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Abstract. Traffic information systems are among the most prominent
real–world applications of Dijkstra’s algorithm for shortest paths. We
consider the scenario of a central information server in the realm of public
railroad transport on wide–area networks. Such a system has to process
a large number of on–line queries in real time. In practice, this problem
is usually solved by heuristical variations of Dijkstra’s algorithm, which
do not guarantee optimality. We report results from a pilot study, in
which we focused on the travel time as the only optimization criterion. In
this study, various optimality–preserving speed–up techniques for Dijk-
stra’s algorithm were analyzed empirically. This analysis was based on
the timetable data of all German trains and on a “snapshot” of half a
million customer queries.1

1 Introduction

Problem. From a theoretical viewpoint, the problem of finding a shortest path
from one node to another one in a graph with edge lengths is satisfactorily
solved. In fact, the Fibonacci–heap implementation of Dijkstra’s algorithm re-
quires O(m + n logn) time, where n is the number of nodes and m the number
of edges [8]. However, various practical application scenarios impose restrictions
that make this algorithm impractical. For instance, many scenarios impose a
strict limitation on space consumption.2

In this paper, we consider a different scenario: space consumption is not an
issue, but the system has to answer a potentially infinite number of customer
queries on–line. The real–time restrictions are soft, which basically means that
the average response time is more important than the maximum response time.
The concrete scenario we have in mind is a central server for public railroad
1 With special courtesy of the TLC Transport-, Informatik- und Logistik–Consulting

GmbH/EVA–Fahrplanzentrum, a subsidiary of the Deutsche Bahn AG.
2 To give a concrete example: if a traffic information system is to be distributed on

CD–Rom or to be run on an embedded system, a naive implementation of Dijkstra’s
algorithm would typically exceed the available space.
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transport, which has to process a large number of queries (e.g. a server that
is directly accessible by customers through terminals in the train stations or
through a WWW interface).

Algorithmic problems of this kind are usually approached heuristically in
practice, because the average response time of optimal algorithms seems to be
inacceptable. In a new long–term project, we investigate the question to what
extent optimality–preserving variants of Dijkstra’s algorithm have become com-
petitive on contemporary computer technology. Here we give an experience re-
port from a pilot study, in which we focused on the most fundamental kind
of queries: find the fastest connection from some station A to some station B
subject to a given earliest departure time.

This scenario is an example of a general problem in the design of practical
algorithms, which we discussed in [14]: computational studies based on artificial
(e.g. random) data do not make much sense, because the characteristics of the
real–world data are crucial for the success or failure of an algorithmic approach in
a concrete use scenario. Hence, experiments on real–world data are the method
of choice.

Related work. Various textbooks address speed–up techniques for Dijkstra’s al-
gorithm but have no concrete applications in mind, notably [4] and [10]. In [13],
Chapter 4, a brief, introductory survey of selected techniques is given (with a
strong bias towards the use scenario discussed here). Most work from the scien-
tific side addresses the single–source variant, where a spanning tree of shortest
paths from a designated root to all other nodes is to be found. Moreover, the
main aspect addressed in work like [6] is the choice of the data structure for the
priority queue. In Section 2 below (paragraph on the “search horizon”), we will
see that the scenario considered in this paper requires algorithmic approaches
that are fundamentally different, and Section 3 will show that the choice of the
priority queue is a marginal aspect here.

On the other hand, most application–oriented work in this field is commercial,
not scientific, and there is only a small number of publications. In fact, we are
not aware of any publication especially about algorithms for wide–area railroad
traffic information systems.

Some scientific work has been done on local public transport. For example,
[12] gives some insights into the state of the art. However, local public transport
is quite different from wide–area public transport, because the timetables are
very regular, and the most powerful speed–up techniques are based on the strict
periodicity of the trains, busses, ferries, etc. In contrast, our experience is that
the timetables of the national European train companies are not regular enough
to gain a significant profit from these techniques.3

On the other hand, private transport has been extensively investigated in
view of wide–area networks. Roughly speaking, this means “routing planners”
for cars on city and country maps [2,3,5,7,9,11]. This problem is different to
3 This experience is supported by personal communications with people from the

industry.
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ours in that it is two–dimensional, whereas train timetables induce the time as
a third dimension: due to the lack of periodicity, the earliest departure time is
significant in our scenario. In contrast, temporal aspects do not play any role in
the work quoted above.4 So it is not surprising that the research has focused on
purely geometric techniques.

