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Abstract. In many fields of application, shortest path finding prob-
lems in very large graphs arise. Scenarios where large numbers of on-line
queries for shortest paths have to be processed in real-time appear for ex-
ample in traffic information systems. In such systems, the techniques con-
sidered to speed up the shortest path computation are usually based on
precomputed information. One approach proposed often in this context
is a space reduction, where precomputed shortest paths are replaced by
single edges with weight equal to the length of the corresponding short-
est path. In this paper, we give a first systematic experimental study of
such a space reduction approach. We introduce the concept of multi-level
graph decomposition. For one specific application scenario from the field
of timetable information in public transport, we perform a detailed anal-
ysis and experimental evaluation of shortest path computations based
on multi-level graph decomposition.

1 Introduction

In this paper we consider a scenario where a large number of on-line shortest path
queries in a huge graph has to be processed as fast as possible. This scenario arises
in many practical applications, including route planning for car traffic [11,4,12,
17,18,13], database queries [16], Web searching [2], and time-table information in
public transport [20,3,10]. The algorithmic core problem consists in performing
Dijkstra’s shortest path algorithm using appropriate speed-up techniques.

Our initial interest in the problem stems from our previous work on time
table information in railway systems [20]. In such a problem, the system has to
answer on-line a potentially infinite number of customer queries for optimal (e.g.,
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fastest) travel connections in a wide-area network. The concrete scenario comes
from the Hafas central server [9] of the German railways: the server is directly
accessible to any customer either through terminals in the train stations, or
through a web interface. Note that space consumption is not the major issue
in such a scenario. What it matters most is the average (as opposed to the
maximum) response time for a query.

In practice, the usual approach to tackle the shortest path problems arising
in scenarios like the above is to use heuristic methods, which in turn implies that
there is no guarantee for an optimal answer. On the contrary, we are interested
in distance-preserving algorithms, i.e., shortest path algorithms that produce an
optimal answer for any input instance. Distance-preserving algorithms were not
in wide use in traffic information systems, mainly because the average response
time was perceived to be unacceptable. However, the results in [20,3] showed
that distance-preserving variants of Dijkstra’s algorithm are competitive in the
sense that they do not constitute the bottleneck operation in the above scenario.
These are the only publications known to us that investigate distance-preserving
speed-up techniques of Dijkstra’s algorithm. The recent work in [10] investigates
multi-criteria shortest path problems for computing Pareto optimal solutions
in the above scenario. All these publications [20,3,10] are the only ones known
to us regarding algorithms for wide-area railway traffic information systems.
Related work is known for other traffic engineering systems, concerning mainly
local public transport [15], or private transport in wide-area networks [11,1,4,17,
12,13,15,18]. For various reasons (see e.g., [20]) the techniques in those papers
cannot be directly applied to wide-area railway traffic information systems.

Several of the approaches used so far in traffic engineering introduce speed-
up techniques based on hierarchical decomposition. For example, in [11,1,4,13]
graph models are defined to abstract and store road maps for various routing
planners for private transport. Similarly, in [19] a space reduction method for
shortest paths in a transportation network is introduced. The idea behind such
techniques is to reduce the size of the graph in which shortest path queries are
processed by replacing precomputed shortest paths by edges. The techniques are
hierarchical in the sense that the decomposition may be repeated recursively.
Several theoretical results on shortest paths, regarding planar graphs [7,8,14]
and graphs of small treewidth [6,5], are based on the same intuition.

So far, however, there exists no systematic evaluation of hierarchical decom-
position techniques, especially when concrete application scenarios are consid-
ered. In [20], a first attempt is made to introduce and evaluate a speed-up tech-
nique based on hierarchical decomposition, called selection of stations. Based on
a small set of selected vertices an auxiliary graph is constructed, where edges
between selected vertices correspond to shortest paths in the original graph.
Consequently, shortest path queries can be processed by performing parts of the
shortest path computation in the much smaller and sparser auxiliary graph. In
[20], this approach is extensively studied for one single choice of selected vertices,
and the results are quite promising.
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In this paper, we follow up and focus on a detailed and systematic experi-
mental study of such a hierarchical decomposition technique. We introduce the
multi-level graph model that generalizes the approach of [20]. A multi-level graph
M of a given weighted digraph G = (V, E) is a digraph which is determined by
a sequence of subsets of V and which extends E by adding multiple levels of
edges. This allows to efficiently construct a subgraph of M which is substan-
tially smaller than G and in which the shortest path distance between any of
its vertices is equal to the shortest path distance between the same vertices in
G. Under the new framework, the auxiliary graph used in [20] – based on the
selection of stations – can be viewed as adding just one level of edges to the
original graph.

