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Abstract. Choosing an appropriate interference model is crucial for link
scheduling problems in sensor networks. While graph-based interference
models allow for distributed and purely local coloring approaches which
lead to many interesting results, a more realistic and widely agreed on
model such as the signal-to-noise-plus-interference ratio (SINR) inher-
ently makes scheduling radio transmission a non-local task, and thus
impractical for the development of distributed and scalable scheduling
protocols in sensor networks. In this work, we focus on interference mod-
els that are local in the sense that admissibility of transmissions only
depends on local concurrent transmissions, and correct with respect to
the geometric SINR model.

In our analysis, we show lower bounds on the limitations that these
restrictions impose an any such model as well as approximation results
for greedy scheduling algorithms in a class of these models.

1 Introduction

Agreeing on good schedules in wireless networks is not only a question of good,
i. e., local and distributed scheduling algorithms. The correctness of any schedul-
ing algorithm’s output relies on the underlying interference model. Choosing an
interference model is thus crucial for any kind of scheduling protocol in sensor
networks. Both, interference models and scheduling problems have been studied
thoroughly in the “tradition” of sensor networks. Complex interference mod-
els incorporating sophisticated signal fading models and antenna characteristics,
developed over the years, proved helpful in the simulation and design of sensor
networks. In the algorithmic community, however, the need of clear, preferably
combinatoric and geometric interference models, led to a focus on graph-based
interference models. These graphs all have in common that they are local in the
sense that mutual exclusion between transmissions only “connects” nodes that
are close to each other. The simple combinatorial character of these models nat-
urally translates scheduling problems to coloring problems in graphs. Moreover,
the geometric properties of these graphs allow for tailored coloring protocols.

Despite their simplicity, the downside of these models clearly is that they could
neither be proven to be correct nor good in real sensor networks. They cannot
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model interference from far away nodes summing up and jamming communica-
tion, nor can they model that if in reality any pair out of three transmissions can
successfully be performed simultaneously, this does not necessarily mean that all
three transmissions can be performed simultaneously.

Algorithmic research considering a class of models that renders signal propa-
gation much more realistically did to the best of our knowledge not yet lead to
local algorithms. In SINR models, successful or sufficiently probable reception
is assumed if at a receiver, the respective sender’s signal strength outperforms
the sum of all interfering signals plus the background noise by a hardware de-
pendent constant. The geometric SINR models closely cover the main features
of sophisticated fading models such as the two-ray-ground model without losing
too much of the simplicity needed for algorithmic results.

In this paper, we introduce the concept of locality and correctness of inter-
ference models. We prove fundamental limitations of all models that are local
in a very straightforward sense and correct with respect to the geometric SINR
model. We show under which conditions well known concepts such as graph col-
oring can be used to approximate scheduling problems and a generalization that
improves the quality of easy-to-implement scheduling algorithms. We believe
that the introduced models open a door to more realistic, yet viable solutions
not only for scheduling, but for many protocols that rely on local, dependable
communication.

2 Related Work

Interference of concurrent communication, being the most outstanding attribute
of wireless networks, has been subject of countless publications. Since in reality,
interference is composed of many hard-to-capture phenomena such as multipath
fading, algorithmic research developed numerous simplifications. Most of the
algorithmic models model interference as a binary relation on transmissions,
among them the unit disk graph (UDG) with distance or hop interference or the
protocol model. We refer the reader to [1] for a survey. In SINR models, successful
reception depends on the ratio between the received signal strength on the one
side and the interference from concurrent transmissions plus the background
noise on the other side [2,3]. They differ in whether they assume signal strength
decay to be a function of the distance (geometric SINR) or allow an arbitrary
gain matrix. In the geometric SINR model, Gupta and Kumar analyzed the
capacity of ad-hoc networks and proved an upper bound on the throughput of
Θ(1/

