
New Algorithms for Two-Label Point Labeling?

Zhongping Qin1, Alexander Wolff2, Yinfeng Xu3, and Binhai Zhu4

1 Dept. of Mathematics, Huazhong University of Science and Technology, Wuhan,
China, and Dept. of Computer Science, City University of Hong Kong.

zqin@cs.cityu.edu.hk
2 Institute of Mathematics and Computer Science, Ernst Moritz Arndt University,

Greifswald, Germany. awolff@mail.uni-greifswald.de
3 School of Management, Xi’an Jiaotong University, Xi’an, China. yfxu@xjtu.edu.cn

4 Dept. of Computer Science, City University of Hong Kong,
and Montana State University, Bozeman, MT 59717, USA. bhz@cs.montana.edu

Abstract. Given a label shape L and a set of n points in the plane,
the 2-label point-labeling problem consists of placing 2n non-intersecting
translated copies of L of maximum size such that each point touches
two unique copies—its labels. In this paper we give new and simple
approximation algorithms for L an axis-parallel square or a circle. For
squares we improve the best previously known approximation factor from
1

3
to 1

2
. For circles the improvement from 1

2
to ≈ 0.513 is less significant,

but the fact that 1

2
is not best possible is interesting in its own right.

For the decision version of the latter problem we have an NP-hardness
proof that also shows that it is NP-hard to approximate the label size
beyond a factor of ≈ 0.732. As their predecessors, our algorithms take
O(n log n) time and O(n) space.

1 Introduction

Label placement is one of the key tasks in the process of information visual-
ization. In diagrams, maps, technical or graph drawings, features like points,
lines, and polygons must be labeled to convey information. The interest in algo-
rithms that automate this task has increased with the advance in type-setting
technology and the amount of information to be visualized. Due to the computa-
tional complexity of the label-placement problem, cartographers, graph drawers,
and computational geometers have suggested numerous approaches, such as ex-
pert systems [1, 8], zero-one integer programming [22], approximation algorithms
[6, 11, 19, 20], simulated annealing [4] and force-driven algorithms [13] to name
only a few. The ACM Computational Geometry Impact Task Force report [3]
denotes label placement as an important research area. Manually labeling a map
is a tedious task that is estimated to take 50 % of total map production time.

? This research was conducted during a visit of Z. Qin and Y. Xu to City University
of Hong Kong and of A. Wolff to Hong Kong University of Science and Technology.
Our work was supported by NSF of China, grant No. 19731001, and by the Hong
Kong RGC CERG grants CityU-1103/99E and HKUST-6144/98E.



In this paper we deal with a relatively new variant of the general label place-
ment problem, namely the 2-label point-labeling problem. It is motivated by
maps used for weather forecasts, where each city must be labeled with two la-
bels that contain the city’s name and, say, its predicted temperature.

The 2-label point-labeling problem is a variant of the 1-label problem that
allows sliding. Sliding labels can be attached to the point they label anywhere on
their boundary. They were first considered by Hirsch [13] who gave an iterative
algorithm that uses repelling forces between labels in order to eventually find a
placement without or only few intersecting labels. Van Kreveld et al. gave a poly-
nomial time approximation scheme and a fast factor-2 approximation algorithm
for maximizing the number of points that are labeled by axis-parallel sliding
rectangular labels of common height [18]. They also compared several sliding-
label models with so-called fixed-position models where only a finite number
of label positions (or label candidates) per point is considered, usually a small
constant like four [4, 11, 19]. Another generalization was investigated in [6, 21],
namely arbitrarily oriented sliding labels.

Point labeling with circular labels, though not as relevant for real-world ap-
plications as rectangular labels, is a mathematically interesting problem. The
1-label case has already been studied extensively [6, 7, 17]. For maximizing the
label size, the currently best approximation factor is 1

3.6 [7].
The 2- or rather multi-label labeling problem was first considered by Kakoulis

and Tollis who presented two heuristics for labeling the nodes and edges of
a graph drawing with several rectangles [14]. Their aim was to maximize the
number of labeled features. One of their algorithms is iterative, the other uses a
maximum-cardinality bipartite matching algorithm that matches cliques of label
candidates with the elements of the graph drawing that are to be labeled. They
do not give any runtime bounds or approximation factors.

