
On Asynchronous Node Coloring in the SINR Model1

Fabian Fuchs
Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
fabian.fuchs@kit.edu

2

Abstract3

In this work we extend the analysis of Fuchs and Prutkin [1] towards the asyn-4

chronous case of the RandCDeltaColoring algorithm. This results in an 4∆ col-5

oring algorithm that runs in O(∆) time slots in the Signal-to-interference-and-noise6

(SINR) model. Additionally we show in a simulation that the constants hidden in the7

O-notation are small, resulting in an algorithm that is extremely fast, even if compared8

to one round of local broadcasting.9

Note that this material extends a brief announcement submitted to PODC’15.10

1 Introduction11

Distributed node coloring algorithms can be used to make communication in wireless (ad-12

hoc) networks more efficient by establishing coordinated medium access, as for example13

using Time Division Multiple Access (TDMA). We use the geometric Signal-to-interference-14

and-noise-ratio (SINR) model of interference, which is widely considered to be realistic.15

Thus, many algorithmic works considered this model in the last decade. Communication16

of distributed algorithms in the SINR model is often based on probabilistic medium access.17

This yields the best solutions (see [2–6]) to the local broadcasting problem, in which all18

nodes in the network must transmit one message to all their neighbors. In distributed node19

coloring algorithms, one aims for ∆+1 colors, as this can be achieved for any communication20

graph, and minimizing the number of colors is hard even for the centralized case. There are21

currently two algorithms on a pareto front: The Yu et. al algorithm [7] computes a ∆ + 122

coloring in O(∆ log n + log2 n) time slots1, while the MW-coloring algorithm [8] executed23

in the SINR model establishes an O(∆) coloring in O(∆ log n) time slots.24

For related work regarding the theoretical part of this work, we refer to [1]. Regarding25

the experimental evaluation, we are the first to evaluate distributed node coloring in the26

SINR model experimentally to the best of our knowledge. Local broadcasting has been27

evaluated in [6]. They used an area of 1000× 1000, with a similar setting as ours, however28

a broadcasting range of only 25, leading to an average density of 2 to 10 for 1000 to 500029

1Note that time is divided in slots for the analysis, however, our asynchronous algorithm do not require
global time slots.

1



nodes. The increased broadcasting range leads to a considerable higher density in our1

evaluation.2

RandCDeltaColor can be seen as a simple variant of Luby’s MIS algorithm [9] in the3

message-passing model. There, in each round a node tries to select a color, if no neighbor4

selected the same color the node finalizes the color, and otherwise selects a new color in the5

next round2. Different variants of this algorithm are experimentally evaluated by Finocchi,6

Panconesi and Silvestri in [10].7

Roadmap8

In the following section we briefly introduce the notation required for our analysis. In9

the following Section 3 we recapitulate the main parts of the RandCDeltaColoring10

algorithm before proving that it computes a valid 4∆ coloring in O(∆ log n) time also in11

the asynchronous SINR model. In Section 4 we experimentally evaluate the algorithm by12

implementing it in the Sinalgo network simulator [11], and comparing it to the basic local13

broadcasting algorithm.14

2 Preliminaries15

We consider a network of n nodes and use the SINR model to decide whether a transmis-16

sion from a node v can successfully be decoded at a node u. The transmission is feasible17

at u iff P/dist(v,u)α∑
w∈I P/dist(w,u)α+N > β, where P is the transmission power, dist(u, v) is the Eu-18

clidean distance from u to v, I the set of nodes transmitting simultaneously to v, α the19

attenuation coefficient depending on the environment, β a hardware-dependent threshold,20

and N the environmental noise. We define the broadcasting range of each node based on21

these constants, which induces a communication graph G = (V,E), and more specifically22

a set of neighbors Nv for each node v. We use a more general notation to describe the j23

neighborhood of a node v (including v) by N j
v := {u ∈ V |u is in the j neighborhood of v}.24

For brievity we use N+
v = Nv ∪ {v} for N1

v .25

The maximum number of neighbors (max. degree) is denoted by ∆. Two nodes are26

called independent, if they are not neighbors. A set of nodes is independent if no two nodes27

are neighbors. The network is colored with d colors if the nodes are partitioned in d sets.28