√
n) for networks of n nodes. Until now, the effects of the SINR models to

algorithm design raise interesting questions [4].
Scheduling of link transmissions has been addressed in many interference

models and, in most cases, proven to be NP-hard. Among others are proofs
for scheduling in graph-based models [5, 6], in the abstract SINR model in [7],
and, recently, in the geometric SINR model for fixed power assignment by Gous-
sevskaia et al. [8]. The joint problem of scheduling and power assignment is
still open in the geometric SINR model [9]. A variety of graph-based scheduling
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algorithms has been proposed and analyzed [10, 11, 12]. It is however argued
in various works that graph-based scheduling is inferior to scheduling designed
for the SINR model [13, 14]. Among the early publications addressing schedul-
ing in geometric SINR models, Moscibroda and Wattenhofer show that uniform
or linear power assignments in worst-case scenarios need exponentially longer
schedules for a strongly connected set of links [15] than more sophisticated as-
sigments. Moscibroda et al. also propose a scheduling algorithm for arbitrary
power assignment in [16] that outperforms previous heuristics by an exponential
factor. In [8], Goussevskaia et al. propose an approximation algorithm for link
scheduling and the problem of finding a maximum number of links that can
transmit concurrently in the geometric SINR model under the fixed power as-
sumption. The latter three works introduced many of the techniques applied in
the following under the practically more relevant assumptions that nodes do not
feature arbitrarily high transmission powers and cannot rely on a global instance
to compute a schedule, but are restricted to a local view. Locality has, to our
knowledge, only been looked at in a combinatorial sense [17, 18, 19].

3 Definitions and Models

A deterministic interference model M is a property telling for a fixed set of
nodes V whether a set of transmissions T between nodes in V can be car-
ried out simultaneously for given transmission powers. More formally, let T :={
(u, v, p) ∈ V2 × R+ | u �= v

}
be the set of all possible transmissions and trans-

mission powers. Then, a model M ⊆ P(T ) contains all sets of transmissions
which are valid. We further assume that less concurrent transmissions cannot
cause a transmission to fail, i. e., that for all T ′ ⊆ T ⊆ T ,

T ∈ M ⇒ T ′ ∈ M , (1)

which holds for all models which are currently used and most likely for all mod-
els which are meaningful. One should note that the restriction to deterministic
models alone already is a giant step away from reality and the probabilistic mod-
els typically employed by communication theorists. But still, even deterministic
models are not understood well. Such models can rely on various kinds of addi-
tional input and assumptions of radio propagation, antenna characteristics and
so on. In higher layer protocol design, however, there is a need to “model away”
the complexity of most of these unrulable phenomena. An aspect that has not
received much attention yet is how different approaches to model interference
relate to each other, or, in other words: If I choose a simpler model, are my algo-
rithms or schedules still correct with respect to a more realistic one or are they
just suboptimal? Do optimal solutions in a simple model approximate optimal
solutions in a more complex model? In the following, we will call an interference
model M conservative with respect to another model M′ if M ⊂ M′.

Most analytical research on scheduling problems has been done in some kind
of graph-based interference model accordig to the following definition from [4].
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Definition 1 (Graph-Based Model). A graph-based model M can be defined
by two directed graphs, one connectivity graph DC = (V , AC) restricting possible
transmissions and one interference graph DI = (AC , AI) connecting conflicting
transmissions, such that T ∈ M if and only if T ⊂ AC and T 2 ∩ AI = ∅.

Usually, a simpler model consisting of two graphs GC = (V , EC) and GI =
(V , EI) is used, in which a set of transmissions is valid, if for every sender, the
intended receiver is a neighbor in GC and no receiver of a distinct transmission
is connected in GI . Sometimes, the connectivity graph and interference graph
are defined implicitly, i. e., as the result of a geometric setting.

Graph-based models all have in common that they claim that a set of trans-
missions whose transmissions can pairwise be carried out at the same time, col-
lectively may be scheduled into one single time slot. This is unrealistic in general,
and the models fail to formulate the assumptions under which they guarantee
not to produce schedules that do not comply with more realistic models. On
the other hand, in the single-power case, graph-based models reduce scheduling
problems to well-known coloring problems.

