
Engineering Multi-Level Overlay Graphs for

Shortest-Path Queries

MARTIN HOLZER, FRANK SCHULZ, and DOROTHEA WAGNER

University of Karlsruhe

An overlay graph of a given graph G = (V, E) on a subset S ⊆ V is a graph with vertex set S and
edges corresponding to shortest paths in G. In particular, we consider variations of the multi-level
overlay graph used in [Schulz et al. 2002] to speed up shortest-path computation. In this work,
we follow up and present several vertex selection criteria, along with two general strategies of
applying these criteria, to determine a subset S of a graph’s vertices. The main contribution is a
systematic experimental study where we investigate the impact of selection criteria and strategies
on multi-level overlay graphs and the resulting speed-up achieved for shortest-path computation:
Depending on selection strategy and graph type, a centrality index criterion, selection based on
planar separators, and vertex degree turned out to perform best.

Categories and Subject Descriptors: G.2.2 [Graph Theory]: Graph algorithms

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Dijkstra’s algorithm, hierarchical, multi-level, overlay graph,
preprocessing, shortest path, speed-up technique, vertex selection

1. INTRODUCTION

Given a graph and a subset of its vertices, an overlay graph describes a topology
defined on this subset, where edges correspond to paths in the underlying graph1.
E.g., consider as base graph the internet graph representing connections between
hosts and as overlay graph the topology of a peer-to-peer network. Depending on
the application, overlay graphs are demanded to fulfill certain requirements, such
as high connectivity and reliability in the case of peer-to-peer networks. Another
use case requires that shortest-path lengths in the original graph carry over to the
overlay graph.

Following the multi-level (graph) approach, or multi-level technique, introduced
in [Schulz et al. 2002], a method to speed up exact single-pair shortest-path com-
putation, we restrict ourselves to overlay graphs preserving shortest-path lengths.

Authors’ address: Universität Karlsruhe (TH), Fakultät für Informatik, Postfach 69 80, 76128
Karlsruhe, Germany. Email: {mholzer,wagner}@ira.uka.de, frank.schulz@ptv.de.

This work was partially supported by the Future and Emerging Technologies Unit of EC (IST
priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

c© ACM 2007. This is the authors’ version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version is to appear soon.

1We use the term “overlay graph” in this general sense, while sometimes it is used only in a
specific context, e.g., associated with certain properties like uniform vertex degree.

2 · Martin Holzer et al.

With the multi-level approach, one or more levels of overlay graphs which inherit
shortest-path lengths from the base graph are constructed. Then a shortest-path
computation takes place in a graph consisting basically of one of the overlay graphs
and some additional edges.

We now further refine this approach by introducing a simple procedure to com-
pute overlay graphs that preserve shortest paths—also referred to by shortest-path
overlay graphs—and additionally have a minimal number of edges. Analogously
to [Schulz et al. 2002], we can iterate the process of determining shortest-path
overlay graphs to make use of a whole hierarchy of such graphs for shortest-path
computation. In other words, the difference between multi-level graphs from [Schulz
et al. 2002] and (a hierarchy of) shortest-path overlay graphs due to this work is
that the latter may contain fewer edges and thus tend to perform even better when
used for answering shortest-path queries. For the sake of convenience, however, and
since here we are dealing only with shortest-path overlay graphs in the new (i.e.,
minimal) sense, we will often call (hierarchies of) shortest-path overlay graphs also
multi-level overlay graphs, or multi-level graphs for short, unless any ambiguity
may arise.

It is important to note that multi-level graphs as just described (both minimal
and non-minimal ones) additionally have edges passing between different levels of
a given hierarchy; we therefore call them extended. In this work, we also introduce
a basic variant, which renounces those additional edges.

In the theoretic part, we identify a class of graphs for which the multi-level
approach works provably well. We give bounds on the size of a corresponding
multi-level graph and the asymptotic size of the search space when the multi-level
graph is used for shortest-path computation. According to these results, it is crucial
for the effectivity of our technique that the sets of selected vertices be rather small
and—informally speaking—decompose the graph in a balanced way. Moreover, we
show how to construct random graphs that allow for a decomposition into balanced
components through few vertices.

In [Schulz et al. 2000], it is shown that the multi-level approach with one addi-
tional level can be successfully applied to public-transportation networks; [Schulz
et al. 2002] then provides a generalization to multiple levels. In both studies,
application-specific information is used to determine the vertex subsets. In this
work, however, we focus on getting along without information from the applica-
tion underlying the graph. To this end, we give general criteria and two overall
strategies for selecting the vertices upon which an overlay graph is to be built.

In an extensive experimental study we investigate the impact of the choice of
parameters involved in our model—first of all selection criterion/strategy—on the
quality of the resulting multi-level graphs by measuring their performance when
used for shortest-path computation (average speed-up, i.e., the number of edges
‘visited’ during shortest-path search with Dijkstra’s algorithm compared to the
multi-level technique). To underpin the significance of our experiments, we further
consider different real-world and generated graphs. It turns out that with a global
selection strategy, vertex degree is a good criterion. The best results, however,
are achieved with a recursive strategy based on either centrality index or planar-
separator criteria.