We implemented and evaluated a distance-preserving speed-up technique
based on a hierarchical decomposition using the multi-level graph model. Our
study is based on all train data (winter period 1996/97) of the German rail-
ways consisting of time-table information and queries. The processed queries
are a snapshot of the central Hafas server in which all queries of customers of
all ticket offices in Germany were recorded over several hours. From the time-
table information, the so-called train graph is generated in a preprocessing step.
Answering a connection query corresponds in solving a shortest path in the
train graph. Based on that graph, we considered various numbers l of levels
and sequences of subsets of vertices. For each of these values, the corresponding
multi-level graphs are evaluated. Our study was concentrated in measuring the
improvement in the performance of Dijkstra’s algorithm when it is applied to a
subgraph of M instead of being applied to the original train graph. Our experi-
ments demonstrated a clear speed-up of the hierarchical decomposition approach
based on multi-level graphs. More precisely, we first considered various selection
criteria for including vertices on the subsets which determine the multi-level
graphs. This investigation revealed that random selection (as e.g., proposed in
[21]) is a very bad choice. After choosing the best criteria for including vertices in
the subsets, we analyzed their sizes and demonstrated the best values for these
sizes. It turns out that the dependence of the multi-level graphs on the subset
sizes is also crucial. Finally, for the best choices of subsets and their sizes, we
determined the best values for the number of levels. For the best choice of all
parameters considered we obtained a speed-up of about 11 for CPU time and of
about 17 for the number of edges hit by Dijkstra’s algorithm.

2 Multi-level Graph

Let G = (V, E) be a weighted digraph with non-negative edge weights. The length
of a path is the sum of the weights of the edges in the path. The multi-level graph
M of G is, roughly speaking, a graph that extends G in two ways:

1. It extends the edge-set of G by multiple levels of edges.
2. It provides the functionality to determine for a pair of vertices s, t ∈ V

a subgraph of M such that the length of a shortest path from s to t in
that subgraph is equal to the shortest path length in G. To achieve this, we
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use a special data structure called the component tree (a tree of connected
components).

The objective is the resulting subgraph of M to be substantially smaller than
the original graph G. Then, single-pair shortest path algorithms can be applied
to the smaller graph, improving the performance.
The multi-level graph is built on the following input:

– a weighted digraph G = (V, E) consisting of vertices V and edges E ⊆ V ×V
– a sequence of l subsets of vertices Si (1 ≤ i ≤ l), which are decreasing with

respect to set inclusion: V ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sl

To emphasize the dependence on G and the sets S1, . . . , Sl, we shall refer to
the multi-level graph by M(G; S1, . . . , Sl). The vertex-sets Si will determine the
levels of the multi-level graph. In the following, we shall discuss the construction
of the multi-level graph and of the component tree.

2.1 Levels

Each level of M(G; S1, . . . , Sl) is determined by a set of edges. The endpoints of
these edges determine the vertex set of each level. For each set Si (1 ≤ i ≤ l),
we construct three sets of edges:

– level edges: Ei ⊆ Si × Si

– upward edges: Ui ⊆ (Si−1 \ Si) × Si

– downward edges: Di ⊆ Si × (Si−1 \ Si)

We call the triple Li := (Ei, Ui, Di) the level i of the multi-level graph. We
further say that L0 := (E, ∅, ∅) is the level zero, where E are the edges of the
original graph G. With the level zero there are totally l +1 levels, so we say that
M(G; S1, . . . , Sl) is an l + 1-level graph. Figure 1 illustrates a 3-level graph.