As opposed to the oversimplification of graph-based interference models, the
models capturing the findings of signal propagation and reception best are the
signal-to-noise-plus-interference (SINR) models. Their main paradigm is that a
transmission is (almost) always successful, if the sender’s signal strength at the
receiver is significantly stronger than the sum of all interfering signals, including
other sender’s signals and (individual) background noise. Thus, in its most gen-
eral form, an SINR model is defined by a gain matrix (Guv) denoting the signal
fading between nodes u and v, on the background noise ηv at each of the nodes
and the (individual) ratio βv a node v needs for proper reception. Here, a set of
transmissions is valid, i. e. T ⊂ M, if and only if for all t = (s, r, ps) ∈ T

psGsr

ηr +
∑

(u,v,pu)∈T\{t} puGur
≥ βr . (2)

Definition 2 (Geometric Model). In a geometric model, M is defined for
V = R

2 such that M is invariant under all isometries.

Generally speaking, geometric interference models are incapable of modeling in-
dividual characteristics of nodes, but are restricted to those of geometric settings.
This does not mean that a geometric model has to be parameter-free, but for
geometric SINR models, this definition implies a much simpler structure:

Theorem 1. Every geometric SINR model can also be defined equivalently such
that all ηv and all βv are independent of the respective position v and all Guv

can be expressed as Guv := f(d(u, v)) for a f : R → R.

Proof. Let M be a geometric SINR model defined by (Gji), (ηi) and (βi). We get
an equivalent model for (G′

ji), (η′
i), and (βi), in which all η′

i = η′ are the same by
setting G′

ji = Gji
η′
ηi

. Now, for any d, take two pairs u1, v1 and u2, v2. We know
that {(ui, vi, p)} ∈ M if and only if p ≥ η′β′

vi
/Guivi . Since there is an isometry
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mapping u1 to u2 and v1 to v2, and since M is geometric, transmissions (u1, v1, p)
are valid, for exactly the same values of p as (u2, v2, p). Thus, p ≥ η′β′

v1
/G′

u1v1

if and only if p ≥ η′β′
v2

/G′
u2v2

and thus β′
v1

/G′
u1v1

= beta′
v2

/G′
u2v2

. I. e., all pairs
of nodes with distance d have the same ratio of G′

ji and βi and by fixing some
β′ and setting G′′

ji = G′
jiβ

′/βi, we get a representation of the claimed form.

The class of geometric SINR models (SINRG) is a quite straightforward appli-
cation of the above definition. Individual characteristics such as the background
noise and the necessary SINR ratio are replaced by common constants η and β
and the gain Guv is replaced by a function of the distance, usually Kd−α

uv for
a so-called path-loss exponent α and some constant K. Currently, the SINRG

models widely agreed are the best models to reason about in the algorithmics of
sensor networks. Thus, we will focus on local models that are conservative with
respect to this class of models.

A scheduling problem in a wireless network is a set Q of communication re-
quests, each request (s, r) consisting of a sender s and a receiver r, both from
some set V of nodes. A schedule then is a sequence T1, T2, . . . , Tk of sets of
transmissions of the form (s, r, p) for some (s, r) ∈ Q and some power assign-
ment p ∈ R+, such that for every (s, r) ∈ Q, there is a transmission (s, r, p) in one
of the Ti, and every Ti is valid with respect to an interference model. We refer to
the problem of finding a schedule of minimum length as Schedule, and to the
problem of finding a maximum number of transmissions that can be scheduled
to a single slot as OneShotSchedule as in [8]. We will also denote the maxi-
mum link lenght occurring in a schedule request Q by �(Q) := max(s,r)∈Q dsr . If
the scheduling problem is combined with the problem of assigning transmission
powers, usually powers must be chosen from some power range p = [pmin, pmax].
In the following, we will focus on the problem of finding schedules for a fixed
power p and thus also write (s, r) to denote a transmission (s, r, p).