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 3

Structuring. The paper is organized as follows. The rest of this section is devoted
to classifying our technique in the context of related shortest-path approaches. In
Section 2, shortest-path overlay graphs are formally defined and a construction
algorithm is given; we further contrast the basic and extended variants of multi-
level graphs. Their application to speed up shortest-path computation is shown in
Section 3, where we first need to define an auxiliary data structure employed. In
Section 4, we theoretically analyze multi-level graphs of some regular structure and
introduce a model for random graphs that allow for such regular-shaped multi-level
graphs. Section 5 first presents the different ways of obtaining vertex subsets, the
graphs used with our experiments, and prestudies taking a closer look at some of
the selection criteria, followed by the main empiric study. We conclude our work
in Section 6 by summarizing the obtained results.

1.1 Related Work

There are numerous approaches to speed up single-pair shortest-path computation
(cf. [Willhalm and Wagner 2007] for a survey), where most of them improve on
Dijkstra’s algorithm [Dijkstra 1959]. A few speed-up techniques can be applied im-
mediately, e.g., goal-directed and bidirectional search [Ahuja et al. 1993]. However,
much better speed-up factors are reached when some precomputed information can
be used. Since in most scenarios both time and storage requirements inhibit advance
computation of all shortest paths, such approaches represent a trade-off between
precomputational effort and resulting average speed-up. Also, many combinations
of speed-up techniques have proven successful [Delling et al. 2007; Goldberg et al.
2006; Holzer et al. 2004; Schulz et al. 2000].

Preprocessed information can be employed to guide the shortest-path search to-
ward the target [Goldberg and Harrelson 2005], or to prune the search space at ver-
tices that are known not to form part of a shortest path requested [Gutman 2004;
Lauther 2004; Möhring et al. 2005; Wagner and Willhalm 2003]. Another usage,
also followed in this paper, is precomputing an auxiliary graph in which shortest-
path calculations take place (mostly, the original graph is enriched with additional
edges corresponding to shortest paths). We now discuss several approaches of the
latter kind and point out their relationship to ours.

Hierarchical Encoded Path Views. In [Jing et al. 1998], shortest-path computa-
tion in the context of navigation systems is studied, where there is also the need for
efficiently maintaining shortest paths themselves, or path views—as opposed to the
mere distance. The input graph is fragmented into connected components using
spatial information, and the ‘border vertices’ thus obtained play a similar role as
our selected vertices. Roughly speaking, the auxiliary graph is made up of partial
graphs each of which keeps all-pairs shortest-path information for one fragment.

HiTi Graphs. HiTi graphs introduced in [Jung and Pramanik 2002] are applied
in the area of car navigation. The basic difference to our approach is that the
input graph is decomposed into connected components by edge instead of vertex
separators. For each component, a complete graph on the ‘boundary vertices’ stores
the shortest-path lengths between these vertices (to this end, also shortest-path
overlay graphs would be appropriate).

4 · Martin Holzer et al.

Highway Hierarchies. In [Sanders and Schultes 2005; 2006], the auxiliary graph
is computed by first determining a neighborhood of each vertex. Then a level
of so-called highway edges is introduced, i.e., edges (v, w) for some shortest path
(u, . . . , v, w, . . . , x) such that v is not in the neighborhood of x and w not in that
of u. This level, which can be regarded as a (not necessarily minimal) shortest-
path overlay graph, is compressed such that low-degree vertices are removed, and
iteratively further levels can be constructed. Shortest-path computation for a given
pair of vertices starts a bidirectional search in the input graph, and switches to
edges of higher levels as the distance to source and target, respectively, grows. This
approach is successfully applied to road graphs.

High-Performance Multi-Level Graphs. In [Delling et al. 2007], our multi-level
technique is further developed in that greater emphasis is placed on preprocessing;
it is also closely related to Hierarchical Encoded Path Views. This variation relies
on the extended version of multi-level graphs, with one crucial difference to the
definition in the present work: roughly, an edge is introduced between each pair of
selected vertices adjacent to different components (according to the decomposition
through a given set of vertices). This modification leads to a large increase in
the number of edges, but permits during shortest-path search to require only a
constant number of ‘hops.’ Another distinct feature is that many partial graphs, or
search space parts, are kept rather than one whole multi-level graph. This allows
for individual optimization of each part, which was shown to reduce the overall
amount of edges with road graphs considerably.

Transit Node Routing. A similar idea is exploited in [Bast et al. 2007], which
was developed independently of our approach: One basic observation is that from
a fixed vertex, virtually all long-distance shortest paths leave a local area around it
through a small number of ‘important’ vertices, called transit nodes. An exhaustive
precomputation determines the distances from vertices to their local transit nodes
(and vice versa) as well as between all pairs of transit nodes and stores them in the
form of tables. A shortest-path search then only requires a few table lookups.

Dynamic Aspects. Finally, we want to mention two papers that propose related
procedures for dynamic settings. In [Bauer 2006], our multi-level approach is re-
visited in the realm of edge updates: It is shown basically that only those parts of
the multi-level graph have to be recomputed which belong to components (due to
the decomposition through selected vertices) affected by an update.