For completeness, we mention the work on variants of Dijkstra’s algorithm
that are intended to efficiently cope with large data in secondary memory. Chap-
ter 9 of [1] gives an introduction to theoretical and practical aspects. As men-
tioned above, the problems caused by the slow access to secondary memory are
beyond the scope of our paper.

Contribution of the paper. We implemented and tested various optimality–pre-
serving speed–up techniques for Dijkstra’s algorithm. The study is based on
all train data (winter period 1996/97) of the Deutsche Bahn AG, the national
railroad and train company of Germany. The processed queries are a “snapshot”
of the central Hafas5 server of the Deutsche Bahn AG, in which all queries of
customers were recorded over several hours. The result of this snapshot comprises
more than half a million queries, which might suffice for a representative analysis
(assuming that the typical query profile of customers does not vary dramatically
from day to day).

Due to the above–mentioned insight that the periodicity of the timetables
is not a promising base for algorithmic approaches, the question is particularly
interesting whether geometric techniques like those in routing planners are suc-
cessful, although the scenario has geometric and temporal characteristics. We
will see that this question can indeed be answered in the affirmative.

2 Algorithms

Train graph. The arrival or departure of a train at a station will be called an
event. The train graph contains one node for every event. Two events v and
w are connected by a directed edge v → w if v represents the departure of
a train at some station and w represents the very next arrival of this train at
some other station. On the other hand, two successive events at the same station
are connected by an edge (in positive time direction), which means that every
station is represented in the graph by a cycle through all of its events (the cycle
is closed by a turn–around edge at midnight).

In each case, the length of an edge is the time difference of the events repre-
sented by its endnodes. Obviously, a query then amounts to finding a shortest
path from the earliest event at the start station not before the earliest departure
time to an arbitrary arrival event at the destination.

The data contains 933, 066 events on 6, 961 stations. Consequently, there are
933, 066 · 3/2 = 1, 399, 599 edges in the graph.
4 In principle, temporal aspects would also be relevant for the private transport, for

example, the distinction between “rush hours” and other times of the day.
5 Hafas is a trademark of the Hacon Ingenieurgesellschaft mbH, Hannover, Germany.
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Fig. 1. The frequency distribution histogram of the queries from the “snapshot”
according to the Euclidean distance between the start station and the destination
(granularity: 15 kilometers).

Priority queue. Dijkstra’s algorithm relies on a priority queue, which manages
the nodes on the current “frontier line” of the search. As mentioned above, the
best general worst–case bound, O(m+n log n), is obtained from Fibonacci heaps,
where n is again the number of nodes and m the number of edges. We do not use
a Fibonacci heap but a normal heap (also often called a 2–heap), which yields
an O((n + m) log n) bound [8]. Since m ∈ O(n) in train graphs, both bounds
reduce to O(n log n).

As an alternative to heaps, we also implemented the dial variant as described
in [4]. Basically, this means that the priority queue is realized by an array of
buckets with a cyclically moving array index. The nodes of the frontier line are
distributed among the buckets, and it is guaranteed that the very next non–
empty bucket after the current array index always contains the candidates to be
processed next.

Search horizon. Of course, we deviate from the “textbook version” of Dijkstra’s
algorithm in that we do not compute the distance of every node from the start
node but terminate the algorithm immediately once the first (and thus opti-
mal) event at the destination is processed. The most fundamental optimality–
preserving speed–up technique for our scenario is then a reduction of the search
to a (hopefully) small part of the graph, which contains all relevant events.
Figs. 1–3 demonstrate that such a reduction is crucial. In fact, they reveal that
for the majority of all queries only small fractions of the total area and time
horizon are relevant.