4 Local Interference Models

The concept of locality has been introduced for distributed systems and adopted
in the context of sensor networks. Usually, a distributed algorithm is said to be
k-local, if the outcome for every node only depends on nodes which are in-
side a k-hop-neighborhood. Unfortunately, this concept is too restrictive to al-
low for any local scheduling algorithms in a geometric SINR model with nodes
that do not feature arbitrarily high transmission powers, but are limited to
some maximum power. Even if we define a node’s neighborhood as the set of
nodes the node can communicate with when no other communication takes
place at the same time, in an SINRG model MG, it might be impossible to
arrange a schedule at all. If we denote the maximum possible link length of
an interference model M by �(M) := lim sup{(u,v,p)}∈M duv, we get �(MG) =
α
√

Kp/(βη), since for nodes with higher distance even in the absence of con-
current transmissions sending at maximum power does not result in a received
signal strength of βη, which is necessary due to the background noise alone.
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Fig. 1. Links with dis-
tance �(MG) + ε may
need communication

In Fig. 1, such a situation is depicted: Out of the two
sender/receiver pairs in the transmission request, only the
pairs themselves have a distance less than �(MG), and
thus, there is no communication possible between the dif-
ferent pairs, which, however, have to agree not to transmit
at the same time since both of them cannot compensate
for the interference caused by the other. We will thus in
the next section look at a weaker, geometric definition of
locality and its consequences for scheduling problems.

Definition 3 (Local Model). A ρ-local model is a geometric model M with
the additional constraint that T ∈ M if for every t = (s, r, p) ∈ T

T (s, ρ) := {(s′, r′, p′) ∈ T | d(s, s′) ≤ ρ} ∈ M .

In other words, an interference model is local, if for a set of transmissions T , it
is sufficient that for every sender in T the transmissions in its ρ-neighborhood
comply with the model to make T valid. Models of this kind not only allow to tell
that a set of transmissions will be successful by only locally looking at the trans-
missions, but they are also essential for the design of local algorithms. They can
be seen as a rule for every node that can only observe nearby nodes, either dur-
ing a setup phase or, more importantly maintaining a dynamic link transmission
schedule. The geometric graph-based models mentioned above quite naturally
have this property, but SINRG models do not, which proved to be one of the
main obstacles when tackling scheduling problems in these models. This holds
for existing centralized approximation algorithms which try to break the inter-
woven dependencies into independent subproblems as in [8], and it inherently
does so in distributed settings – how could nodes come up with a provably valid
schedule with local communication, when the validity of a schedule cannot be
judged locally? Local interference models on the other hand seem to be incor-
rect by design: They are blind for interference that arises from nodes that are
far away, and thus cannot factor what these nodes are doing. From this time
on, let MG = (K, η, β, α) be a standard SINRG model. We start with an obser-
vation which illustrates the first limitations local reasoning about interference
implicates. It is a generalization of the considerations above.

Observation 1. Let ML be a MG-conservative, ρ-local interference model. The
following two inequalities hold:

�(ML) <
ρ

1 + α
√

β
and �(ML) < �(MG) ·

(
1 +

3Kp

ηρα

)−1/α

(3)

Proof. Let T ∈ ML be any set of transmissions that is accepted by the local
model and t = (s, r) any transmission in T . Let �t := dsr. By the subset accep-
tance property (1) and the fact that ML is geometric (and thus invariant under
isometries of the plane), ML would accept any set of transmissions T in which
all senders have pairwise distances of more than ρ and all transmissions from T
have length �t.
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ρ

Fig. 2. Lower bounding in-
terference in ρ-local models

Now, consider a set of transmissions T , as de-
picted in Fig. 2, where senders are placed on a tri-
angular grid with edge length ρ := ρ+ ε, i. e., which
complies with the considerations above. First, if we
assume that �t ≥ ρ/(1+ α

√
β), the interference of the

sender s2 alone would interfere with the reception
of the transmission t to the limit,

lim
ε→0

Kpρ−α(1 + α
√

β)α

Kpρ−α(1 − 1/(1 + α
√

β))−α
= β ,

and together with the additional interference caused by other senders, reception
would become impossible, contradicting with the choice of t.