A very recent study [Schultes and Sanders 2007] considers basic multi-level graphs
as defined in the work at hand but with selected vertices taken from a Highway
Hierarchies precomputation. The most conspicuous difference is that large parts of
the input graph may not be decomposed into different components any more. This
leads to an alteration of the search algorithm: The search starts in the original
graph; when a certain portion of the local area around the source (and the target,
respectively) has been settled, the next-higher level of the hierarchy of overlay
graphs is factorized into the search. Unlike with our algorithm, edges of both the
original and overlay graphs may hence be considered simultaneously.

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 5

Fig. 1. From left to right: decomposition of a 32×32 grid graph through a separator of 208 vertices
(black dots); a belonging non-minimal shortest-path overlay graph (according to [Schulz et al.
2002]) with 1994 edges; the corresponding minimal shortest-path overlay graph with 538 edges.

2. OVERLAY GRAPHS

In this section, we define shortest-path overlay graphs, by which we mean overlay
graphs that inherit shortest-path lengths and have a minimal number of edges, and
sketch a construction algorithm. Iterative application yields a hierarchy of shortest-
path overlay graphs, or basic multi-level graph; by adding some further edges, we
obtain the extended variant, corresponding to the multi-level graph from [Schulz
et al. 2002] and [Holzer 2003], except that now minimality is guaranteed.

Notation. For the remainder of this work, let G = (V, E) be a directed, connected
graph with a positive edge length ℓe for each edge e ∈ E. Unless stated otherwise,
n denotes the number of vertices and m the number of edges in G.

2.1 Shortest-Path Overlay Graph

For a subset S ⊆ V we seek a graph G′ with vertex set S and shortest-path lengths
inherited from G: for each pair of vertices u, v ∈ S, shortest u-v-paths have equal
length in G and G′. Additionally, we want G′ to contain a minimal number of
edges (to keep the search space the smallest possible when G′ is used for shortest-
path computation). We formally define shortest-path overlay graphs and prove
that the definition meets the above requirements; finally, we outline an algorithm
min-overlay that constructs shortest-path overlay graphs.

Definition 2.1. Given a graph G = (V, E) and a subset S ⊆ V , the shortest-path
overlay graph G′ := (S, E′) is defined as follows: for each (u, v) ∈ S×S, there is an
edge (u, v) in E′ if and only if for every shortest u-v-path in G no internal vertex
belongs to S (internal vertices are all vertices on the path except for u and v). The
length of (u, v) is set to the shortest-u-v-path length in G.

Note that in [Schulz et al. 2002] a different condition for (u, v) ∈ E′ is used:
For each vertex u ∈ S, a shortest-path tree Tu is computed. Then an edge (u, v)
is added to E′ if the u-v-path in Tu contains no internal vertex in S—however,
there may exist another shortest u-v-path in G with an internal vertex in S so that
G′ contains redundant edges. Figure 1 depicts two overlay graphs of a grid, one
computed by the procedure suggested in [Schulz et al. 2002], the other being the
minimal overlay graph computed by the subsequent procedure min-overlay.

6 · Martin Holzer et al.

Theorem 2.2. Given a graph G = (V, E). A shortest-path overlay graph G′ =
(S, E′) of G according to Definition 2.1 inherits shortest-path lengths from G, and
the number |E′| of edges is minimal among all graphs with vertex set S and inher-
ited shortest-path lengths. Moreover, G′ is the unique overlay graph under these
constraints.

Proof. We first show that for every s, t ∈ S, shortest s-t-paths in G and in G′

are of equal length. Let p be such a shortest s-t-path in G. Consider the subpaths
p1, . . . , pk of p divided at all vertices in S (i.e., the first and the last vertex of
each pi are in S and no internal vertex of pi belongs to S). For each subpath
pi = (w1, . . . , wl), one of two cases occurs: either every other shortest path from w1

to wl in G also has no internal vertex in S, so there is an edge (w1, wl) in E′. Or
there is a shortest path from w1 to wl in G via some vertex x ∈ S, in which case
we replace pi with two subpaths p′i = (w1, . . . , x) and p′′i = (x, . . . , wl); since this
can happen only a finite number of times, we get a division of p into subpaths each
of which has a corresponding edge in the overlay graph G′. Hence, there is also an
s-t-path in G′ and by construction, the lengths correspond.

To prove minimality and uniqueness of G′, assume that there is an overlay graph
G′′ = (S, E′′) with shortest-path lengths inherited from G. Further, let (u, v) be an
edge in E′ but not in E′′, and (u = w1, . . . , wk = v) be a shortest u-v-path in G′′

(it holds that k > 2 because (u, v) 6∈ E′′). Since subpaths of shortest paths are also
shortest, each (wi, wi+1) corresponds to a shortest wi-wi+1-path of equal length in
G. Hence, there must be a shortest path (u = w1, . . . , w2, . . . , wk−1, . . . , wk = v) in
G, where some internal vertices are in S, in contradiction to (u, v) ∈ E′.