To our knowledge, some commercial implementations remove nodes and edges
from the graph (more or less heuristically, i.e. losing optimality) before the
search itself takes place. In contrast, we aim at an evaluation of optimality–
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Fig. 2. Like Fig. 1 except that the abscissa now denotes the minimal travel time
in minutes (granularity: 20 minutes).

preserving strategies, so our approach is quite different. First of all, we apply
the amortization technique discussed in [13] to obtain a sublinear expected run
time per query. The only obstacle to sublinearity is the initialization of all nodes
with infinite distance labels in the beginning of the textbook algorithm; in fact,
Figs. 1 and 2 strongly suggest that on average the main loop of the algorithm
only processes a very small fraction of the graph until the destination is seen
and the algorithm terminates.

As described in [13], every node is given an additional time stamp, which
stores the number of the query in which it was reached in the main loop. When-
ever a node is reached, its time stamp is updated accordingly. If this update
properly increases the time stamp, the distance label is regarded as infinite,
otherwise the value of the distance label is taken as is. Consequently, there is
no need for an expensive initialization phase, and no event outside the “search
horizon” of the main loop is hit at all.

The following two additional techniques rely on this general outline. They
are independent of each other in the sense that one of them may be applied
alone, or both of them may be applied simultaneously.

Angle restriction. This technique additionally relies on the coordinates associ-
ated with the individual stations. In a preprocessing step, we apply Dijkstra’s
algorithm to each event to compute shortest paths from this event to all other
stations.6 The results are not stored (this would require too much space) but
only used to compute two values α and β for each edge. These 2 · m values are
stored and then used in the on–line system. More specifically, these values are
6 This preprocessing takes several hours, which is absolutely acceptable in practice.

Hence, there is no need to optimize the preprocessing.
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Fig. 3. For each minimal travel time (granularity: 20 minutes) the total CPU
times of all queries yielding this value of the travel time are summed up to reveal
which range of travel times contributes most of the total CPU time.

to be interpreted as angles in the plane. Let v → w be an edge, and let s be the
station of event v. Then the values α and β stored for this edge span a circle sec-
tor with center s. The meaning is this: if the shortest path from event v to some
station s′ contains v → w, then s′ is in this circle sector. Clearly, the brute–force
application of Dijkstra’s algorithm in the preprocessing allows one to compute
the narrowest possible circle sector for each edge subject to this constraint.

Consequently, edge v → w may be ignored by the search if the destination is
not in the circle sector of this edge. The restriction of the search to edges whose
circle sectors contain the destination is the strategy that we will call “angle
restriction” in the following.

Selection of stations. The basic idea behind this technique is similarly imple-
mented in various routing planners for the private transport [2,3,5,9]. A certain
small set of nodes is selected. For two selected nodes v and w, there is an edge
v → w if, and only if, there is a path from v to w in the train graph such that
no internal node of this path belongs to the selected ones. In other words, every
connected component of non–selected stations (plus the neighboring selected
stations) is replaced by a directed graph defined on the neighboring selected
stations. This constitutes an additional, auxiliary graph.

The length `(v, w) of an edge v → w in this auxiliary graph is defined as
the minimum length of a path from v to w in the train graph that contains no
selected nodes besides v and w. The auxiliary graph and these edge weights are
also constructed once and for all in a preprocessing step (which only takes a few
minutes). Each query is then answered by the computation of a shortest path
in the auxiliary graph, and this path corresponds to a shortest path in the train
graph.
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Fig. 4. The relation of the number of edges hit without (abscissa) and with
(ordinate) strategy angle selection (granularity: 500 edges).

We implement this general approach as follows. First of all, note that it is
not necessary to reconstruct the path in the train graph that corresponds to
the shortest path computed in the auxiliary graph. In fact, what we really want
to have from the computation is a sequence of trains and the stations where to
change train. This data can be attached to the edges of the auxiliary graph in an
even more compact (less redundant) and thus more efficiently evaluable fashion
than to the edges of the train graph.