Second, as we now know that �t < ρ/2, we get that the interference of the
senders s1, s2 and s3 at the receiver is at least 3Kpρ−α. Thus, since T ∈ MG,

Kp�−α
t

3Kpρ−α + η
≥ β ⇔ �t ≤

(
βη

Kp
+

3β

ρα

)−1/α

= �(MG) ·
(

1 +
3Kp

ηρα

)−1/α

,

which concludes the proof.
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Fig. 3. Lower bounds on ρ (α = β = 4.0)

Note that this bound is by no
means tight, but it shows how severe
the restrictions are that one can only
overcome by globally solving schedule
problems: To allow for longer links,
especially of lengths close to �(MG),
the radius ρ has to be chosen accord-
ingly. We can derive better bounds
by calculating interferences more ac-
curately than above by summing up
interference for more senders on the
same triangular grid. Fig. 3 shows an
exemplary tradeoff between the maximum link length needed, �(ML) and the
resulting analytical and numerical lower bounds on the radius ρ for α = 4, β = 4
(≈ 6dB) and η, p, K normalized to �(MG) = 1. It shows that in the case that we
do not assume that nodes can communicate with nodes outside their transmis-
sion radius, e. g., by the assumption that the node density is sufficiently high, no
link length longer than 40% of the maximum link length can safely be scheduled
in realistic scenarios.

The second observation we can make about local interference models regards
the case that nodes cannot send with arbitrarily low power:

Observation 2. Let ML be a MG-conservative ρ-local interference model for a
ρ < ∞. Even for requests with �(Q) ≤ �(ML)), optimal solutions to Schedule
and OneShotSchedule in ML can be arbitrarily worse than in MG.
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ρ
+

ε

Fig. 4. Ring of trans-
missions

For the sake of brevity, we will only give a sketch of the
proof here. We look at a request of a ring of n transmissions
as depicted in Fig. 4 with sufficiently small transmission
lengths �(g) plus one transmission t� of length �(n) in the
middle. It is easy to see that in MG, it is admissible to
schedule all transmissions but t� to the same slot (and t�

to a second). In MG, assigning a slot to t� and to the rest
of transmissions is independent. Thus, at no time more
than a constant number of the n outer transmissions can
be carried out, allowing for concurrent transmission of t�.

5 Ω(1)-Sender Model

In every meaningful local model, acceptance of a (local) set of transmissions
must follow this consideration: Given the rules for local acceptance of a set of
transmissions – is it guaranteed that if all nodes obey these local rules, no node
possibly has to accept more interference from outside the ρ-neighborhood than
allowed, given the amount of interference arising from local transmissions. A
quite straightforward implementation of this concept is the following: For some
function μ : R+ → R+, which serves as an upper bound for interference from
far away nodes, a set of transmissions T is licit if for every transmission (s, r) a
local signal-to-noise-plus-interference condition holds:

Kpd−α
sr∑

(ŝ,r̂)∈T (s,ρ) Kpd−α
ŝ,r + η + μ(dsr)

≥ β , (4)

and if it is guaranteed that a transmission (s, r) cannot receive more interference
than μ(dsr) from senders further away than ρ from s. One way to guarantee the
latter is to prohibit that close senders are transmitting concurrently and thus,
to limit the density of active senders:

Definition 4 (Ω(1)-sender model). In the Ω(1)-sender model M = (ρ, c, μ),
a set of transmissions T is valid if and only if for every (s, r) ∈ T equation (4)
holds, and any two senders in T have distance at least c.

Such a model clearly is ρ-local if c ≤ ρ, but quite obviously not MG-conservative
for an arbitrary μ. However, for certain values of ρ, c, and μ, the resulting model
(ρ, c, μ) is MG-conservative and local:

Lemma 1. Let ML = (ρ, c, μ) be an Ω(1)-sender model. ML is conservative
with respect to MG if 1

μ(�) ≥
√

12Kpπζ(ρ2/c2 + 2ρ/c)
(ρ − �)α

=: μ1(�) (5)

1 For the Riemannian ζ-function and ζ := ζ(α − 1), a constant 1 < ζ < 2 for α ≥ 3.
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Proof. Let (s, r) be some sender/receiver pair with dsr = �. We divide the plane
into annuli Ak with center s and radii kρ and (k + 1)ρ for k ∈ N. The maximum
number of senders lying within the kth annulus is the maximum number of disks
of radius c within an annulus with radii kρ − c and (k + 1)ρ + c. Since senders
in Ω(1)-sender models form a Minkowski arrangement, which cannot exceed a
density of 2π√