Construction. The construction of the levels is iterative, so we assume that we
have already constructed the level Li−1. The iteration begins with i = 1. For
each vertex u in Si−1 consider a shortest-path tree Tu (rooted at u) in the graph
(Si−1, Ei−1). Candidates for edges in level Li are all the edges Si × Si for level
edges, (Si−1 \Si)×Si for upward edges, and Si ×(Si−1 \Si) for downward edges.
The condition to decide whether one candidate edge (u, v) is actually taken for
the sets Ei, Ui and Di is the following:

Li contains an edge (u, v) if and only if no internal vertex of the u-v
path in Tu belongs to Si.

In other words, if the u-v path contains no vertex of Si except for the two
endpoints u and v, the edge (u, v) is added to Li. The weight of a new edge
(u, v) is the shortest path length from u to v in G.

Note that the level Li is not uniquely determined by this construction, since
the shortest-path trees are not unique. Now, we can define the multi-level graph
as

M(G; S1, . . . , Sl) := (V, E ∪
⋃

i=1...l

(Ei ∪ Ui ∪ Di))
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Fig. 1. A simple example of a 3-level graph. Level zero consists of the original graph
G. The sets of vertices that define the 3-level graph are S1 = {a, b, c} and S2 = {a, c}.
In order to show the levels, we draw copies of each vertex for the levels one and two,
but actually there is only one occurrence of them in the 3-level graph. The levels one
and two are each split into two planes, where the upper plane contains the edges Ei,
and the lower plane shows the connected components in the graph G − Si. The edges
Ui and Di connect vertices in different planes of one level.
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Fig. 2. The component tree for the 3-level graph in Figure 1. Only the leaves for the
vertices s and t are shown. The thin black edges are the edges Est that define the
subgraph with the same shortest path length as G.
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Connected Components. Consider the subgraph of G that is induced by the
vertices V \ Si. We will use the following notation:

– the set of connected components is denoted by Ci, and a single component
is usually referred to by C;
– V (C) denotes the set of vertices of a connected component C of Ci;
– for a vertex v ∈ V \ Si, let Cv

i denote the component in Ci that contains v;
– a vertex v ∈ Si is called adjacent to the component C ∈ Ci, if v and a

vertex of C are connected by an edge (ignoring direction);
– the set of adjacent vertices of a component C is denoted by Adj(C).

The edges Ei, Ui and Di can be interpreted in terms of connected components as
follows (see Figure 1). The edges Ei resemble the shortest paths between vertices
of Si that pass through a connected component, i.e., if two vertices x and y are
adjacent to the same component, and the shortest path from x to y is inside
that component, then there is an edge from x to y representing that shortest
path. This includes edges in G that connect two vertices of Si. Notice that for
a pair of vertices in Si, the subgraph of M induced by Ei suffices to compute a
shortest path between these vertices.

In the same way, the edges Ui represent shortest paths from a vertex inside a
connected component to all vertices of Si adjacent to that component, and the
edges Di represent the shortest paths from the adjacent vertices of a component
to a vertex of the component.

2.2 Component Tree

The data structure to determine the subgraph of M for a pair of vertices s, t ∈ V
is a tree with the components C1 ∪ . . . ∪ Cl as nodes. Additionally, there is a
root Cl+1, and for every vertex v ∈ V a leaf Cv

0 in the tree (we assume that
Adj(Cv

0 ) := {v} and Adj(Cl+1) := ∅). The parent of a leaf Cv
0 is determined as

follows: Let i be the largest i with v ∈ Si. If i = l, the parent is the root Cl+1.
Otherwise, the smallest level where v is contained in a connected component is
level i + 1, and the parent of Cv

0 is the component Cv
i+1 ∈ Ci+1.

The parent of the components in Cl is also the root Cl+1. For one of the
remaining components Ci ∈ Ci, the parent is the component C ′

i+1 ∈ Ci+1 with
V (Ci) ⊆ V (C ′

i+1). Figure 2 illustrates the component tree of the 3-level graph
in Figure 1.