We select a set of stations, and the events of these stations are the selected
nodes. Clearly, there is a trade–off. Roughly speaking, the smaller the number of
selected stations is, the larger the resulting connected components are and, even
worse, the larger the number of selected stations neighboring to a component.
Since the number of edges depends on the latter number in a quadratic fashion,
an improvement of performance due to a rigorous reduction of stations is soon
outweighed by the tremendous increase in the number of edges.

It has turned out that in our setting, a minor refinement of this strategy is
necessary and sufficient to overcome this trade–off. For this, let u, v, and w be
three selected events such that edges u → v, v → w, and u → w exist in the
auxiliary graph. If `(u, v) + `(v, w) ≤ `(u, w), then edge u → w is dropped in
the auxiliary graph. Again, optimality is preserved. The number of edges grows
only moderately after this modification, so a quite small set of selected stations
becomes feasible.

In the data available to us, every station is assigned an “importance number,”
which is intended to rank its degree of “centrality” in the railroad network. The
computational study is based on the 225 stations in the highest categories (see
Fig. 7). These stations induce 95, 423 events in total, which means that the
number of events is approximately reduced by a factor of 10, and the number of
stations is reduced by a factor of 31. This discrepancy between these two factors
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is not surprising, because central stations are typically met by more trains than
marginal stations.

Combination of both strategies. In principle, these two strategies can be com-
bined in two ways, namely the angle restrictions can be computed for the auxil-
iary graph, or they can be computed for the train graph and simply taken over
for the auxiliary graph. Not surprising, we will see in the next section that the
former strategy outperforms the latter one.

3 Analysis of the Algorithmic Performance

The experiments were performed on a SUN Sparc Enterprise 5000, and the code
was written in C++ using the GNU compiler.

Table 1 presents a summarizing comparison of all combinations of strategies.
Note that the total number of algorithmic steps is asymptotically dominated by
the number of operations inside the priority queue. In other words, these opera-
tions are representative operation counts in the sense of [4], Sect. 18. More specif-
ically, for a heap the number of exchange operations is representative, whereas
for the dial variant the number of cyclic increments of the moving array index
is representative. The average total number per query of these operations are
listed in the last part of Table 1.

For both implementations of the priority queue, the CPU times imply the
same strong ranking of strategies. Figs. 7 and 8 might give a visual impression
why this ranking is so unambiguous. Moreover, the discrepancy between the
heap and the dial implementation also decreases roughly from row to row. This
is not surprising: the overhead of the heap should be positively correlated with
the size of the heap, which is significantly reduced by both strategies.

Our experience with several versions of the code is that the exact CPU times
are strongly sensitive to the details of the implementation, but the general ten-
dency is maintained and seems to be reliable. In particular, the main question
raised in this paper (whether optimality–preserving techniques are competitive)
can be safely answered in the affirmative at least for the restriction of the prob-
lem to the total travel time as the only optimization criterion.

However, a detailed look at the results is more insightful. Fig. 4 shows
that there is a very strong linear correlation between the number of edges hit
with/without strategy “angle restriction.” On the other hand, Fig. 5 shows a
detailed analysis of one particular, exemplary combination of strategies. A com-
parison of these diagrams reveals an interesting effect, which is also found in the
analogous diagrams of the other combinations: the CPU times of both the heap
and the dial implementation are linear in the number of nodes hit by the search.
This correlation is so strong and the variance is so small that corresponding
diagrams in Fig. 5 look almost identical. Figure 6 reveals the cause.