For the two problems that we will consider in this paper, namely maximizing
the size of axis-parallel square and circular labels, two per point, Zhu and Poon
gave the first approximation algorithms [20]. They achieved approximation fac-
tors of 1

4
and 1

2
for square and circle pairs, respectively. Both algorithms rely

on the fact that there are disjoint regions around all (pairs of) input points into
which the labels can be safely placed. Recently Zhu and Qin improved the result
for pairs of square labels to a factor of 1

3
[21]. They exploit the structure of a

graph that has a node for each input point and an edge for each pair of points
closer than 2

3
times an upper bound for the maximum label size.

In this paper we give new and simple approximation algorithms for the
2-square and the 2-circle point-labeling problem. For squares we improve the
approximation factor of Zhu and Qin’s algorithm from 1

3
to 1

2
. For circles we

present an algorithm with an approximation factor of 1
1+cos 18◦

≈ 0.513. Here

the improvement over Zhu and Poon’s factor- 1
2

approximation algorithm is less
significant, but the fact that 1

2
is not best possible is interesting in its own right.

For the decision version of the 2-circle labeling problem we have an NP-hardness
proof that also shows that it is NP-hard to approximate the label size beyond a
factor of ≈ 0.732. However, due to space limitations, we cannot give the proof
here. Other than all previous approximation algorithms for 2-label placement,



our new algorithms do not necessarily have to compute an upper bound for
the maximum label size explicitly. We keep the O(n log n) time and O(n) space
bounds of the previous algorithms.

For the 2-square labeling problem the improved approximation factor is made
possible by restricting the search to a subset of the solution space. Within this
subset, optimal solutions can be computed easily and their labels are at most by
the above mentioned constant factors off the maximum label size. The special
case that we solve optimally is the following: we label points with rectangles of
height-width ratio 2 of maximum size in one of four positions. Our algorithm
is the first point-labeling algorithm that solves the size maximization problem
for more than two label positions optimally in polynomial time. So far such
algorithms have only been know for labeling axis-parallel line segments [16]. Our
algorithm also improves the approximation factor of the only known algorithm
[12] for Knuth and Raghunathan’s Metafont labeling problem [15] from 1

3
to 1

2
.

Throughout this paper we consider labels being topologically open, and we
define the size of a solution to be the diameter in the case of circular labels
and the length of the shorter label edge in the case of rectangular labels. We
refer to a label placement as feasible if no two labels intersect and as optimal if
additionally labels have the largest possible size. We will only consider n > 2.

2 Two-Square Labeling

Definition 1 (2-square point-labeling problem). Given a set P of n points
in the plane, find a set of 2n axis-parallel, uniform, non-intersecting, maximum-
size open squares, such that each point touches two unique squares.

The uniqueness contraint does not forbid a point to touch more than two
squares, but ensures there is a function that assigns to each point exactly two
squares that touch it.

The first approximation algorithm for the 2-square point-labeling problem
was suggested by Zhu and Poon [20]. This algorithm labels pairs of points in
order of increasing distance. The labels are placed to the left of the left point
and to the right of the right point—except when the two points lie on a vertical,
see Figure 1 (a) and (b), respectively. In other words, the algorithm does not
really place two square labels at each point but one rectangle of height-width
ratio 2 or 1/2. The rectangle is attached to its point in the midpoint of either of
its long edges, i.e. the algorithm uses only four of the infinitely many possible
label positions.

We use this observation as follows. First we device an O(n log n)-time al-
gorithm for the 1-rectangle 4-position point-labeling problem, where all points
are labeled with maximum-size rectangles in one of the four discrete positions
depicted in Figure 2. Then we show how an optimal solution for the 2-square
labeling problem can be transformed into a solution of the 1-rectangle labeling
problem by using rectangles of half the square size, see Figure 3. Thus the 1-
rectangle labeling algorithm already yields a factor- 1

2
approximation algorithm

for the 2-square labeling problem.



(a) (b)

Fig. 1. Label placement of
the 2-square labeling algo-
rithm of Zhu and Poon.

Fig. 2. Label candi-
dates for 1-rectangle
4-position labeling.

Fig. 3. Mapping a 2-square la-
beling to a 1-rectangle 4-posi-
tion labeling of half the size.