The coloring is valid, if each set is independent. We say that a transmission of v is successful,29

if it can be received by all neighbors of v. Apart from classical local broadcasting, which30

achieves successful transmission with high probability (w.h.p. - with prob. at least 1− 1
n)31

in O(∆ log n) time using a transmission probability p1 = 1
O(∆) . We use a straight-forward32

extension to this result in the coloring algorithm. The extension is stated as Lemma 1. Our33

assumptions match those of local broadcasting with known ∆, i.e. we assume ∆, α, β,N,34

and a polynomial estimate of n to be given (cf. [6].35

Lemma 1. Let all nodes transmit with transmission probability p1 = 1
O(∆) , then a trans-36

mission from a node v is successful within O(∆) time slots with probability q−1
q .37

2Note that both the synchronous and the asynchronous version of RandCDeltaColor are based on this
simple idea, however, adapting the algorithm to be efficient in the SINR model requires significant effort.

2



3 Algorithm1

The algorithm considered in this section is exactly the same as described in [1]. To be self2

contained a pseudocode can be found as Algorithm 1. We shall extend the analysis to the3

case of asynchronous node wake-up in the following.4

The algorithm is based on several phases. Each phase consists of a time interval that5

fits the time required to communicate with constant probability (cf. Lemma 1. During each6

phase the node transmits its current color, and evaluates whether a conflict was detected or7

not just before the phase ends. If a conflict was detected, a new color is randomly selected,8

and transmitted in the next phase. To argue about phases, we number them, individually9

for each node and say that time tv is exactly in-between phase tv and tv +1 of node v. Note10

that evaluation and a potential reset happens within the phase and therefore right before11

tv. As we argue about a node v, we shall omit the v if it is clear from the context that we12

refer to tv.13

Regarding a node v and time tv, we denote the end of the current phase at node u by14

t
(v)
u . Again, we may omit (v) for brevity when arguing about v.15

Algorithm 1: AsyncRandColoring for node v

11 for t← 0; t ≤ O(lnn); t← t+ 1 do // each loop is one phase

22 Transmit ctv with probability p for O(∆) time slots;
33 foreach received color ctw from neighbor w ∈ Nv do
4 Fv ← Fv\{ctw}
55 if ctv 6∈ Fv then ct+1

v ← [c∆].rand(); // conflict, reset ctv

66 else ct+1
v ← ctv; // otherwise, keep color

77 Fv ← [c∆] ;

Given a node v and time t. We use c∆ colors, thus if a node v resets, the color of a16

neighbor u of v is randomly selected with probability at most 1
c∆ . A union bound over all17

neighbors yields a probability of 1
c that v selects the color of one of its neighbors. Also,18

nodes fail to transmit to all their neighbors from time t to t + 1 with probability at most19

1/q.20

Let k = qc
c+3q be a constant such that 1/k < 1 (which holds for c > 3 and q > 4).21

Consider the probability that there is a conflict at node v at time t+ 1 given that there was22

a conflict at v (or v’s neighbors ui) at time t (or tui) with probability at most 1/kt (1/ktu).23

We claim that this probability is at most 1/kt+1 in the following theorem.24

Theorem 2. Given a node v and a time t such that t ≤ tu for all u ∈ N+
v . It holds that25

Pr(cflt+1(v)|∀u ∈ N+
v : Pr(cfltu(u)) ≤ 1/kt) ≤ 1/kt+1

26

Proof. If a conflict happens at node v at time t+ 1, this can be attributed to one (ot both)27

of two situations:28

1) There was a conflict at v at time t, which did not get resolved29

2) A neighbor of v detected a conflict, reset its color and selected v’s color.30

3



We shall prove bounds on the probability of each case separately in lemmas 3 and 4, and1

prove the theorem based on these results in the following. Let us consider a node v such2

that ∀u ∈ N+
v : cfltu(u) ≤ 1/kt. Then it holds due to lemmas 3 and 43

Pr(cflt+1(v)) ≤ Pr(cflt(v)) ·
(

1

q
+

2

c

)
+
∑
u∈Nv

Pr(cflt(u)) · 1

c∆

≤ 1

kt

(
1

q
+

2

c

)
+
∑
u∈Nv

1

ktc∆
≤ 1

kt

(
1

q
+

2

c

)
+ max

u∈Nv

1

ktc

≤ 1

kt

(
1

q
+

2

c

)
+

1

ktc
=

1

kt
·
(

1

q
+

3

c

)
=

1

kt+1

We argue for the first inequality in the following by considering the cases that may lead to a4