3
≈ 3.638 [20], we get that the number of senders in Ak is at most

Nk :=

⎢
⎢⎢
⎣ 2π√

3
·
π

(
((k + 1)ρ + c)2 − (kρ − c)2

)

πc2

⎥
⎥⎥
⎦ ≤ k

√
12π

(
ρ2/c2 + 2ρ/c

)

︸ ︷︷ ︸
:=N∗

,

The interference received from any of the senders in Ak can be bounded by

Ik := Kp(kρ− �)−α ≤ k−α Kp (ρ − �)−α

︸ ︷︷ ︸
=:I∗

,

and the total interference received from any sender can then be bounded by∑∞
k=1 NkIk ≤ N∗I∗

∑∞
k=1 k−α+1 = N∗I∗ζ.

Let (ρ, c) denote a shortcut for the MG-conservative model (ρ, c, μ1). Obviously,
the bound μ1 can very straightforward be replaced by a better numerical bound.
Fig. 5(a) shows how these bounds compare to each other and to the lower bound
from the last section. Note that all bounds are correct, and, given the SINR
parameters, easy to calculate. We will use the closed-form result for further
analysis and the improved bounds for simulation.

With the approximation above, we still have the choice of first the maximum
possible link length and second, the balance of the locality factor ρ and the
exclusion radius c.

Corollary 1. Let � = u · �(MG) for some 0 < u < 1 be a link length and a ≥ 1,
the MG-conservative Ω(1)-sender model ML = (ρ, ρ/a) with

ρ =

⎛

⎝1 +
α

√√
12(a2 + 2a)πβζ

1 − uα

⎞

⎠ · �

has �(ML) = �. It is graph-based for a = 1, yielding (ρ, ρ).

Proof. According to Lemma 1, ML is MG-conservative. It remains to show that
�(ML) = �. First, by � = u α

√
Kp/βη, we observe that

ρ − � =
α

√√
12(a2 + 2a)πβζ

1 − uα
· � = α

√√
12(a2 + 2a)πKpζ

η(u−α − 1)
(6)

and therefore by the definition of u

�(ML) = α

√
Kp

βη +
√

12(a2 + 2a)πKpβζ (ρ − �)−α = α

√
Kp

βηu−α
= �

Obviously, it is graph-based for a = 1.
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Fig. 5. Tradeoffs for Ω(1)-sender model (ρ, ρ)

This corollary in a way justifies the work that has been done on scheduling
problems in graph-based models as it provides a very simple graph-based model
that is provably correct with respect to the geometric SINR models (and, at
the same time shows the price for reducing an SINRG model to a graph-based
model). Fig. 5(b) shows this tradeoff between the maximum schedulable link
length and the respective ρ for different ratios. As argued in Section 4, no local
model can allow for “good” solutions in the single-power setting in the sense that
the scheduling problems can be approximated within a constant factor in any
such model if links can be arbitrarily short. We will show that MG-conservative
Ω(1)-sender models (ρ, ρ) are only by constant and comparably small factors
worse than any local model in two dimensions – first the locality needed to allow
for a given maximum link length and second the quality of optimal solutions to
the scheduling problems.

Lemma 2. Let ML = (ρ, ρ) be the MG-conservative Ω(1)-sender model ac-
cording to Corollary 1 for some �. Then for any ρ′-local model M′

L which is
MG-conservative,

ρ

ρ′
≤ 1

α
√

3β
+ 2

√
3πζ

Proof. From (3) and with u := �/�(MG), we get that

ρ′ = α
√

3β

(
1

�(ML)α
− 1

�(MG)α

)−1/α

= � α
√

3β (1 − uα)−1/α

and, from Corollary 1 and u < 1,

ρ =

⎛

⎝1 +
α

√
6
√

3πβζ

1 − uα

⎞

⎠ · � < (1 − uα)−1/α ·
(

1 + α

√
6
√

3πβζ

)
· � ,

which directly implicates the claimed approximation.
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This bound depends only on α and β, and is thus constant for a fixed SINRG

model. For a given set of SINRG parameters, this approximation ratio can be
improved using the non-closed-form lower bounds for local models and upper
bounds for the c-distant sender model. E. g., for the exemplary values used
throughout this paper, the best bounds guarantee a ratio of less than 5/4 for
arbitrary �.