Apart from the improved approximation factor, our approach has the advan-
tage that we do not have to compute an upper bound for the maximum label
size explicitly. Both previous algorithms [20, 21] first have to determine such an
upper bound before they can actually place labels whose size depends on this
upper bound. Zhu and Poon use D3,∞, the minimum over the diameters of all
3-subsets of the input points, as an upper bound for the maximum label size.
D3,∞ can be computed in O(n log n) time [5]. Instead of computing D3,∞ we
preprocess the input by computing relevant adjacency information, i.e. for each
input point we find a constant number of rectilinear nearest neighbors (in the
L∞-metric). For this task a simple O(n log n) algorithm is known [10]. Of course
D3,∞ can be computed in linear time from nearest neighborhood data, but we
make better use of this information by solving the following problem optimally.

Definition 2 (1-rectangle 4-position point-labeling problem). Given n
points in the plane, find a set of n congruent, axis-parallel, non-intersecting,
maximum-size open rectangles of height-width ratio 2 or 1/2, such that each
point touches a unique rectangle.

The decision version of this problem is the question whether a set of points
can be labeled with congruent rectangles of a given size. If we encode the four
label candidates of each point p by two Boolean variables p1 and p2 as in Figure 4,
we can construct a 2-SAT formula that is equivalent to the decision version of
our problem. Thus it can be solved in time and space linear in the number of
clauses [9]. Here the number of clauses is at most three times the number of pairs
of intersecting label candidates, which must be computed beforehand. A similar
strategy has been applied to encode label positions for labeling rectilinear line
segments with rectangles of maximum height [16].

p1 p2

¬p1¬p2

(◦) p1 ∧ ¬p2 p2 ∧ ¬p1 p1 ∧ p2 ¬p1 ∧ ¬p2

q1p2

¬q2
¬p1

(*)

Fig. 4. We encode the four label positions of a point p by the values of two Boolean
variables p1 and p2 (◦). A label intersection (*) can then be read as ¬((p2 ∧ q1)∨ (p2 ∧
¬q2)∨ (¬p1 ∧¬q2)). This equals the 2-SAT formula (¬p2 ∨¬q1)∧ (¬p2 ∨ q2)∧ (p1 ∨ q2).



In order to device an algorithm that maximizes the rectangle size and runs
in O(n log n) time, we use the same strategy as two existing algorithms. The
algorithms AS4a [11] and B [19] also try to maximize the label size. They solve
the 1-square 4-position point-labeling problem, where labels are restricted to
uniform squares, and each label must be placed such that one of its corners
coincides with the point it labels. Like in our problem each point has four label
candidates. However, in their problem the candidates only intersect at their
borders, while in ours each candidate is completely contained in (the closure of)
two others. This is why we can solve our problem optimally, while AS4a and B
are factor- 1

2
approximation algorithms.

Algorithm B proceeds as follows. First it uses the above mentioned simple
sweep-line algorithm to detect a constant number of rectilinear nearest neighbors
for each point [10]. Then B computes a list of conflict sizes from the set N of pairs
of neighboring points. A conflict size is a label size for which two label candidates
touch but do not contain any input points. Algorithm B does a binary search
on the list of conflict sizes. This is sufficient since the intersection graph of the
label candidates does not change between two conflict sizes. For each conflict
size, B solves the decision problem in three steps. First the algorithm extracts
the intersection graph for the current label size from N . Then it uses certain
(partly heuristical) rules to simplify the intersection graph until each point has
at most two label candidates left. Finally B makes a 2-SAT clause for each edge
of the intersection graph and tries to find a satisfying truth assignment for the
resulting 2-SAT formula. If one exists, it corresponds to a label placement and
the search is continued with a greater label size, otherwise with a smaller one.

Asymptotically B does not need more space than the size of N , which is
linear in n. The binary search consists of O(log n) tests. Again due to the linear
size of N , each test takes O(n) time. This adds up to O(n log n) time in total.

Our algorithm for 1-rectangle 4-position point labeling differs from B only
in that it is not necessary to reduce the number of candidates of each point
from four to two, since we can immediately encode our four label candidates
by a 2-SAT formula. All that remains to show is that as for 1-square 4-position
point labeling it is sufficient to consider the conflict sizes induced by a constant
number of rectilinear nearest neighbors per point.