We now jot down the construction algorithm min-overlay, which strongly relies
on Definition 2.1.

Procedure min-overlay(G, ℓ, S)

For each vertex u ∈ S, run Dijkstra’s algorithm on G with pairs (ℓe, σe) as edge
weights, where σe := −1 if the tail of edge e belongs to S \ {u}, and σe := 0
otherwise. Addition is done pairwise, and the order is lexicographic. The result
of Dijkstra’s algorithm are distance labels (ℓv, σv) at the vertices, where (ℓu, σu) :=
(0, 0) in the beginning. For each v ∈ S \ {u} we introduce an edge (u, v) in E′

with length ℓv if and only if σv = 0.

The algorithm can be implemented with cost in O(|S| · (|E| + |V | log |V |)) using
Fibonacci heaps. Note that the Dijkstra search can be terminated when σv < 0 for
all vertices v in the queue since for vertices w not yet labeled at that point in time,
it cannot hold true that σw = 0 (this heuristically improves the running time).

2.2 Basic Multi-Level Graph

By iteratively applying the min-overlay procedure with a sequence of subsets
S1 ⊇ S2 ⊇ . . . ⊇ Sl of V we obtain a hierarchy Gi = (Si, Ei) of shortest-path
overlay graphs (for some l ≥ 1). Together with G0 = (V0, E0) := G, we call this
collection of shortest-path overlay graphs, also denoted by M(G; S1, . . . , Sl), a basic
multi-level graph of G with l + 1 levels. We also refer to Gi as level i, and call a
vertex v a level-i vertex if i is the highest index such that v ∈ Si.

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 7

Fig. 2. Sample graph with vertex selections S1 (big disks and squares) and S2 (squares). Edge
lengths are uniform. For the sake of clarity, edge directions are not reflected in the drawing.

Fig. 3. Different levels (0 to 2, from bottom to top) of the basic (left) and extended (right) multi-
level graph belonging to the graph from Figure 2. Level edges are drawn solid, up- and downward
edges are dashed; edge weights are not respected any more.

2.3 Extended Multi-Level Graph

The definition of extended multi-level graphs corresponds to that of the basic variant
except that each level i ≥ 1 contains two additional sets of edges: upward edges, Ui,
from vertices in Si−1 \ Si to vertices in Si, and downward edges, Di, from vertices
in Si to vertices in Si−1 \ Si. For each edge in Ui and Di, an analogous condition
to that from Definition 2.1—viz., the respective path in Gi−1 must not contain an
internal vertex from Si−1—is fulfilled. The edges in Ei—where E0 is included—are
also called level edges.

Thus, an extended multi-level graph with l + 1 levels is the collection of the
enriched shortest-path overlay graphs Gi = (Vi, Ei∪Ui∪Di) together with G0 := G.
We also use M(G; S1, . . . , Sl) as a notation. Extended multi-level graphs are equal
to multi-level graphs as introduced in [Schulz et al. 2002] except that now, due to
the altered condition for edges to be included in the sets Ei, Ui, and Di, minimality
of these edge sets is guaranteed.

The procedure min-overlay can be extended to construct also downward and
upward edges: In the last step, where new edges are added, we now consider also
vertices v ∈ V \ S and introduce a downward edge (u, v) if and only if σv = 0. To
construct upward edges, we run Dijkstra’s algorithm also from vertices u′ /∈ S and
introduce an edge (u′, v′) to a vertex v′ ∈ S if and only if σv′ = 0.

Figure 2 shows a sample graph with a sequence of selected vertices of length 2
and Figure 3 the belonging basic and extended multi-level graphs.

8 · Martin Holzer et al.

C
s
0

C
t
0

C
s
1

C
s
2

C
s
3

C
t
1

C
t
2

C
t
3

s t

Fig. 4. Tree of connected components to the sample graph from Figure 2, with given vertices s

and t. The Cs

0 -Ct

0-path is marked in red (k = k′ = 1 and Lst = 3).

3. SHORTEST-PATH SEARCH

In this section we show how to use multi-level graphs to speed up single-pair
shortest-path algorithms. Depending on the given source and target vertices, a
subgraph of the multi-level graph is determined on which a shortest-path search is
run. Since our approach essentially defines another graph used as input for the ac-
tual computation, any shortest-path algorithm can be used to perform the search.
This is also the reason for which combinations with other speed-up techniques that
do or do not rely on precomputed information are feasible (cf. [Holzer et al. 2004]).

We first revisit the definition of an auxiliary data structure called tree of connected
components, which is used in [Schulz et al. 2002] to extract a suitable subgraph of
an extended multi-level graph. We demonstrate here only how to obtain, for a
given query (s, t), a subgraph of a basic multi-level graph in which the length of
a shortest s-t-path remains unchanged, and refer the reader to [Schulz et al. 2002]
for further details (in fact, both variants behave quite similarly). We want to point
out that computation of the subgraph and shortest-path search can be performed
in one pass, i.e., the subgraph is determined ‘on the fly’; a sketch of such a routine
is given at the end of this section.

Tree of Connected Components. The subsequent definitions and employed nota-
tion are illustrated in Figure 4.