In other words, in both cases the operations on the priority queue take con-
stant time on average, even when the average is taken over each query separately!
This is in great contrast to the asymptotic worst–case complexity of these data
structures.
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Selection of stations Angle restriction CPU heap CPU dial

no no 0.310 0.103
no yes 0.036 0.018
yes no 0.027 0.012
yes train 0.007 0.005
yes auxiliary 0.005 0.003

Selection of stations Angle restriction Nodes Edges

no no 17576 31820
no yes 4744 10026
yes no 2114 3684
yes train 1140 2737
yes auxiliary 993 2378

Selection of stations Angle restriction Ops. heap Ops. dial

no no 246255 23866
no yes 24526 3334
yes no 26304 3660
yes train 4973 1197
yes auxiliary 3191 932

Table 1. A summary of all computational results for the individual combina-
tions of techniques. The entries “train” and “auxiliary” in column #2 refer to
the graph in which the angles were computed (see the last paragraph in Sec-
tion 2). The columns #3–#4 give the average over all queries of the “snapshot.”
More specifically, the first table gives the average raw CPU times, the second
table the average number of nodes and edges hit by the search, and the third
table the average operation counts.

4 Conclusion and Outlook

The outcome of this study suggests that geometric speed–up techniques are a
good basis for the computation of provably optimal connections in railroad traffic
information systems. The question raised in this paper is answered for the total
travel time: the best combinations of strategies are by far faster than is currently
needed in practice. This success is a bit surprising, because the underlying data
is not purely geometric in nature.

Another surprising outcome of the study is that both the normal heap and
the dial data structure only require an (amortized) constant time per operation,
whereas the worst–case bound is logarithmic for heaps and even linear for dials.
Note that no amortization over a set of queries must be applied to obtain a con-
stant time per operation; the variance is small enough that the average run time
per operation within a single query can essentially be regarded as bounded by a
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constant. Due to the fact that the variance is negligible, a “classical” statistical
analysis would not make any sense.

The minimal travel time is certainly an empirical research topic in its own
right, not only because it is the most fundamental objective in practice. However,
a practical algorithm must consider further criteria and restrictions. For example,
the ticket costs and the number of train changes are also important objectives.
Moreover, certain trains do not operate every day, and certain kinds of tickets
are not valid for all trains, so it should be possible to exclude train connections
in a query. A satisfactory compromise must be found between the speed of the
algorithm and the quality of the result. Thus, the problem is not purely technical
anymore but also involves “business rules,” which are usually very informal.

In the future, an extensive requirements analysis will be necessary, which
means that the work will be no longer purely “algorithmical” in nature. Such an
analysis must be very detailed because otherwise there is no hope to match the
real problem. Unfortunately, there is high evidence that the general problems
addressed in [14] will become virulent here: a sufficiently simple formal model
that captures all relevant details does not seem to be in our reach, and many
details are “volatile” in the sense that they may change time and again in un-
foreseen ways. Future research will show whether these conflicting criteria can
be simultaneously fulfilled satisfactorily.
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Fig. 5. An exemplary sequence of diagrams for one particular combination of
strategies: “angle restriction” is applied, but “selection of stations” is not. First
column: the frequency distribution histogram of all queries in the “snapshot” ac-
cording to (a) the number of nodes met by the search (granularity: 500 nodes),
(b) the CPU time for the heap implementation and (c) for the dial implementa-
tion (granularity: 10 milliseconds). Second column: the average of (a) the number
of nodes met and (b/c) the CPU times for the heap/dial variant taken over all
queries with roughly the same resulting total travel times (granularity: 20 min-
utes). The strong resemblance of the diagrams in each row nicely demonstrates
the linear behavior of both priority–queue implementations.
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Fig. 6. The relation between the number of nodes hit by the search (abscissa)
and the cpu time in seconds for the heap and the dial implementation, respec-
tively (granularity: 500 nodes).

Fig. 7. The left picture shows the edges hit by Dijkstra’s algorithm from Berlin
Main East Station until the destination Frankfurt/Main Main Station is reached.
In the right picture, the strategy “angle selection” was applied to the same query.
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Fig. 8. The first picture shows the 225 stations selected for the study on strategy
“selection of stations.” The remaining three pictures refer to the same query as
in Fig. 7. However, now the strategy “selection of stations” is applied with no
angle restriction (upper right), with angles computed from the train graph (lower
left), and with angles computed from the auxiliary graph itself. The train graph
is shown in the background. The highlighted edges are the edges of the auxiliary
graph hit by the search.
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