Subgraph. For the given pair of vertices s, t ∈ V we consider the Cs
0 -Ct

0 path in
the component tree. Let L be the smallest L with Cs

L = Ct
L (i.e., Cs

L = Ct
L is

the lowest common ancestor of Cs
0 and Ct

0 in the tree). Then, with our notation
for the components, the Cs

0 -Ct
0 path is

(Cs
0 , C

s
k, Cs

k+1, . . . , C
s
L = Ct

L, . . . , Ct
k′+1, C

t
k′ , Ct

0)

where k > 0 and k′ > 0 are the levels of the parents of Cs
0 and Ct

0 as defined above
(cf. darker tree edges in Figure 2). The subgraph with the same s-t shortest-path
length as G is the subgraph Mst of M induced by the following edge set:
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Est := EL−1

∪
⋃

i=k,...,L−1

{(u, v) ∈ Ui|u ∈ Adj(Cs
i−1), v ∈ Adj(Cs

i )}

∪
⋃

i=k′,...,L−1

{(u, v) ∈ Di|u ∈ Adj(Ct
i ), v ∈ Adj(Ct

i−1)}

The following lemma holds for shortest paths in Mst.

Lemma 1. The length of a shortest s-t path is the same in the graphs G and
Mst(G; S1, . . . , Sl).

Proof. [sketch] Let s, t ∈ V be a pair of vertices G for which a s-t path in G
exists, and let Cs

0 , C
s
k, . . . , Cs

L = Ct
L, . . . , Ct

k′ , Ct
0 be the corresponding graph in

the component tree. By definition, every edge (u, v) in Mst has a weight that
is at least as large as the shortest-path length from u to v in G. Hence, the
length of a shortest s-t path in Mst can never be smaller than the one in G.
It remains to prove that there is a s-t path in Mst with the same length as a
shortest s-t path P in G. To prove this, it suffices to prove the following claims,
where 1 ≤ x ≤ l:

1. For each pair of vertices u, v ∈ Sx such that there exists a u-v path in G,
the graph (Sx, Ex) contains a path with the same length as a shortest u-v
path in G.

2. For the subgraph M′ of M induced by the edge set

Ex ∪
⋃

i=k,...,x

{(u, v) ∈ Ui|u ∈ Adj(Cs
i−1), v ∈ Adj(Cs

i )}

it holds that for each vertex w ∈ Sx that is reachable from s in G there exists
a path from s to w in M′ with the same length as a shortest s-w path in G.

3. For the subgraph M′ of M induced by the edge set

Ex ∪
⋃

i=k′,...,x

{(u, v) ∈ Di|u ∈ Adj(Ct
i ), v ∈ Adj(Ct

i−1)}

it holds that for each vertex w ∈ Sx from which t is reachable in G there
exists a path from w to t in M′ with the same length as a shortest w-t path
in G.

We first show how the proof is completed using the above claims, and then
give the proofs of the claims. The value L is the level of the lowest common
ancestor of Cs

0 and Ct
0 in the component tree. Because of this, s and t are in

different components of the subgraph induced by V − SL−1, and therefore at
least one vertex of a shortest s-t path in G has to be in SL−1. Let w (resp. z) be
the first (resp. last) vertex of P that belongs to SL−1. Then, vertices w and z
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split P into three (not necessarily non-empty) parts P1, P2 and P3. By Claim 1,
it follows that there is a w-z path in Mst with the same length as P2. Similarly,
by Claim 2, it follows that there is a path in Mst from s to w with the same
length as P1, and by Claim 3 that there is a path in Mst from z to t with the
same length as P3. The concatenation of these three paths is an s-t path in Mst

with the same length as P .
We now turn to the proofs of the claims. The proofs are by induction on x.

We give the proof of Claim 1; the proofs of the other claims follow similarly. We
start with the basis of the induction (x = 1).

Let u and v be two vertices of S1 and P = (u = v1, . . . , vz = v) be the
shortest u-v path in the shortest-path tree Tu in G considered in the definition
of the levels. If no internal vertex of that path belongs to S1, by the definition
of E1, there is an edge (u, v) ∈ E1 whose weight is the length of P , and we
are done. Otherwise, some of the internal vertices of P belong to S1, and we
consider all the subpaths Pj of P , where P1 is the part from u to the first vertex
belonging to S1, then P2 is the part from the latter vertex to the second vertex in
P belonging to S1, and so on. The end-vertices of each subpath Pj are connected
by an edge in E1, because for these subpaths there is no internal vertex in S1,
and the weight of such an edge is exactly the length of Pj in G. The combination
of all these edges is the path in (S1, E1) we are looking for.