For 1 ≤ i ≤ l, consider the subgraph of G induced by V \ Si (we also use the
rather informal term of a decomposition of G). The set of connected components
associated with level i is then denoted by Ci, and for a vertex v ∈ V \ Si let Cv

i

denote the component in Ci that contains v. For each component in C1 ∪ . . . ∪ Cl,
there is a vertex in the tree; additionally, there is a root Cl+1 corresponding to G
and for every vertex v ∈ V a leaf Cv

0 (our parlance does not distinguish between a
connected component and its belonging tree vertex, if context is unambiguous).

The parent of a vertex in the tree is determined as follows. For every component

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 9

Fig. 5. For given vertices s and t, the subgraphs Mst (left) and Mst (right) of the basic and
extended multi-level graphs from Figure 3.

Cv
i ∈ Ci with 1 ≤ i ≤ l and v being an arbitrary vertex of that component, its

parent is Cv
i+1 (note that component Cl+1 contains every vertex in V). For a leaf

Cv
0 , let j be the largest index such that v ∈ Sj , or j := 0 if v /∈ S1; then the parent

of Cv
0 is Cv

j+1 (the smallest level where v is contained in a non-singular connected
component is j + 1).

Definition of the Subgraph. For given vertices s and t, consider the Cs
0 -Ct

0-path
(Cs

0 , Cs
k, Cs

k+1, . . . , C
s
Lst

= Ct
Lst

, . . . , Ct
k′+1, C

t
k′ , Ct

0) in the component tree, where
Lst is the smallest index with Cs

Lst
= Ct

Lst
(i.e., this component is the lowest

common ancestor of Cs
0 and Ct

0) and k and k′ are the levels of the parents of Cs
0

and Ct
0, respectively. This path induces a subgraph Mst = (Vst, Est) of the basic

multi-level graph M(G; S1, . . . , Sl): Est contains, for each component Cx
i on the

path (x ∈ {s, t}, 0 < i < Lst), all edges in Ei−1 incident with a vertex in Cx
i , as

well as all level edges ELst−1; the vertex set Vst is induced by Est. Figure 5 shows
Mst for our sample graph, and the subgraph Mst of the extended multi-level graph
(cf. [Schulz et al. 2002] for the definition) for reference.

Shortest-Path Search. We now describe how to search for a shortest s-t-path in
Mst using the multi-level graph M (as mentioned above, Mst need not be extracted
explicitly). We start from s at level k−1 of M, using edges in Ek−1. When a vertex
in Sk is scanned, only outgoing edges in Ek are taken into account, for vertices in
Sk+1, only edges in Ek+1 and so on. At level Lst − 1, all edges in ELst−1 can be
visited. From a vertex in SLst−1 incident with component Ct

Lst−1, we ‘descend the
hierarchy’, considering edges in ELst−2, and so on until we reach t at level k′ − 1.

By definition of the component tree, any s-t-path must leave component Cs
k.

Hence, it suffices to maintain level-(k − 1) edges incident with vertices in Cs
k. The

remaining part of the shortest path can then be found from level-k vertices using
higher-level edges. The same argument applies iteratively for higher levels, and
symmetrically for components around t. At level Lst, vertices s and t belong to the
same component, so all level-Lst−1 edges are required. Summarizing, we can state
(the strict proof is analogous to that in [Schulz et al. 2002]):

Lemma 3.1. The lengths of shortest s-t-paths in G and in Mst are equal.

10 · Martin Holzer et al.

4. REGULAR MULTI-LEVEL GRAPHS

One basic assumption for multi-level graphs to speed up shortest-path computation
is that the multi-level subgraphs are small compared to the original graph. In
general, this is not necessarily true; clearly, a bad example would be if a set of
vertices did not decompose the input graph at all.

However, for graphs that allow for some ‘regular’ decomposition we are able
to prove, for any (s, t)-query, a bound on the number of edges in the multi-level
subgraph, which we will show to depend crucially on the index Lst from the previous
section. As this number is mainly determined by the number of level-(Lst−1) edges
and the sets Ei get sparser as i increases, we are also interested in the probability
that for a random query at least a given level Lst in the component tree is reached.

Note that the subsequent results refer to the extended version of multi-level
graphs, but can be carried over to the basic variant easily. For the sake of con-
ciseness, we only outline the main results, and refer the reader to [Holzer 2003;
Schulz 2005] otherwise: proofs, which contain rather lengthy but straightforward
calculations, can be found there.

For experimental purposes, we also wish for graphs that permit a regular decom-
position in the specified sense. A class of graphs that meet the theoretical results
is therefore described in the second part of this section.

4.1 Theoretical Analysis

After fixing some notation, we formally coin the notion of a regular decomposition,
which will serve as an assumption for all of the following considerations: First we
bound the number of edges in a regular multi-level graph, i.e., a multi-level graph
exhibiting a regular decomposition, then we note the probability that the highest
level Lst on the path in the component tree is at least some given value, and finally
provide an upper bound on the size of a multi-level subgraph.