Lemma 1. Let ropt be the size of an optimal solution for the 1-rectangle 4-
position point-labeling problem. Then for any label size ρ ≤ ropt the label candi-
dates of a point p ∈ P can intersect only candidates of the 17 points q ∈ P \ {p}
that are closest to p in the L∞-metric.

Since this observation is analogous to [11, Lemma 1], we omit the proof
here. The algorithm AR2 in that paper, however, needs O(n log n) time for
the decision version of a problem similar to our 1-rectangle 4-position labeling
problem. (There, only two square labels per point are allowed.) Lemma 1 yields
the time and space complexity of our 1-rectangle 4-position labeling algorithm:

Lemma 2. An optimal solution of the 1-rectangle 4-position point-labeling prob-
lem can be computed in O(n log n) time using linear space.



Theorem 1. A feasible solution of the 2-square point-labeling problem of at least
half the optimal size can be computed in O(n log n) time using linear space.

Proof. Given Lemma 2, we only have to show that an optimal solution of the
1-rectangle 4-position labeling problem always represents a feasible solution of
the 2-square labeling problem of at least half the optimal size. In other words, if
ropt and sopt are the sizes of optimal solutions of the 1-rectangle and the 2-square
labeling problem for the same point set P , then we have to prove ropt ≥ sopt/2.
To show this we map a hypothetical optimal solution of the latter problem, i.e. a
set Sopt of 2n squares of size sopt into a feasible solution of the former problem,
namely a set R of n rectangles of size sopt/2. Since the labels in R cannot
be larger than ropt, the size of labels in an optimal solution of the 1-rectangle
labeling problem, we have ropt ≥ sopt/2.

The mapping is simple: for each point p we choose from its four label candi-
dates the rectangle Rp such that a rectangle of twice the size of Rp (with p as
scaling center) has the largest area of intersection with the two square labels of
p in Sopt. For our proof it does not matter that Rp is not uniquely defined.

It remains to show why Rp does not intersect the label Rq of some point
q ∈ P \ {p}. Let sopt = 1; the instance can always be scaled such that this is
true. Recall that all labels in Sopt and R are topologically open. For A ⊆ R

2

let A be the topological closure of A. For p = (xp, yp) define the line segments
v(p) and h(p) as the intersection of an open unit disk with the vertical and the
horizontal through p, respectively. Let Tp and Bp be the top- and bottommost
square labels of p in Sopt; if their y-coordinates are the same, let Tp be the
leftmost. Let Sp = Tp ∪ Bp. We will use the same notations for q.

Observe that v(p) ⊆ Sp or h(p) ⊆ Sp, otherwise there are points h ∈ h(p)\Sp

and v ∈ v(p) \ Sp that delimit region E in Figure 5 (b). Since E must contain
Sp completely, we would have Tp ∩ Bp 6= ∅.

Now suppose Rp ∩ Rq 6= ∅. Then the distance d∞(p, q) of p and q in the
L∞-metric is less than 1 since all points in Rp (Rq) have distance less than 1

2

from p (q). For this reason v(p) and h(q) as well as v(q) and h(p) intersect, see
Figure 5 (c). Since Sp and Sq do not intersect by definition, the observation
above yields that v(p) is contained in Sp and v(q) in Sq or h(p) is contained in
Sp and h(q) in Sq. W.l.o.g. we may assume the former, otherwise we rotate the
whole instance by 90◦ around p. Thus Tp lies above p, and Bp below p; the same
holds for q. We can also assume that xp ≤ xq , otherwise we mirror our instance.

Let ∆x = xq − xp. Then 0 ≤ ∆x < 1. Let tp (bp) be the horizontal distance
between the left edge of Tp (Bp) and v(p), see Figure 5 (d). Similarly, let tq (bq)
be the horizontal distance between the right edge of Tq (Bq) and v(q).