Now, assume that the claim is true for any value smaller than x. Then,
the induction step for x is proved in exactly the same way as for the basis, by
replacing G by (Sx−1, Ex−1), S1 by Sx, and E1 by Ex.

3 Graphs for Timetable Information

In the following the graphs used for timetable information will be defined, and
some customizations of the multi-level approach needed for timetable informa-
tion graphs will be discussed.

3.1 Train and Station Graph

The timetable information system that we consider is based on a timetable for
a set of trains. For the sake of simplification we assume that the timetable
is periodic with a period of one day, and that the objective of the system is
to provide a train connection with earliest arrival time. A query consists of a
departure station, an arrival station, and a departure time. That problem is
reduced to a shortest-path problem in the train graph.

Train Graph TG. It contains a vertex v for every arrival and departure of a
train, and two kinds of edges:

– stay-edges: for each station, all arrivals and departures vi of trains are sorted
according to the time the trains leave or arrive at the station, say v1, . . . , vn.
Then, the edges (vi, vi+1) for i = 1 . . . n − 1 and (vn, v1) model stays at that
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station, where the last edge models a stay over midnight. The weight of a
stay-edge is the duration of the stay in minutes.
– travel-edges: for each departure of a train, there is an edge from that depar-

ture to the arrival at the station where the train stops next. The weight of
a travel-edge is the time difference in minutes between the arrival and the
departure.

It is easy to see that solving a query amounts to computing a shortest path in
the train graph from the departure vertex at the departure station (determined
by the departure time) to one of the vertices of the arrival station. Note that
this is a kind of a single-source some-target shortest path problem, where the
targets for one query are the set of vertices belonging to one station. Because of
this, we will need a second graph, the station graph.

Station Graph SG. It contains one vertex per railway station R, and there is an
edge between two stations R1 and R2 if and only if there is an edge (v1, v2) in the
train graph, with v1 belonging to station R1 and v2 belonging to R2. The station
graph is simple and unweighted. With T (R) we denote the set of all arrival and
departure vertices in the train graph that belong to the station R. Note that
the station graph is the graph minor of the train graph obtained by contracting
all stay-edges in the train graph and by removing all but one of multiple edges.
The following lemma follows directly by the definition of SG and TG.

Lemma 2. Consider a subset Σ of vertices in SG, and let T (Σ) be the set of
all arrivals and departures of the stations in Σ. Then, if the stations R1, . . . , Rk

belong to one connected component of SG − Σ, the vertices T (R1), . . . , T (Rk)
belong to one connected component of TG − T (Σ), and vice versa.

3.2 Customization of the Multi-level Graph Model

If we define the multi-level graph M(TG) of TG according to the definition
given in Section 2, then we would get a subgraph of M(TG) for a pair s, t of
vertices on which we could solve a single-pair shortest path problem in order to
determine an s-t shortest path in TG. In our case, however, we have to solve
a single-source some-targets problem, and hence this is not actually suitable
for our case. Instead, we need a subgraph that guarantees the same shortest-
path length between every pair of vertices belonging to two stations (i.e., sets
of vertices of TG). Therefore, we define on TG a slightly modified version of a
multi-level graph:

1. The first modification is to start with a sequence of l sets of stations of
the station graph, Σi (1 ≤ i ≤ l), which are decreasing with respect to
set inclusion. Then, the l sets of vertices of the train graph are defined
to be Si := ∪R∈Σi

T (R), all departures and arrivals of all the stations in
Σi. The levels of the multi-level graph M are then defined using the Si as
described in Section 2.1 (page 46), yielding M(TG; S1, . . . , Sl). To emphasize
the dependence of Si on Σi and in order to facilitate notation, we shall refer
to this multi-level graph as M(TG; Σ1, . . . , Σl).
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2. The component tree is computed in the station graph. There is one leaf
CR per station R, and Adj(CR) := T (R), i.e., the arrivals and departures
belonging to R.