Notation. By EG(S) we denote the edge set induced by vertex set S in graph
G. Furthermore, given a decomposition of G (with the same notation as in the
previous section), the maximal number of selected vertices adjacent to any vertex

of any component in
⋃l

i=1 Ci be marked by a.

Definition 4.1. A decomposition of a graph G through vertex sets S1, . . . , Sl

into connected components
⋃l

i=1 Ci is called regular if the number
∑l

i=1 |Ci| of
all components is at most n and the difference in the sets of edges induced by a
consecutive pair of vertex sets is at least halved for two consecutive pairs:

|EG(Si) \ EG(Si+1)| ≤ |EG(Si−1) \ EG(Si)|/2 (1 ≤ i < l).

The size of the multi-level graph can be bounded as follows.

Lemma 4.2. Under the assumption of a regular decomposition, the total number
of additional edges in the multi-level graph M(G; S1, . . . , Sl) is at most

m + (a2 + a)n.

Let (s, t) ∈ V ×V be a query selected uniformly at random. We want to give the
probability that the level Lst of the lowest common ancestor of Cs

0 and Ct
0 in the

component tree is at least L (1 ≤ L ≤ l + 1).

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 11

Lemma 4.3. Under the assumption of a regular decomposition, the probability
that for any vertices s and t the index Lst is at least some L amounts to

2|SL−1|n − |SL−1|
2 + (c − 1)(n − |SL−1|)

2/c

n2
,

if we suppose that all components in CL−1 have the same size c.

Let us further assume that c and the number |Sl| of vertices in the smallest subset
are constant. It follows that the probability with which the Cs

0 -Ct
0-path leads via

the highest level l converges to (c − 1)/c with n → ∞. Loosely speaking, with an
apt decomposition we can asymptotically expect to answer almost all queries by
taking into account the top level of the multi-level graph.

Finally, we are able to give a bound on the number of edges of the subgraph Mst.

Lemma 4.4. Under the assumption of a regular decomposition, the total number
of edges in the subgraph Mst is bounded by

2(a + (Lst − 2)a2) + |ELst−1|.

It turns out that a and |ELst−1| are the crucial parameters to the size of Mst.
If a can be considered a small constant, together with the above results we get
that the search space (number of edges in Mst) is asymptotically dominated by the
number |El| of edges at the highest level.

4.2 Component-Induced Random Graphs

Motivated by the above results, we now define a random graph model such that a
regular decomposition is possible, component-induced graphs, which depend on the
following parameters:

—the number l′ of construction levels,

—the numbers n′ and m′ of new vertices and edges, respectively,

—the number c′ of new components per level, and

—the number a′ of adjacent vertices per component.

Construction of a component-induced graph is roughly done as follows (cf. [Schulz
2005] for further information). At top level, compute a classic Erdös-Réyni ran-
dom graph with n′ vertices and m′ edges selected uniformly at random from all
possible edges (cf. [Bollobás 1985]); if it is not connected, repeat this step. The
remaining l′ − 1 levels of the hierarchy are constructed in a recursive fashion: For
the connected graph/component currently considered, introduce c′ new connected
components with n′ vertices and m′ edges each. From each of these components,
a′ (not necessarily distinct) vertices are picked and an edge from each of these to
some randomly selected vertex in the current component is introduced.

A regular decomposition of a component-induced graph can be obtained by in-
cluding in Si the vertices generated at levels greater than or equal to i + 1 with
1 ≤ i < l′. An example of a component-induced graph with three construction
levels is provided in Figure 6.

12 · Martin Holzer et al.

Fig. 6. Sample component-induced graph with parameters l′ = 3, n′ = 5, m′ = 10, c′ = 3, a′ = 4.

5. EXPERIMENTAL ANALYSIS

In this section we give several criteria, along with two general strategies, of selecting
vertices of a graph to construct a multi-level graph, and introduce four graph classes
investigated in the subsequent experimental study. In a preparatory analysis we
compare for given graphs the multi-level graphs computed both by the min-overlay
procedure and according to the definition in [Schulz et al. 2002]. In another prestudy
we focus on two of the selection criteria that are special in some sense, betweenness
approximation and planar separator.

The main results show the impact of diverse combinations of graph class and
selection criterion and strategy on multi-level graphs as well as their performance
when applied for shortest-path search. Further experiments contrast basic and
extended multi-level graphs with different numbers of levels.

Our code is written in C++, based on the LEDA library [Näher and Mehlhorn
1999], and compiled with the GNU compiler (version 3.3); as underlying shortest-
path routine we use Dijkstra’s algorithm. The experiments were carried out on
several 64-bit AMD Opteron machines, clocked at roughly 2 GHz, with 4 or 8 GB
of main memory.

5.1 Selecting Vertices

In the following, we present a variety of criteria of how to determine a subset of a
graph’s vertex set to construct a multi-level graph. All criteria—except for planar
separator—can be applied using one of two different selection strategies, global or
recursive (the planar-separator criterion can be applied only in a recursive manner).