conflict at v at time t+1 separately. For two eventsA = cflt(v) andB = ”cfl. through neighb.”,5

we consider6

Pr(cflt+1(v)) ≤ Pr(cflt+1(v) ∩A ∩ ¬B) + Pr(cflt+1(v) ∩ ¬A ∩ ¬B) + Pr(cflt+1(v) ∩B)

in the three cases below. Probabilities that are not stated in the respective cases are trivially7

upper bounded by 1.8

Pr(cflt+1(v) ∩A ∩ ¬B) ≤ Pr(cflt+1(v)| cflt(v) ∧ ¬cfl. through neighb.)·
Pr(cflt(v)|¬cfl. through neighb.) · Pr(cflt(v)) (1)

≤ Pr(cflt+1(v)| cflt(v) ∧ ¬cfl. through neighb.) · Pr(cflt(v))

≤
(

1

q
+

2

c

)
· Pr(cflt(v))

The next case may happen with considerable probability, however, it does not lead to a9

conflict at v.10

Pr(cflt+1(v) ∩ ¬A ∩ ¬B) ≤ Pr(cflt+1(v)|¬ cflt(v) ∧ ¬cfl. through neighb.) = 0 (2)

The third case leads directly to a conflict at v, however, it happens only with bounded11

probability.12

Pr(cflt+1(v) ∩B) ≤Pr(cflt+1(v)|cfl. through neighb.) · Pr(cfl. through neighb.) (3)

≤Pr(cfl. through neighb.) ≤
∑
u∈Nv

Pr(cfltu(u)) · 1

c∆

This proves the theorem.13

Let us first consider the probability that a conflict occurs given that a conflict exists at14

v at time t.15

Lemma 3. Pr(cflt+1(v)| cflt(v) ∧ ¬confl. through neighbor) ≤
(

1
q + 2

c

)
16

4



Proof. Let Xt(v) := {u ∈ Nv|ctu = ctv} be the set of neighbors conflicting with v at time1

t. Note that we do not consider nodes in Xt+1(v) but not in Xt(v), here, as this case is2

covered by Lemma 4. Although we can guarantee that neighbors of v received a message3

with v’s color in the interval [t, t + 1], we cannot guarantee that a conflicting neighbor4

u of v detected the conflict with v and reseted, as the phases between neighbors are not5

synchronized. However, we can argue about the probability that v received a message from6

u in the interval [t, t + 1]. We know that during the interval v does not change its color.7

Thus, v either receives the message (which implies that v detects the conflict) with constant8

probability, or u detected the conflict in the meantime and selected a new color itself. Let9

us consider these cases that might lead to a conflict at v at time t+ 1 in the following:10

a) at least one node u ∈ Xt(v) does not reset until t+1, and v does not detect the conflict.11

b) all nodes in Xt(v) reset before t+ 1, but at least one of them selects v’s color.12

c) v detects the conflict, resets its color but selects the same color as one of its neighbors.13

Case a) can be seen as the worst case, as a conflict is not detected and continues to the14

next round. However, luckily this happens with bounded probability. The case implies that15

at least one node attempted to transmit during the whole interval [t, t+ 1]. The probability16

that this transmission is not received by v is at most 1/12.17

In order to resolve conflicts, one of the remaining cases must happen. In case b), we18

cannot prove bounds on the probabilities whether a transmission was successful or not. But19

as all nodes in Xt(v) reseted during the interval [t, t+ 1], we know that the nodes u ∈ Xt(v)20

selected a new random color, which is the same as v’s color with probability at most 1/c∆.21

A union bound implies that the conflict probability is 1/c for this case.22

Finally, case c) happens with reasonable probability (for which do not have an upper23

bound, but a lower bound of q−1/q for each node in Xt(v)). The probability that a conflict24

persists to the next phase is at most 1/c, as this bounds the probability that v selects the25

same color as v (regardless of whether the neighbors of v reseted themselves or not).26

Overall, this bounds the probability for this case by at most
(

1
q + 2

c

)
27

Let us now consider the case that the conflict is introduced by a reseting neighbor in28

the interval [t, t+ 1].29

Lemma 4. Pr(cfl. through neighb.) ≤
∑

u∈Nv
1

ktu ·
1
c∆30

Proof. We consider the case that the conflict at v was introduced regardless of whether31

there was a conflict at v at time t. Thus, Xt(v) might not be empty, however, we consider32

only the probability of the case that the conflict was introduced through a neighbor’s reset.33