3. We define a vertex v of the train graph to be adjacent to a component C
of the station graph, if v and any vertex belonging to a station of C are
connected by an edge in the train graph. With this definition, and s and
t being the departure and arrival stations, the definition of the subgraph
Mst is exactly the same as for general multi-level graphs (see Section 2.2 on
page 48).

Given a query with departure station s, arrival station t, and a departure
time, the subgraph Mst of M(TG; Σ1, . . . , Σl) depends now on the stations s
and t. The departure time determines the departure vertex in TG belonging to
station s. To solve the query, we have to compute the shortest-path length from
the departure vertex of TG to one of the vertices belonging to station t. Based
on Lemmata 1 and 2, we are able to show (next lemma) that it is sufficient to
perform such a shortest path computation in Mst.

Lemma 3. For each departure vertex v in the train graph belonging to station
s, the shortest-path length from v to one of the vertices belonging to station t is
the same in the graphs TG and Mst(TG; Σ1, . . . , Σl).

Proof. [sketch] Using Lemma 2 on page 51, the proof of Lemma 1 can be
adopted to the customizations that were made for the train graph.

The proof for Claim 1 is exactly the same here. Claims 2 and 3 are modified
in the way that now s and t are sets of vertices of TG, namely the sets of all
arrivals and departures belonging to the stations s and t, respectively. Then,
Claims 2 and 3 hold for each of these vertices, because of Lemma 2.

Let P be a shortest path in TG from the departure vertex v to one of the
vertices belonging to station t. Then, similarly to the proof of Lemma 1, we can
show that there is a path with the same end-vertices and of the same length in
Mst(TG; Σ1, . . . , Σl).

4 Experiments

As mentioned in the introduction, we will consider different multi-level graphs
that are all based on one single graph. This original graph is the train graph
TGDB based on the winter 1996/97 train timetables of the German railroad com-
pany Die Bahn (DB). It consists of 6960 stations, 931746 vertices, and 1397619
edges.

The second input to the multi-level graph for train graphs is the sequence
of sets of stations Σ1, . . . , Σl, which determines the multi-level graph, referred
to by M(TGDB ; Σ1, . . . , Σl). In the following we will omit the graph TGDB in
the notation of the multi-level graph. The goal of this experimental study is to
investigate the behaviour of the multi-level graph with respect to the sequence
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Σ1, . . . , Σl. The experiments to measure the raw CPU time were run on a Sun
Enterprise 4000/5000 machine with 1 GB of main memory and four 336 MHz
UltraSPARC-II processors (of which only one was used). The preprocessing time
to construct a multi-level graph (i.e., the additional edges and the component
tree) varies from one minute to several hours.

Parameters. First of all, we want to measure the improvement in performance
of shortest path algorithms if we compute the shortest path in the subgraph of
M instead of the original graph G. From the snapshot of over half a million of
realistic timetable queries that has been investigated in [20] we take a subset
of 100000 queries. Then, for each instance of a multi-level graph M that we
consider we solve the queries by computing the corresponding shortest path in
the subgraph of M using Dial’s variant of Dijkstra’s algorithm (since this variant
turned out to be the most suitable as our previous study [20] exhibited). From
these shortest path computations we consider two parameters to evaluate the
improvement of the performance:

– CPU-speedup: the ratio between the average CPU time needed for answering
a single query in the original train graph (0.103 secs) and the average CPU
time when the subgraph of M is used;
– edge-speedup: the same ratio when the average number of edges hit by Dijk-

stra’s algorithm is used instead of the average raw CPU time.

Note that the time needed to compute the subgraph for a given query is only
included in the CPU-speedup, not in the edge-speedup. Another issue is the
space consumption, and therefore we define

– the size of a level of M to be the number of edges that belong to that level;
– the size of M to be the total number of edges in all levels of M (including

the original graph G);
– the relative size of M to be the size of M divided by the number of edges

in the original graph G.

Finally, to compare the improvement in performance and the space consumption,
we consider the (CPU-, edge-) efficiency of M, being the ratio between (CPU-,
edge-) speedup and the relative size of M.