5.1.1 Selection Criteria. We propose nine criteria: one random (RND) crite-
rion; two criteria related to vertex degree, degree (DEG) and percentage (PCT); one
related to graph cores (COR) [Brandes and Erlebach 2005]; four coming from cen-
trality indexes, reach (RCH) [Gutman 2004], closeness (CLO), betweenness (BET),
and betweenness approximation (BAP) [Brandes and Erlebach 2005]; and one in-
volving a planar-separator algorithm (PLS) [Holzer et al. 2005].

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 13

Random (RND). Vertices are selected uniformly at random.

Degree (DEG). Vertices with the highest degrees are selected.

Percentage (PCT). We consider for each vertex v its percentage value, which is
the share of v’s adjacent vertices that have smaller degree than v in all adjacent
vertices (an isolated vertex is assigned −1). Vertices with the highest percentage
values are then selected.

Core (COR). A graph’s k-core (for an integer k) is the maximal subgraph such
that all vertices in that subgraph have degree at least k. The core number of a
vertex is defined to be the maximum k such that this vertex belongs to the k-core.
Vertices with the highest core numbers are selected.

Reach (RCH). Reach r(v, p) of a vertex v on a path p is defined to be the min-
imum of the lengths of p’s subpaths with respect to v. Reach of v is then the
maximum of all values r(v, p) where p is a shortest path over v, thus denoting
the greatest distance of v to the nearer of the end-vertices over all shortest paths
containing v. Vertices with the greatest reach values are selected.

Closeness (CLO). Closeness of v is defined as 1
/
∑

t∈V d(v, t) , letting d(v, t) de-
note the distance from v to t (with 1/0 := 0). Intuitively speaking, a vertex with
great closeness has short distances to most of the other vertices. Vertices with the
largest closeness values are selected.

Betweenness (BET). Betweenness of v is defined to be
∑

s,t∈V σ(s, t | v)
/

σ(s, t),
where σ(s, t) stands for the number of shortest paths from s to t and σ(s, t | v)
for the number of shortest paths from s to t that contain v as an internal vertex
(with 0/0 := 0). Betweenness reflects how important a vertex is to shortest paths.
Vertices with the greatest betweenness values are selected.

Betweenness Approximation (BAP). Betweenness can be approximated through
random sampling, by not taking into account all pairs (s, t) in V × V but only in
V ′ × V ′, for a subset V ′ ⊆ V of size (log n)/ε2 (with an appropriate choice of ε).
The goal is to obtain ‘good enough’ betweenness values in much shorter time than
required for computation of the exact values (cf. Section 5.4.1). The probability of
an error larger than εn(n − 2) is at most 1/n.

Planar Separator (PLS). This criterion makes use of a planar-separator algo-
rithm, which is—informally speaking—to divide a planar graph into two parts as
much balanced as possible by removing a small set of vertices. The vertices returned
by this procedure are then taken as selected.

We use the heuristic suggested in [Holzer et al. 2005], which is based on the
Planar-Separator Theorem by Lipton and Tarjan. In order to employ this criterion
also for non-planar graphs, we first planarize the graph by introducing new vertices
at crossings (we presume a fixed embedding). Then the planar-separator algorithm
is applied to the planarized—auxiliary—graph. Finally, separator vertices for the
original graph are taken over from the auxiliary graph, and conflicts with edges
that connect two vertices of different components are resolved by declaring one of
the end-vertices a separator vertex (cf. Section 5.4.2).

Figure 7 illustrates the different criteria with a sample graph.

14 · Martin Holzer et al.

a

b

c d

e

f

g

h

i
j

k

l

Fig. 7. Highest-priority vertices in a sample graph with unit edge length according to the different
selection criteria: DEG: a, d, h; PCT: h; COR: a, b, d, f ; RCH: b, f , g; CLO: g; BET: g; PLS:
{f, g} (for instance).

n m

1000 10480

c
i

2000 21460

1000 5000

d
e
l

10000 50000

n m

995 2470
9968 25648

19463 49692
49625 125018
99529 252390

199739 501948
299790 771418
399558 1030802

r
o
a
d

499604 1283236

n m

999 2534
1650 4574
2239 6452
2348 8458
4553 15866

l
r
a
i
l

6848 19276

2070 6880
10795 35996
12070 39966s

r
a
i
l

14335 51126

Table I. Sizes of the graphs used in our experiments.

5.1.2 Selection Strategies. With each criterion except PLS, we propose two dif-
ferent ways of selecting vertices. The first, called global strategy, is to compute,
according to the criterion specified, the priority of all vertices in the graph and to
pick from amongst them a desired number with the highest priority values.

With the second, referred to by recursive strategy, a maximum component size
has to be specified. Recursively, for each connected component bigger than that
threshold, the vertices are sorted according to the given criterion; one by one, the
vertices with the highest priority values are selected until either the component
splits or the number of non-selected vertices in this component falls below the
threshold. Since with PLS, there is no priority value in the proper sense associated
with the vertices—vertices either are or are not contained in the separator set—this
criterion can be used in an expedient way only with the recursive strategy, slightly
modified in that all separator vertices are selected at once.