The probability for a neighbor u of v to reset during the interval [t, t + 1] is bounded by34

1/ktu (as this bounds the probability for a conflict at u at the end of the phase that ends35

during the interval). Note that such a conflict may be with v, or another neighbor of u. If36

the conflict is detected by u, u resets and selects a random color. The probability for u to37

select v’s color is 1/c∆. Union bounding over all neighbors implies the sum in lemma.38

To complete the proof of the theorem, observe that the tu values of neighbors of v are39

always higher than t, given that the neighbors started before v. This becomes obvious in40

Fig. 1 and establishes the following observation.41

5



u

v

w

tv = 1 tv = 2

tu = 0 tu = 1

tv = 0

tw = 0 tw = 1

phase start at v

tu = 2

tv = 3

tw = 3tw = 2

Figure 1: Illustration of the phases of v’s neighbors u and w as seen during the analysis at

v. Note that we abbreviate t
(v)
u to tu

Observation 5. If v’s neighbors started before v, it holds that t = tv ≤ tu.1

Let us now prove the main result, which proves correctness of the algorithm. Note that2

the bound on the runtime of the algorithm at v is robust towards the wake-up of nodes3

anywhere in the network apart from the log n-neighborhood of v. Although it is quite4

unlikely that v gets introduced to a conflict by a nearby node waking up, we must account5

for the probability here. For experimental evaluations regarding the impact of waking-up6

nodes, we refer to Section 4.7

Theorem 6. Let node v execute Algorithm 1. v computes a valid color w.h.p. O(∆ log n)8

time slots after (i) v started the algorithm and/or (ii) a node in v’s log n neighborhood9

started the algorithm.10

Proof. In each round the algorithm transmits its current color and receives the colors of its11

neighbors with constant probability. Based on the probabilities for a successful transmission12

and the probability to select a color used by a neighbor after a conflict is detected, it holds13

that if the neighbors started before v (or at least before the analysis at v begins), we can14

prove that the probability decreases with each round. In order to decrease the probability15

with each round also for v’s neighbors, and their neighbors, and so on, we require all nodes16

in a log n neighborhood of v to start before v, or postpone the analysis of v to a time t in17

which the nodes in the log n neighborhood started.18

Let us consider rounds 0, . . . , logk n such that in round 1 the nodes in the log n neigh-19

borhood of v are executing the algorithm. We prove the theorem by induction. In the first20

round, we apply the theorem to the nodes in N j−1
v , then to N j−2

v , and so on - until after l21

rounds the theorem is only applied to v, with the result that the conflict probability of v is22

at most 1
klogk n

= 1/n.23

Let us now prove the claim, and let therefore j := logk n− t. Our induction hypothesis24

is, that in round t ∈ [logk n] it holds ∀u ∈ N logk n−t
v = N j

v :25

1) Pr(cfltu(u)) ≤ 1/kt26

2) t ≤ tu (see Observation 5),27

This implies that we can apply Theorem 2 to the nodes in N j−1
v . As a base case, we consider28

round t = 0. In this round it holds that all nodes in the logk n neighborhood execute the29

algorithm, thus Pr(cfltu(u)) ≤ 1, and 0 ≤ tu. Let us now assume the induction hypothesis30

is true for all t′ ≤ t ∈ [logk n], and prove that it is also true for t+ 1. It holds that for each31

node u in N j
v = N

logk n−t
v that the failure probability Pr(cfltu(u)) is at most 1/kt, and that32

6



t ≤ tu. The second part of the hypothesis holds trivially, as t+ 1 ≤ tu + 1 follows directly1

from t ≤ tu. To show the first part of the hypothesis is true for t+ 1, we apply Theorem 22

to the nodes in N j
v . This yields that Pr(cfltu+1(u)) ≤ 1/kt+1 for u ∈ N j−1

v = N
logk n−(t+1)
v .3

Thus, the hypothesis holds for t+ 1.4

We have shown in this section that Algorithm 1 computes a valid c∆ coloring in5

O(∆ log n) time slots, for a constant c > 3. Since it is unclear how colors can be final-6

ized, there is some probability that a conflict is introduced to a node if a nearby node wakes7

up. Thus, our bound holds without restriction only after all nodes in the log n neighbor-8

hood of a node are awake. We consider the practical implications of this restrictions in9