4.1 Two Levels

In the following we define the sequences of sets of stations used in our experi-
ments with 2-level graphs.

We define three sequences A = (A1, . . . , A10), B = (B1, . . . , B10), and
C = (C1, . . . , C10) of sets of stations, which are decreasing with respect to set
inclusion. The first set in each sequence is identical for all the three and consists
of all the stations that have a degree greater than two in the station graph; this
yields a set of 1974 stations. The last set of each sequence contains 50 stations,
and the sizes of the remaining 8 sets of stations are such that the sizes are equally
distributed in the range [50, 1974].
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The difference between A, B, and C is the criterion on the selection of sta-
tions:

A: In the timetable data, each station is assigned a value that reflects the im-
portance of that station with respect to changing trains at that station. The
sets Ai contain the stations with the highest importance values.

B: The sets Bi contain stations with the highest degrees in the station graph.
C: The set C1 is a random set of stations. Then, for Ck (2 ≤ k ≤ 10), stations

are randomly selected from Ck−1.

These criteria for selecting stations are crucial for the multi-level graph approach.
For criteria A and B we use additional information from the application domain:
they reflect properties of important hubs in the railroad network. Removing these
hubs yields intuitively a “good” decomposition of the network. The experimental
results confirm this intuition.

Using each set of stations Ai, Bi, and Ci (i = 1, . . . , 10) as the set Σ1, we
compute the 2-level graph (i.e., consisting of the original graph being level zero
and level one) M(Σ1). Figure 3 shows the sizes (i.e., the number of edges) of
the level one. For the sequences A and B these sizes are similar, and for the
randomly selected sets C, the size grows dramatically as the number of stations
decrease. In the following we will focus on the sequence A, since B shows similar
but slightly worse results, and the multi-level graphs using sets of stations of C
are too big.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000

importance
degree
random

Fig. 3. For each sequence A, B, and C, there is one curve. Each point corresponds to
one set Σ1 of stations in these sequences. The diagram shows the size of level one of
the 2-level graph M(Σ1) according to the number of stations in Σ1.

For i = 1, . . . , 9 with decreasing number of stations in Ai, the speedup and
efficiency of M(Ai) is growing, and from 9 to 10 it is falling drastically, as
Figure 4 shows. Figure 5 reveals one reason for this behaviour: While the number
of stations in Ai is big enough, for almost all queries (> 96%) the level one is
used, i.e., the subgraph of M(Ai) used for the shortest path computation consists
of the corresponding upward and downward edges of level one, and of the edge-
set E1. But for i = 10, for only about 60% of the queries the level one is used,
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and the remaining 40% of the queries have to be solved in level zero, i.e., on
the original graph. The queries for which level one is used still profit from level
one as Figure 5 shows, but for the rest of the queries the speedup equals one. In
total, this reduces the average speedup over all queries.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 200 400 600 800 1000 1200 1400 1600 1800 2000

efficiency

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

speedup

Fig. 4. Each point corresponds to one 2-level graph M(Ai) for each set of stations in
A. The left diagram shows the CPU-efficiency of M(Ai) according to the number of
stations in Ai, and in the right diagram the ordinate is the average CPU-speedup for
the 2-level graphs.
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Fig. 5. Like Figure 4, the points refer to sets of stations Ai, and the abscissa denotes
the number of stations in Ai. For the curve that is growing with respect to the number
of stations, the ordinate on the right shows the percentage of queries for which the
second level is actually used (i.e., the lowest common ancestor in the component tree
is the root), while for the descending curve the average CPU-speedup over all these
queries is shown on the left ordinate.

4.2 Multiple Levels

The experiments with two levels show, that the set of stations A9 with 263
stations yields the best performance, and (according to Figure 5) that the most
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interesting cases to investigate is to consider subsets with less than |A9| stations.
In our test sequence, there is only the set A10 with less stations. Consequently, we
included in the sequence A for our investigation with more than two levels also
the subsets of stations A9a (225 stations), A9b (156 stations), A9c (100 stations),
and A10a (30 stations).