Now a simple packing argument will yield the contradiction. Since Tp and Tq

do not intersect, we have tp +∆x+ tq ≥ 2. Since Bp and Bq do not intersect, we
have bp+∆x+bq ≥ 2. These inequalities sum up to Σ := tp+tq+bp+bq ≥ 4−2∆x.
Since 0 ≤ ∆x < 1 we only have to consider the following two cases:

A) 1
2
≤ ∆x < 1. Then Σ > 2 and tp +bp ≤ 1, otherwise—due to our mapping—

Rp lies completely left of v(p) and cannot intersect Rq due to ∆x ≥ 1
2
.



ρ

p

A
B

2ρ
h(p)

v(p)

v

h
2

z

p

E

h(p)

v(p)

p

h(q)

v(q)

q

v(p)

p

q

∆x bqbp

v(q)

∆x tqtp

(a) (b) (c) (d)

Fig. 5. (a) Only the labels of the 17 nearest neighbors of p can intersect labels of p.
(b) If there are points v ∈ v(p)\Sp and h ∈ h(p)\Sp then there is a point z ∈ Tp ∩Bp.
(c) If rectangles Rp and Rq intersect, then v(p) ∩ h(q) 6= ∅ and v(q) ∩ h(p) 6= ∅.
(d) tp (bp) is the horizontal distance between the left edge of Tp (Bp) and v(p).

Similarly tq + bq ≤ 1, otherwise Rq lies completely to the right of v(q). Thus
tp + tq + bp + bq ≤ 2, contradicting Σ > 2.

B) 0 ≤ ∆x < 1
2
. Then Σ > 3. Since tp, tq, bp, and bq are all at most 1, we

get tp + bp > 1 and tq + bq > 1. But then Rp lies completely to the left of
v(p) and Rq to the right of v(q)—which means they do not intersect since
we assumed xp ≤ xq .

q

Obviously the 1-rectangle 4-position algorithm solves an instance P of the 2-
square labeling problem optimally if P has an optimal solution that uses only the
four label positions depicted in Figure 1, as in the grid {(x, 2y) | 1 ≤ x, y ≤ n}.

However, our new 1-rectangle 4-position algorithm can also be used to find
approximate solutions for another problem, namely the optimization version of
the Metafont labeling problem [15]. Knuth developed the program Metafont as
a tool for font design. In their paper, Knuth and Raghunathan introduced the
name problem of compatible representatives for a large class of combinatorial
problems that are NP-hard in general. This class of problems has been studied
independently in the artificial intelligence community under the name constraint
satisfaction problem (CSP). Knuth and Raghunathan investigated several special
cases of the problem of compatible representatives, among them the Metafont
labeling problem, where a set of n grid points is to be labeled with n 2×2 squares
such that each square touches exactly one point in the center of one of its edges,
see Figure 6. They showed that this 1-square 4-position point labeling problem
is NP-complete. Note that the 1-rectangle 4-position problem considered in this
section is not a more general case of the Metafont labeling problem; each of our
rectangular label candidates is the union of two other candidates of the same
point, while this is not the case with the square Metafont labels.

Formann and Wagner saw the connection between the Metafont labeling
problem and the cartographic map-labeling problem they had attacked earlier
[11]. They defined a maximization version of the Metafont labeling problem by
dropping the grid constraint that comes from the Metafont application [12] and
gave a factor- 1

3
approximation algorithm similar to the algorithm AS4a [11].



Definition 3 (Metafont optimization problem). Given a set of n points in
the plane, find a set of n uniform, axis-parallel, non-intersecting, maximum-size
open squares, such that each point touches exactly one square in the midpoint
of one of its edges.

Fig. 6. The 4 label positions
allowed in Metafont labeling.

Fig. 7. Maping an optimal Metafont solution via rect-
angles to a Metafont solution of half the optimal size.

Obviously we can approximate the Metafont optimization problem exactly
in the same way as the 2-square point-labeling problem, namely by running
our 1-rectangle 4-position labeling algorithm. The mapping that transforms an
optimal Metafont labeling to a feasible rectangle labeling is the same as for the 2-
square problem. Here, however, it’s trivial to show the feasibility of the resulting
rectangle labeling, since each rectangle (shaded grey) is completely contained in
a Metafont label (dashed), and no two Metafont labels intersect, see Figure 7.
Finally we map each rectangle back to an inscribed square of half the optimal
size (printed bold) in one of the four allowed positions of Figure 6.