Section 4.4 of our experimental evaluation of the algorithm.10

4 Experimental Evaluation11

Let us now consider the practicability of our node coloring algorithm RandCDeltaColor12

(Algorithm 1). The algorithm is very simple, which allows an easy and straight-forward13

implementation in the used network simulator Sinalgo [11]. We shall show in this section14

that Rand4DeltaColor (c = 4) validly colors a network with 4∆ colors in time less15

than required for each node in the network to transmit one (the same) message to its16

neighbors, i.e., our coloring scheme is faster than local broadcasting. Note that despite local17

broadcasting can be seen as a lower bound for distributed node coloring on the theoretical18

side, this result is reasonable from a practical perspective.19

4.1 Experimental Setup20

Our experiments are conducted with Sinalgo [11], an open-source simulation framework for21

networks algorithms in Java. It has build-in support for a variety of communication and22

interference models. We use wireless communication with SINR model of interference as23

describe in Section 2 with an attenuation coefficient of α = 6, a threshold of β = 1. For24

simplicity we do not consider environmental noise (i.e., noise is set to 0). Our communication25

graph can be seen as a unit disk graph, due to the uniform transmission power of P = 1. We26

use a deployment area of 1000 by 1000, the nodes are deployed randomly of the area, and27

the broadcasting range is set to 100. We do not allow mobility of the nodes, simultaneous28

reception of multiple packets of receiving packets while transmitting a packet. We use the29

asynchronous simulation, which does not assume global rounds but is solely based on events,30

however, our nodes have a local clock which allows them to determine (for example) when31

one phase of Algorithm 1 is over. The most basic unit, the time required to transmit one32

message is considered to be 1, which we consider as one time slot. We set the length of33

each phase to 50 time slots. To implement asynchronous wake-up of our nodes, the nodes34

wake up within the first 50 time slots for both algorithms. The measured runtime begins35

with the globally first time slot. Our nodes do not know the maximum degree ∆ in the36

network, but use a local estimate, i.e., their number of neighbors to determine the number37

of available colors. As this is less than ∆, the results reported in the following are expected38

to be slightly worse compared to those using ∆—but also more practical as ∆ might not39

be known in practice.40

7



For local broadcasting we measure the number of time slots required for all nodes in the1

network to finish, while for our coloring algorithm we measure the time until all nodes have2

a valid color, i.e. until there is no conflict in the network. All experiments are conducted3

using 200 runs with differing random seeds (randomization is used for deployment and4

determining whether to transmit in a time slot or not, depending on the transmission5

probability). We usually report median values. Our standard boxplots show the range of6

the values (apart from outliers) by a dashed interval, with the first and the third quartile7

within the box, and the median marked by a red line.8

4.2 Optimal Transmission Probabilities9

As our communication is based on probabilistic medium access, we must determine op-10

timal transmission probabilities for the algorithm. The optimal transmission probabili-11

ties varies depending on the number of nodes deployed on the area. To determine op-12

timal transmission probabilities for each setting, we execute both local broadcasting and13

Rand4DeltaColoring using a range of transmission probabilities. The results for a de-

0.
00

00
5

0.
00

01

0.
00

02

0.
00

03

0.
00

04

0.
00

05

0.
00

06

0.
00

07

0.
00

08

0.
00

09

0.
00

1

Transmission Probability

20000

40000

60000

80000

100000

120000

N
um

be
r

of
T

im
e

Sl
ot

s

Async Local Broadcast, 1000x1000 Area, 1000 Nodes, Limit: 100.0

(a) Local Broadcasting

0.
00

00
5

0.
00

01

0.
00

02

0.
00

03

0.
00

04

0.
00

05

0.
00

06

0.
00

07

0.
00

08

0.
00

09

0.
00

1

Transmission Probability

20000

40000

60000

80000

100000

120000
N

um
be

r
of

T
im

e
Sl

ot
s

Async Rand4DeltaColoring, 1000x1000 Area, 1000 Nodes, Limit: 100.0

(b) Rand4DeltaColoring

Figure 2: Runtime of the algorithms for various transmission probabilities using 1000 nodes.