Lemma 3. Let ML = (ρ, ρ) be the MG-conservative Ω(1)-sender model accord-
ing to Lemma 1 and Corollary 1. Let Q be a schedule request with �(Q) < �(ML).
Optimal solutions to Scheduling and One-Shot-Schedule in ML are only
by a constant factor worse than optimal solutions in any other ρ-local MG-
conservative model.

Proof. First we show that any ρ-local model M′
L with �(M′

L) ≥ � cannot accept
any set of transmissions T such that for any transmission (s, r, p), T (s, ρ) con-
tains more than h := 4α6

√
3ζ transmissions. To this extent, let T be a set of h

transmissions such that T (s, ρ) = T for some (s, r) ∈ T . We add a transmission
(s′, r′) to T with ds,s′ = 2ρ, pointing towards s. Note that if T is valid in M′

L,
then T ′ = T ∪ {(s′, r′)} must be valid, too. But if all transmissions in T ′ are
carried out simultaneously, the SINR-level at r′ is below

Kp�−α

hKp(2ρ)−α + η
=

�−α

h4−α �α(1−uα)

6
√

3πβζ
+ η

Kp

=
�−α

�−α(1−uα)
β + η

Kp

= β .

Now take any schedule request Q. Let A be the square with side ρ/
√

2 that
contains the most senders in Q. Let m denote this number. Since in every ρ-
local model at most h of the senders in A can transmit concurrently, leading to
a schedule length of at least �m/h�. In ML, in turn, we can construct a schedule
of length 4m by the same construction as in [8]: We extend the square to a
grid of grid-length ρ/

√
2, 4-color the grid cells, and cyclically choose a color and

pick an unscheduled sender from each cell with that color. This guarantees a 4h-
approximative schedule compared to an optimal solution in any ρ-local model.
Similar arguments lead to a 4h-approximation of One-Shot-Schedule: Take
an optimal solution T in any ρ-local model and picture a 4-colored grid with
grid-length ρ/

√
2. Focus only on grid-squares that contain a sender of T . Each

of the squares contains at most h transmissions in T . Now pick the color of
the most non-empty squares and pick one transmission of each square. This
set of transmissions contains at least �|T |/4h� transmissions that can all be
carried out concurrently in ML. We get a slightly worse approximation for greedy
scheduling, where we will only look at the Scheduling problem: In the very
same grid as above, if one cell does not contain an active sender in a slot, then
for two possible reasons: First, since all senders have been scheduled to earlier
slots, and second, because of some active sender in one of the adjacent cells.
Thus, greedy scheduling uses at most 9m slots, which is 9h-approximative.
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6 Implementation and Simulation Results

We implemented a very basic scheduling algorithm for Ω(1)-sender models which
greedily assigns slots to senders in a random order: Each sender is assigned to the
first allowed slot according to the respective model. This is not only a very sim-
ple centralized approach, but also a reasonable distributed scheduling algorithm.
Given that the node density is sufficient for nodes to have their ρ-neighborhood
some constant number of hops away, nodes can draw random numbers and decide
on their slot after all neighbors with lower numbers did so only by local communi-
cation. This approach is also suited to schedule online requests. We compare the
results to three different global scheduling algorithms. First, we select nodes in
random order and add them to the first slot allowed by the plain SINRG model.
Second, we compare to the algorithm given in [8]. Please note that this algorithm
is not designed to produce good schedulings, but only as a proof of approximabil-
ity. It is thus not surprising that it returns comparably poor results. Third, since
solving the Schedule problem optimally is hard, and solving the corresponding
mixed-integer linear problem only works for a very small number of transmis-
sions, we compare to a heuristic, which produced near-optimal results for small
instances of random transmission requests. We fill the slots one after another,
at any time adding the transmission which causes the least drop of the mini-
mum signal-to-noise-plus-interference ratio for all transmissions earlier added to
that slot. We ran all of the above algorithms on schedule requests with at most
80% of the maximum link length in the SINRG model. Instances were random
sets of 20000 transmissions and random unit disk graphs with 5000 nodes on a
50x50 square unit area, i. e. some 10000 edges leading to some 20000 transmis-
sions to schedule links symmetrically. For the Ω(1)-sender models, we compare
three configurations. First, the graph-based (ρ, ρ) model with minimum ρ, sec-
ond a (ρ, �(MG)) model with minimum ρ and third, a (ρ, �(MG)) model for a ρ
higher than necessary. Additionally, we compare to a variant of the Ω(1)-sender
models, where the locality radius ρ is centered at the receiver, where the interfe-
rence occurs. We call this receiver-centered locality. This class of models never is