Three Levels. For every pair Σ1, Σ2 of sets of stations in A with Σ1 ⊃ Σ2, we
consider the 3-level graph M(Σ1, Σ2). For fixed Σ1, we investigate the behaviour
of the 3-level graph with respect to Σ2. Figure 6 shows this behaviour for Σ1 ∈
{A1, A7, A8, A9}. With Σ1 = A1, we see the same drop of speedup and efficiency
when Σ2 gets too small as in the 2-level case. However, when the size of Σ1
decreases (e.g., Σ1 = A9), we observe that the suitable choices for Σ2 are the
subsets A10 (50 stations) and A10a (30 stations) which improve both speed-
up and efficiency. This also shows that different levels require different sizes of
subsets.
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Fig. 6. The equivalent of Figure 4 for 3-level graphs M(Σ1, Σ2). For each set of
stations Σ1 ∈ {A1, A7, A8, A9} there is one curve, which is obtained by varying Σ2

(abscissa). On the left hand, the ordinate shows the CPU-efficiency, while on the right
hand the CPU-speedup is shown.

More Levels. For more than three levels, we do not investigate every possi-
ble combination of sets of stations in A, but follow an iterative approach. To
get initial sequences Σ1, . . . , Σl−1 for the l-level graph, we take the sequences
Σ1, . . . , Σl−2 that were the basis for the best l − 1-level graphs, and combine
these sequences with the sets of stations Σl−1 in A with Σl−1 ⊃ Σl−2. Then,
subsequences of A are used as input for the l-level graph that are similar to the
initial sequences.

The following table as well as Figure 7 show the results for the best l-level
graph for 2 ≤ l ≤ 6. Note that the one-level graph is the original graph, and that
the speedup and efficiency are ratios comparing the results for multi-level graphs
with the original graph, so for the original graph the speedup and efficiency are
one.
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speedup efficiency
Levels M(·) CPU edge CPU edge

2 A9 3.97 4.89 1.37 1.56
3 A9, A10 10.58 14.06 3.11 4.12
4 A7, A9b, A10a 11.18 16.63 3.48 5.18
5 A7, A9b, A9c, A10a 9.91 17.52 3.06 5.41
6 A7, A9, A9a, A9c, A10a 8.58 17.01 2.55 5.06

The gap between CPU- and edge-speedup reveals the overhead to compute
the subgraph Mst for a query using the multi-level graph, since the average CPU-
time includes this computation, but the average number of edges hit by Dijkstra’s
algorithm does not. Considering levels four and five, because of this overhead
the CPU-speedup is decreasing while the edge-speedup is still increasing with
respect to the number of levels. Experiments with larger values of l revealed that
there is no further improvement in the speed-up and/or in the efficiency.
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Fig. 7. For different numbers l of levels the results of the best l-level graph is shown:
the CPU- and edge-efficiency in the left diagram, and the CPU- and edge-speedup in
the right one.

5 Conclusions

In this study, we empirically investigated a hierarchical decomposition approach
based on multi-level graphs for a specific application scenario. Given the com-
plexity of the recursive construction of the multi-level graph (or of similar models
proposed in the literature), this concept might appear to be more of theoretical
interest than of practical use. To our surprise, our experimental study with multi-
level graphs for this specific scenario exhibited a considerable improvement in
performance regarding the efficient computation of on-line shortest path queries.

In defining the multi-level graphs, we considered three simple criteria A (im-
portance of stations), B (highest degrees), and C (random choice) to select the
stations. The latter criterion turned out to be a very bad choice. Further im-
provements could be possibly achieved by using more sophisticated versions of
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criteria A and B. For example, in [20], a more sophisticated version of criterion A
for 2-level graphs was used. This criterion adds new stations to a set of stations
for which the 2-level graph is already known and hence is not applicable to gen-
erate sets of stations with fixed sizes for more than two levels. Consequently, it
could not directly be used here. However, based on the similarities of the results
for the sequences A and B, we believe that if a criterion is chosen which yields a
better performance for 2-level graphs, the performance of the multi-level graphs
with more than two levels could be improved as well.

It would be interesting to investigate the multi-level graph approach in other
contexts as well.
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