14

ployment of 1000 nodes are depicted in Fig. 2. We observe that the optimal transmission15

probability is comparable for both algorithms, and in the range of [0.0005, 0.0006]. Addi-16

tionally, we can see that Rand4DeltaColor is a little more robust regarding a higher17

transmission probability, as the runtime increases slightly faster when deviating from the18

optimal transmission probability in the case of local broadcasting.19

Using this method we can obtain optimal transmission probabilities along with the20

median number of required time slots to finish the respective algorithm. We report the21

optimal transmission probabilities (regarding the median number of time slots required) for22

local broadcasting and our coloring algorithm in Table 1. Note that we set our transmission23

probabilities uniformly for all nodes in the network, regardless of their degree, as this yielded24

a preferable runtime in our setting for both local broadcasting and Rand4DeltaColor.25

It would be interesting to see whether this also holds for a broader set of experiments.26

8



Table 1: Transmission probabilities for a varying number of deployed nodes.

Number of Nodes 1000 2000 3000 4000 5000

Local Broadcasting
Transm. Prob. 0.0005 0.0002 0.0002 0.0001 0.00009
Req. slots 39,485 88,185 140,268 192,887 242,833

Rand4DeltaColor
Transm. Prob. 0.0006 0.0003 0.0002 0.0001 0.0001
Req. slots 16,575 39,073 62,319 88,039 109,269

1000 2000 3000 4000 5000

Number of Nodes

10000

20000

40000

60000

80000
100000

200000

300000

T
im

e
Sl

ot
s

(l
og

-s
ca

le
)

Local Broadcasting
RAND4∆COLORING

Local Broadcasting - Rand4DeltaColor

Figure 3: Runtime of the local broadcasting and the Rand4DeltaColor algorithm for a
deployment between 1000 and 5000 nodes on our 1000× 1000 area.

4.3 Comparing Rand4Delta with Local Broadcasting1

Let us now directly compare the median running times of Rand4DeltaColor and local2

broadcasting. We use the optimal transmission probabilities determined in the previous3

section and compare the runtime of the algorithms for an increasing number of nodes. We4

consider a deployment between 1000 and 5000 nodes on the 1000 × 1000 area. It can5

be obtained from Fig. 3, that not only the median values (cf. Table 1) of the number6

of time slots required to finish our coloring algorithm is considerable lower than those for7

local broadcasting, but that this holds for the vast majority of the runs. Regardless of the8

number of deployed nodes, the values do hardly (if at all) intersect, apart from few outliers.9

Thus, we conclude that the proposed coloring algorithm is extremely fast, requiring even10

less time to finish than one round of local broadcasting in our setting. We expect this result11

to be robust against a variation of the parameters such as the number of nodes, the area or12

the SINR constants, although actual runtime values may vary.13

9



10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of Nodes Waking-Up

0

50

100

150

200

N
um

be
r

of
D

is
tu

rb
ed

N
od

es

Async Rand4DeltaColoring, 1000x1000 Area, 1000 Nodes, Limit: 100

Figure 4: Assume a network of 1000 colored nodes. Let a varying number of nodes wake-up
and count the number of already colored nodes that are disturbed.

4.4 The Impact of Nodes Waking-Up Late1

We concluded that our coloring algorithm is very fast in general. However, in our bound2

on the runtime we could not guarantee that nodes close to other nodes that wake-up can3

maintain their color. Specifically, nodes in the log n neighborhood of a newly awaking4

node may be introduced to a conflict with a small but non-negligible probability. We5

shall consider the influence of nodes waking up after other nodes have colored in this sec-6

tion. Therefore consider the following setting: A set of 1000 nodes are awake and execute7

Rand4DeltaColoring until they are colored. Afterwards, an additional set of nodes8

awake and start executing the Rand4DeltaColoring. Our measure for this experiment9

is the number of nodes of the first set that are disturbed, which means that one of their10

neighbors selected its color. We depict the results in Fig. 4. Note that the “disturbed”11

nodes, are not necessarily disturbed in the sense that they got to know of the conflict or12

even changed their color. Thus, although we might over-estimate the damage introduced13

by waking-up nodes, each node that wakes up in the network disturbed approximately 0.1514

to 0.25 nodes on average, while the percentage decreases for an increasing number of nodes15

that wake-up after the 1000 already colored nodes.16

Also, observe that our algorithm in its current stage does not implement any methods17

to respect the colors of already colored nodes. We expect this value to be even less if a18

listen phase would be added to the algorithm and used colors would be respected. However,19

such a modification might require an increased number of available colors (i.e., c = 5) in the20

algorithm to guarantee correctness. For practical applications, we have seen that (without21

such a modification) even a decrease to c = 1 works well in practice, finishing22