Table 1. Comparison of scheduling in different interference models

locality excl. rad. random links
Algorithm [�(MG)] [�(MG)] length max. util. avg. util.

Greedy scheduling in MG ∞ 0 71.91 482.45 278.43
Intelligent scheduling in MG ∞ 0 34.15 2726.00 586.11
Goussevskaia et al. [8] ∞ 0 605.03 206.01 33.06

Greedy scheduling in . . .
. . . (ρ, ρ), min. ρ (graph-based) 2.82 2.82 117.38 224.31 170.45
. . . (ρ, �(MG)), min. ρ 4.59 1.00 58.63 626.59 341.31
. . . (ρ, �(MG)), incr. ρ 6.00 1.00 47.89 629.41 417.86
. . . rc.-local (ρ, r), min. ρ 2.55 (rc) 1.75 60.88 487.68 328.79
. . . rc.-local (ρ, �(MG)), min. ρ 3.82 (rc) 1.00 54.84 675.81 364.91
. . . rc.-local (ρ, �(MG)), incr. ρ 6.00 (rc) 1.00 46.48 646.45 430.50
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Fig. 6. Utilization of slots for different scheduling algorithms, for 20000 randim
links (left) and random UDGs with ≈20000 links, averaged over 250 runs. Plot-
ted are results for the graph-based Ω(1)-sender models (2.82�(MG), 2.82�(MG)) and
(4.59�(MG), �(MG)) and the model (2.55�(MG), 1.75�(MG)) for the receiver-centered
locality. Values for ρ and c are minimal in the sense that by decreasing these parameters
we cannot prove correctness with respect to MG. Results are compared to the following
global algorithms : greedy scheduling, intelligent scheduling and the algorithm from [8].

graph-based, but allows for better bounds and schedules. Table 1 shows values for
random links, averaged over 250 runs, a selection is also plotted in Fig. 6 together
with results from scheduling UDG links. Not surprisingly, the more far-seeing
global algorithm performs best among all compared schemes and the global al-
gorithm from [8] by far worst. Among the greedy schedule algorithms, the global
view did in general not give an advantage. Greedy scheduling in the SINRG model
only outperformed the graph-based variant (whose big advantage is its simplic-
ity). Increasing locality a little more or switching to the receiver-centered locality,
the local models even led to better results since the exclusion radius prevented
scheduling of close links and receiver-centered locality reflects the nature of
interference better.

7 Conclusion and Future Work

In this work, we introduced the concept of local interference models capturing the
natural demand for scalable and distributed scheduling protocols to have a local
yet provably correct characterization of successful concurrent transmissions. We
prove lower bounds that arise in those models and introduce a very simple class,
Ω(1)-sender models which provably allow for constant approximation compared
to any other local interference model that produces correct results with respect
to the widely agreed on geometric SINR model. We believe that these models
will be helpful to attack other local problems such as the problem to construct
good topologies not only with respect to properties of spanning ratios and low
degree or other heuristics to minimize interference, but with respect to the local
construction of short schedules of these topologies. To this extent, it will also be
of interest to generalize the findings of this work to the case of variable power
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assignment, which, unfortunately is not well understood even with respect to
global schedule algorithms.
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