i
- The feasible power flows f does not change for the subgraphs B_i
- If we have a feasible power flows for each block B_i and combine the subgraphs at v_c this leads to a feasible power flows again

- Decompose the graph G at the cut-vertex v_c into subgraphs B_i
- The feasible power flows f does not change for the subgraphs B_i
- If we have a feasible power flows for each block B_i and combine the subgraphs at v_c this leads to a feasible power flows again

- Decompose the graph G at the cut-vertex v_c into subgraphs B_i
- The feasible power flows f does not change for the subgraphs B_i
- If we have a feasible power flows for each block B_i and combine the subgraphs at v_c this leads to a feasible power flows again

- Decompose the graph G at the cut-vertex v_c into subgraphs B_i
- The feasible power flows f does not change for the subgraphs B_i
- If we have a feasible power flows for each block B_i and combine the subgraphs at v_c this leads to a feasible power flows again

Feedback Cactus Set [Leibfried et al.& Mchedlidze et al., 2015]

Feedback Cactus Set

Feedback Cactus Set [Leibfried et al.& Mchedlidze et al., 2015]

Feedback Cactus Set [Leibfried et al.& Mchedlidze et al., 2015]

If the remaining graph is a cactus and the capacities on the cycles are suitably bounded then there is for every flow a cost-equivalent feasible power flow.

The Wind Farm Cable Layout Problem

Institute of Theoretical Informatics Algorithmics Group

The Wind Farm Cable Layout Problem

Given

V_S set of substations (each with capacity),
 V_T set of turbines (each with unit production),
 E set of edges (possible connections),
 for each edge: cable types (each with cost and capacity)

Given

- *V_S* set of substations (each with capacity),
- V_T set of turbines (each with unit production),
 E set of edges (possible connections),
 for each edge: cable types (each with cost and capacity)

Given

- V_S set of substations (each with capacity),
- \otimes V_T set of turbines (each with **unit production**),
- E set of edges (possible connections), for each edge: cable types (each with cost and capacity)

Given 📕

- V_S set of substations (each with capacity),
- \otimes V_T set of turbines (each with **unit production**),
- *E* set of edges (possible connections),
- for each edge: cable types (each with **cost** and **capacity**)

- Given \blacksquare V_S set of substations (each with capacity),
 - \otimes V_T set of turbines (each with **unit production**),
 - *E* set of edges (possible connections),
 - for each edge: cable types (each with **cost** and **capacity**)
 - *find* for each edge: the **cable type**

- Given \blacksquare V_S set of substations (each with capacity),
 - \otimes V_T set of turbines (each with **unit production**),
 - *E* set of edges (possible connections),
 - for each edge: cable types (each with **cost** and **capacity**)
 - *find* for each edge: the **cable type**
- minimizing total cable cost

- Given \blacksquare V_S set of substations (each with capacity),
 - \otimes V_T set of turbines (each with **unit production**),
 - *E* set of edges (possible connections),
 - for each edge: cable types (each with **cost** and **capacity**)
 - *find* for each edge: the **cable type**
- minimizing total cable cost
 - *subject to* cable capacity constraints substation capacity constraints flow conservation constraints

Problem Classification [Lehmann et al., 2017]

P (MST)	Circuit Problem	
NP-hard (CMST)	Substation Problem	
NP-hard (Heuristics)	Full Farm Problem	

Problem Classification [Lehmann et al., 2017]

P (MST)	Circuit Problem	NP-hard
NP-hard (CMST)	Substation Problem	NP-hard
NP-hard (Heuristics)	Full Farm Problem	NP-hard

Network Flows and Wind Farm Cabling

[Gritzbach et al., 2018]

- Substation capacity: 2
- Edge lengths: 2 (edge $u_1 v_2$: 3)

Algorithmic Overview [Gritzbach et al., 2018]

Algorithmic Overview [Gritzbach et al., 2018]

Algorithmic Overview [Gritzbach et al., 2018]

Algorithmics Group

Dorothea Wagner - Algorithmic Challenges in Power Grids 34

References

- Alban Grastien, Ignaz Rutter, Dorothea Wagner, Franziska Wegner, and Matthias Wolf. *The Maximum Trans*mission Switching Flow Problem. In Proceedings of the Ninth International Conference on Future Energy Systems (e-Energy). ACM, New York, NY, USA, 340–360. DOI: 10.1145/3208903.3208910, 2018.
- Sascha Gritzbach, Torsten Ueckerdt, Dorothea Wagner, Franziska Wegner, and Matthias Wolf. Towards Negative Cycle Canceling in Wind Farm Cable Layout Optimization. In Proceedings of the Seventh DACH+ Conference on Energy Informatics. Springer, 183–193, DOI: 10.1186/s42162-018-0030-6, 2018.
- 3. Sebastian Lehmann, Ignaz Rutter, **Dorothea Wagner**, and Franziska Wegner. *A Simulated-Annealing-Based Approach for Wind Farm Cabling.* In Proceedings of the Eighth International Conference on Future Energy Systems (e-Energy). ACM, New York, NY, USA, 203–215, DOI: 10.1145/3077839.3077843, 2017.
- 4. Thomas Leibfried, Tamara Mchedlidze, Nico Meyer-Hübner, Martin Nöllenburg, Ignaz Rutter, Peter Sanders, **Dorothea Wagner**, and Franziska Wegner. *Operating Power Grids with few Flow Control Buses.* In Proceedings of the Sixth International Conference on Future Energy Systems (e-Energy). ACM, New York, NY, USA, 289–294. DOI: 10.1145/2768510.2768521, 2015.
- Tamara Mchedlidze, Martin Nöllenburg, Ignaz Rutter, Dorothea Wagner, and Franziska Wegner. *Towards Realistic Flow Control in Power Grid Operation*. Proceedings of the Fourth D-A-CH Conference on Energy Informatics. Springer, 192–199, DOI: 10.1007/978-3-319-25876-8_16, 2015.
- 6. *Power systems test case archive.* University of Washington, Departement of Electrical Engineering, 1999. https://labs.ece.uw.edu/pstca/, Accessed: 2017-11-14.
- 7. Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck. *The Complexity of DC-switching Problems.* CoRR, abs/1411.4369, 2014.

References

- 8. Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck. *The Complexity of Switching and FACTS Maximum-potential-flow Problems.* CoRR, abs/1507.04820, 2015.
- 9. Ray D. Zimmerman, Carlos E. Murillo-Sanchez, and Robert J. Thomas. *Matpower: Steady-state operations, planning, and analysis tools for power systems research and education.* IEEE Transactions on Power Systems, 26(1):12–19. DOI: 10.1109/TPWRS.2010.2051168, 2011.
- 10. Emily B. Fisher, Richard P. O'Neill, and Michael C. Ferris. *Optimal transmission switching*. IEEE Transactions on Power Systems, 23(3):1346–1355, 2008. DOI: 10.1109/TPWRS.2008.922256.