This mapping automatically ensures the new uniqueness requirement of Def-
inition 3. In a solution produced via the rectangle-labeling algorithm that is
not necessarily the case, but the algorithm can be adjusted to disallow label
placements where two labels completely share a long edge. Now Lemma 2 yields:

Theorem 2. A feasible solution of the Metafont optimization problem of at least
half the optimal size can be computed in O(n log n) time using linear space.

3 Two-Circle Labeling

Definition 4 (2-circle point-labeling problem). Given a set P of n points
in the plane, find a set of 2n uniform, non-intersecting, maximum-size open
circles such that each point touches exactly two circles.

Zhu and Poon [20] have suggested the first approximation algorithm for this
problem. Their algorithm always finds a solution of at least half the optimal
size. The algorithm is very simple; it relies on the fact that D2, the minimum
Euclidean distance between any two points in P is an upper bound for the
optimal label size (i.e. diameter), see Figure 9. On the other hand, given two
points p and q in P , open circles Cp,D2/2 and Cq,D2/2 with radius 1

2
D2 centered

at p and q do not intersect. Thus if each point is labeled within its circle, no two
labels will intersect. This allows labels of maximum diameter 1

2
D2, i.e. half the

upper bound for the optimal label size. The difficulty of the problem immediately
comes into play when increasing the label diameter d beyond 1

2
D2, since then



the intersection graph of the circles Cp,d of all points p in P changes abruptly;
the maximum degree jumps from 0 to 6.

Our approach also assigns each point a certain region such that no two regions
intersect and each point can be labeled within its region. The regions we use
are not circles but the cells of the Voronoi diagram of P , a well-known multi-
purpose geometrical data structure [2]. We do not compute the Voronoi diagram
explicitely—but use its dual, the Delauney triangulation [2]. For the description
of our algorithm (see Figure 8) we need the following notation.

Definition 5. Let d = D2

1+cos 18◦
≈ 0.513 D2 and let p, q ∈ P .

The pair (p, q) is an edge of the Delaunay triangulation DT(P ) of P if there
is a (closed) disk D with D∩P = {p, q}. The edge (p, q) is short if d(p, q) < 2d,
long otherwise. Here d(p, q) denotes the Euclidean distance of p and q.

Vor(p) = {x ∈ R
2 | d(x, p) < d(x, q) ∀q ∈ P \ {p}} is the Voronoi cell of p.

Given two lines that intersect at an angle of less than 90◦, we call the union
of the two smaller (open) regions into which the plane is divided a wedge.

Given two non-parallel short edges incident to a point p in P , we say that the
wedge defined by the two lines containing the edges is free if it does not contain
any short edges incident to p.

Two Circle Point Labeling(P )

Compute DT(P ) and D2 (the length of a shortest edge in DT(P )).

Let d = D2

1+cos 18◦
≈ 0.513 D2 be the label diameter.

Delete all long Delaunay edges (i.e. of length ≥ 2d).
for all p ∈ P do

Compute the largest free wedge W of p.

Place the centers of the labels of p on the bisector of W at distance d
2

from p.
end

Fig. 8. Our 2-circle point-labeling algorithm.

In order to show the correctness of our algorithm we first determine the
maximum degree in the Delaunay triangulation minus the long edges and then
give a lower bound for the size of the largest free wedge of a point p in P .

Fact 1. The angle between two short edges incident to a point p in P is at least
2 arcsin D2

4d ≈ 58.4◦.

Lemma 3. Each point p in P is incident to at most six short edges.

Proof. Consider an annular ring R with diameters D2 and 2d around p (includ-
ing the inner and excluding the outer circle). R contains all points in P that
share a short edge with p. However, due to Fact 1, R cannot contain more than
six points whose pairwise distance is at least D2.

qd
d

Lemma 4. Each point p in P has a free wedge with an angle of at least 36◦.



Proof. Due to Lemma 3 we know that p has k ≤ 6 short edges. There are k′ ≤ k
lines that go through these edges, and there are k′ wedges defined by pairs of
neighboring lines (if none of them forms an angle ≥ 90◦, but then we would be
done). Due to the pigeon-hole principle there must be a wedge with an angle of
at least 36◦ if k′ ≤ 5. (Each wedge contributes two angles!) So we only have to
consider the case k = k′ = 6 (i.e. each line contains exactly one short edge) and
all of the six wedges have an angle of less than 36◦. Then, however, one of the
wedges must be delimited by two short edges on the same side of p, which is a
contradiction to Fact 1. qd

d

It remains to show that the labels of a point are placed within its Voronoi cell.