10



5 Conclussion1

We have shown in this work that the analysis of the simple coloring algorithm Rand-2

CDeltaColor by Fuchs and Prutkin [1] can be generalized to the asynchronous setting3

without modification of the algorithm itself. Additionally, we observed in our experimental4

evaluation that the algorithm is very fast. Using c = 4, Rand4DeltaColor computes a5

valid 4∆ coloring of the network in less time than required to finish a local broadcast for6

each node in the network.7

Regarding future work, we are interested in making the algorithm more robust towards8

the late wake-up of nodes by respecting the colors already selected by neighboring nodes.9

References10

[1] F. Fuchs and R. Prutkin, “Simple distributed ∆ + 1 coloring in the SINR model,” 2014, under11

submission. [Online]. Available: http://arxiv.org/abs/1502.0242612

[2] F. Fuchs and D. Wagner, “Local broadcasting with arbitrary transmission power in the SINR13

model,” in Proc. 21st Internat. Colloq. Structural Inform. and Communication Complexity14

(SIROCCO’14), ser. Lecture Notes Comput. Sci., M. M. Halldórsson, Ed., vol. 8576. Springer,15

2014, pp. 180–193.16

[3] M. M. Halldórsson and P. Mitra, “Towards Tight Bounds for Local Broadcasting,” in Proc.17

8th ACM Internat. Workshop on Foundations of Mobile Computing (FOMC’12). ACM Press,18

July 2012.19

[4] D. Yu, Q.-S. Hua, Y. Wang, and F. C. M. Lau, “An O(log n) Distributed Approximation20

Algorithm for Local Broadcasting in Unstructured Wireless Networks,” in Proc. 8th Internat.21

Conf. on Distributed Computing in Sensor Systems (DCOSS’12). IEEE Computer Society,22

2012, pp. 132–139.23

[5] D. Yu, Y. Wang, Q.-S. Hua, and F. C. M. Lau, “Distributed Local Broadcasting Algorithms24

in the Physical Interference Model,” in Proc. 7th Internat. Conf. on Distributed Computing in25

Sensor Systems (DCOSS’11). IEEE Computer Society, 2011, pp. 1–8.26

[6] O. Goussevskaia, T. Moscibroda, and R. Wattenhofer, “Local Broadcasting in the Physical In-27

terference Model,” in Proc. 5th ACM Internat. Workshop on Foundations of Mobile Computing28

(DialM-POMC’08). ACM Press, 2008, pp. 35–44.29

[7] D. Yu, Y. Wang, Q.-S. Hua, and F. C. M. Lau, “Distributed (∆ + 1) Coloring in the Physical30

Model,” in Proc. 7th Internat. Workshop on Algorithmic Aspects of Wireless Sensor Networks31

(ALGOSENSORS’11), ser. Lecture Notes Comput. Sci., T. Erlebach, S. E. Nikoletseas, and32

P. Orponen, Eds., vol. 7111. Springer, 2011, pp. 145–160.33

[8] B. Derbel and E.-G. Talbi, “Distributed Node Coloring in the SINR Model,” in Proc. 30th34

Internat. Conf. on Distributed Computing Systems (ICDCS’10). IEEE Computer Society,35

2010, pp. 708–717.36

[9] M. Luby, “A simple parallel algorithm for the maximal independent set problem,” SIAM J.37

Comput., vol. 15, no. 4, pp. 1036–1053, 1986.38

[10] I. Finocchi, A. Panconesi, and R. Silvestri, “An experimental analysis of simple, distributed39

vertex coloring algorithms,” Algorithmica, vol. 41, no. 1, pp. 1–23, 2005.40

[11] Distributed Computing Group, ETH Zurich, “Sinalgo - simulator for network algorithms,”41

2008, version 0.75.3. [Online]. Available: http://sourceforge.net/projects/sinalgo/42

11

http://arxiv.org/abs/1502.02426
http://sourceforge.net/projects/sinalgo/

	Introduction
	Preliminaries
	Algorithm
	Experimental Evaluation
	Experimental Setup
	Optimal Transmission Probabilities
	Comparing Rand4Delta with Local Broadcasting
	The Impact of Nodes Waking-Up Late

	Conclussion