Lemma 5. Let L be an open circle of diameter d that touches a point p in P . If
the center of L lies on the bisector of the largest free wedge of p, then L ⊆ Vor(p).

Proof. Lemma 4 guarantees that p has a free wedge W whose supporting lines
s1 and s2 span an angle α of at least 36◦. The construction in Figure 10 shows for
the extremal case α = 36◦ how the label diameter d is actually chosen, namely
such that the center z of the label L of p lies at the intersection of the bisector b
of W and the set F of all points with equal distance to p and a line `1. The line
`1 has distance 1

2
D2 from p and is perpendicular to s1. The line `2 is defined

analogously. Let x be the point that lies between p and `1 on s1 at a distance of
D2−d

2
from p. In the right-angled triangle ∆xzp we then have cos α

2
= D2−d

d , and

thus d = D2

1+cos 18◦
. For a line h let h+ be the open halfplane that is supported

by h and contains p.
Due to our construction L is contained in the union of a disk D and a kite

K, see Figure 10. The disk D is centered at p and has radius 1
2
D2, thus it

lies completely within Vor(p). The kite K is the intersection of W and the two
halfplanes `+

1 and `+
2 . Note that `1 and `2 touch D where they intersect the two

supporting lines s1 and s2 of W at right angles.

D2

α

D2

2

d

2

d

2

p

zx

F

L

K

D

W

`1
s1 `2

s2

b

D2−d

2

α K
W

`2

`1

s1

s2pq

p

q
w

w2

w1

β

D
g

Fig. 9. D2 is an upper bound
for the optimal label size.

Fig. 10. We label sym-
metrically to a wedge W .

Fig. 11. No Voronoi edge
intersects kite K or disk D.



Now suppose L is intersected by a Voronoi edge e of Vor(p). Let q be the point
in P whose Voronoi cell touches that of p in e. If d(p, q) ≥ 2d than d(p, e) =
1
2
d(p, q) ≥ d and e does not intersect L. If d(p, q) < 2d then q cannot lie in

the wedge W , since W does not contain any short edges. So we can assume
D2 ≤ d(p, q) < 2d and q 6∈ W . (p, q) is a Delaunay edge: if the disk with diame-
ter pq contained another point r of P , r would be closer than D2 to p or q.

Let g be the line that contains e. The halfplane g+ contains Vor(p) and thus
D. Let w1 and w2 be the points where g intersects the two supporting lines s1

and s2 of W , see Figure 11. Let w be the intersection of g and pq. w cannot
lie between w1 and w2, otherwise q would lie in W . So we can assume that w
lies outside W and closer to w2, say. Direct g from w1 to w2. By definition g
intersects pq, the Delaunay edge between p and q, in a right angle. Then the
angle β that g and s2 form in the triangle ∆pw2w must be less than 90◦. Since
`2 is perpendicular to s2, this means that g intersects `2 beyond w2—and not
within W . Thus g+ contains K, which in turn contains L \ D. This contradicts
our assumption, namely that e and L intersect. qd

d

Since the Voronoi cells of a point set are mutually exclusive, Lemma 5 yields
the correctness of our 2-circle point-labeling algorithm. Time and space com-
plexity follow from those of DT(P ) and from Lemma 4. Using the same upper
bound for an optimal solution as in [20, 21], we can summarize as follows.

Theorem 3. Our algorithm labels a set of n points with 2n circles, two per
point, of diameter at least 1

1+cos 18◦
≈ 0.513 times the maximum diameter in

O(n log n) time using linear space.

This algorithm uses the Delaunay triangulation to compute D2 and to label
all points with labels whose size depends on D2. A different approach would
give larger labels in general, although we were not yet able to prove a better
approximation factor and keep the runtime of O(n log n). Instead of computing
the Delaunay triangulation and D2 as an upper bound for the label size, we
could directly compute the Voronoi diagram, label each point optimally within
its Voronoi cell, and then shrink all labels to the smallest label size we have used.
If the Voronoi cell is a regular pentagon, both algorithms actually place labels
of the same size.

Due to space limitations we must refer to the full paper for the proof of
the following theorem. It does not only provide strong evidence for the neces-
sity to search for approximate solutions of the 2-circle labeling problem, but it
also considerably reduces the gap between our approximability result and the
polynomial-time non-approximability of 2-circle labeling.

Theorem 4. It is NP-hard to decide whether a set of points can be labeled with
pairs of unit circles, and it is NP-hard to approximate the optimal label size
beyond a factor of 2

1+
√

3
≈ 0.732.

Acknowledgments. We wish to thank Otfried Cheong, Hong Kong University
of Science and Technology, without whose generous support this research would
not have been possible.



References

[1] J. Ahn and H. Freeman. AUTONAP - an expert system for automatic map name
placement. In Proc. Intl. Symp. on Spatial Data Handling, pages 544–569, 1984.

[2] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data
structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991.

[3] B. Chazelle et al. Application challenges to computational geometry: CG impact
task force report. Technical Report TR-521-96, Princeton University, Apr. 1996.

[4] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for
point-feature label placement. ACM Transactions on Graphics, 14(3):203–232,
1995.

[5] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms
for k-point clustering problems. J. Algorithms, 19:474–503, 1995.

[6] S. Doddi, M. V. Marathe, A. Mirzaian, B. M. Moret, and B. Zhu. Map labeling and
its generalizations. In Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms
(SODA’97), pages 148–157, 1997.

[7] S. Doddi, M. V. Marathe, and B. M. Moret. Point labeling with specified positions.
In Proc. 16th Annu. ACM Sympos. Comput. Geom., Hongkong, 2000. to appear.

[8] J. S. Doerschler and H. Freeman. An expert system for dense-map name place-
ment. In Proc. Auto-Carto 9, pages 215–224, 1989.

[9] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM J. Comput., 5:691–703, 1976.

[10] M. Formann. Algorithms for Geometric Packing and Scaling Problems. PhD
thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin, 1992.

[11] M. Formann and F. Wagner. A packing problem with applications to lettering
of maps. In Proc. 7th Annu. ACM Sympos. Comput. Geom. (SoCG’91), pages
281–288, 1991.

[12] M. Formann and F. Wagner. An efficient solution to Knuth’s METAFONT la-
beling problem. Manuscript available at http://www.math-inf.uni-greifswald.
de/map-labeling/papers/fw-eskml-93.ps.gz, 1993. Freie Universität Berlin.

[13] S. A. Hirsch. An algorithm for automatic name placement around point data.
The American Cartographer, 9(1):5–17, 1982.

[14] K. G. Kakoulis and I. G. Tollis. On the multiple label placement problem. In
Proc. 10th Canadian Conf. Comp. Geometry (CCCG’98), pages 66–67, 1998.

[15] D. E. Knuth and A. Raghunathan. The problem of compatible representatives.
SIAM J. Discr. Math., 5(3):422–427, 1992.

[16] C. K. Poon, B. Zhu, and F. Chin. A polynomial time solution for labeling a
rectilinear map. Information Processing Letters, 65(4):201–207, 1998.

[17] T. Strijk and A. Wolff. Labeling points with circles. Technical Report B 99-08,
Institut für Informatik, Freie Universität Berlin, Apr. 1999.

[18] M. van Kreveld, T. Strijk, and A. Wolff. Point labeling with sliding labels. Com-
putational Geometry: Theory and Applications, 13:21–47, 1999.

[19] F. Wagner and A. Wolff. A practical map labeling algorithm. Computational
Geometry: Theory and Applications, 7:387–404, 1997.

[20] B. Zhu and C. K. Poon. Efficient approximation algorithms for multi-label map
labeling. In Proc. Tenth Annual Intl. Symp. on Algorithms and Computation
(ISAAC’99), LNCS, pages 143–152, Chennai, India, 1999. Springer-Verlag.

[21] B. Zhu and Z. Qin. New approximation algorithms for map labeling with sliding
labels. Dept. of Computer Science, City University of Hong Kong, 2000.

[22] S. Zoraster. The solution of large 0-1 integer programming problems encountered
in automated cartography. Operations Research, 38(5):752–759, 1990.