5.2 Graph Classes

With our experiments we take into account four types of graphs, two randomly
generated and two taken from real world. All graphs are connected and bidirected,
i.e., as the case may be, each edge has been replaced with two directed edges, one
in either direction. For each of the subsequent graph classes we provide a short
key, which can be further specified by the number of vertices to denote a concrete
instance. Table I provides a synopsis of the graph sizes.

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 15

Fig. 8. Sample planar Delaunay graph.

Component-Induced Graphs (ci). Due to construction (cf. Section 4.2), these
random graphs exhibit some regular hierarchical structure and are rather dense
compared to the other classes. Edge lengths are chosen at random.

Planar Delaunay Graphs (del). Planar Delaunay graphs are graphs with ver-
tices randomly spread over a unit square for which the Delaunay triangulation is
computed. Then edges are deleted at random until a given number is reached. We
chose the number of edges such that density ranges somewhere between the values
for the ci and real-world graphs. Edge lengths correspond to Euclidian distances.

Road Graphs (road). By road graphs we denote subgraphs of the German road
network.2 These graphs are comparatively sparse. The length of an edge is the
length of the corresponding road section—not the straight-line distance—with a
granularity of 10 meters. For our experimental study, we use road graphs with up
to roughly 500 000 vertices.

Railway Graphs (rail). Railway3 graphs are condensed networks reflecting train
connections2 (cf. [Schulz et al. 2000]): vertices stand for railway stations, and there
exists an edge between two vertices if there is a non-stop connection between the
respective stations. As opposed to road graphs, which are almost planar, specimens
of this class can have quite some edges spanning a major distance. Graphs repre-
senting long-distance traffic within some European countries (lrail) or local/short-
distance transportation of several German regions (srail) are provided. The length
of an edge is assigned the average travel time of all trains that contribute to this
edge. The lrail graphs contain up to almost 7000 vertices, while there are ap-
proximately twice as many in the largest srail graph.

Sample instances of these graph classes can be found in Figures 6, 8, and 9,
respectively. The generator for the ci and del graphs is available on-line [Borgi
et al. 2005].

2We are grateful to the companies PTV AG, Karlsruhe, and HaCon, Hannover, for providing
us with road and railway data, respectively, for scientific purposes.

3Note that terms like railway, train, etc. here comprise also other means of public transporta-
tion, such as trams, local buses and so on.

16 · Martin Holzer et al.

Fig. 9. Recursive decompositions of srail2070 (local bus service network in central Germany),
lrail6848 (railway network of Germany), and road19463 (road network of Karlsruhe and sur-
rounding area) by PLS. The black squares mark the separator vertices, different components are
indicated by colors.

unit lengths genuine lengths
graph opt blowup opt blowup

ci2000 7.0 1.21 6.9 1.00
del10000 31.1 2.95 35.4 1.00
road19463 12.6 1.26 15.8 1.01
rail6848 5.9 1.37 8.8 1.00

Table II. Comparison of multi-level graphs computed through min-overlay and according
to [Schulz et al. 2002]. opt denotes the number of edges divided by the number of vertices obtained
with min-overlay, while blowup indicates the multiplicative factor indicating how many edges in
relation are constructed using the non-minimal method. We distinguish the case of unit (left) and
genuine (right) edge lengths.

5.3 Shortest-Path Overlay Graphs

In Theorem 2.2 we proved that the procedure min-overlay yields shortest-path
overlay graphs with a minimal number of edges. To get an idea of the amount of
edges that can be saved when switching from the definition in [Schulz et al. 2002]4

to the minimal variant given in this work, we compare for one graph of each class
the sizes of (extended) multi-level graphs obtained by either procedure (induced
by one subset of vertices each, determined with PLS). Moreover, we provide two
different kinds of edge lengths: genuine ones, as described above, and unit lengths.

The outcome is depicted in Table II: opt denotes the number of edges divided
by the number of vertices in the minimal overlay graph and blowup the quotient of
the numbers of edges obtained with each procedure. Under the use of unit lengths,
there exist many paths of equal length, resulting in a comparatively big blowup
(almost 3 for the del graph) while with genuine lengths, there is practically none.

4The procedure in [Schulz et al. 2002] differs from min-overlay in one fundamental respect:
When two shortest paths of equal length are encountered, one of them is picked arbitrarily to be
included in the multi-level graph. This may result in different potential multi-level graphs so for
our comparison, we consider one with a maximal number of edges.

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 17

2
4

6
8

1
0

1
2

1
4

0.0 0.5 1.0 1.5 2.0

Fig. 10. Quotient of the average numbers of edges visited during shortest-path computation with
multi-level graphs based on BAP and BET. The abscissa denotes the parameter ε, governing the
random sampling. As input graph, road49463 is used.

The latter observation is owed to the fact that edge lengths are Euclidean lengths
or mean travel times, represented by double-values, so it is rather unlikely that
different paths between two vertices have equal length. If actual, integer-valued
travel times were used for the rail graph instead, we would expect a blowup factor
lying between the two given in the table.

5.4 Special Selection Criteria

Most of the criteria described in Section 5.1.1 are uniquely determined. However,
BAP involves parameter-dependent random sampling, where an appropriate choice
of the parameter for our purposes cannot be given offhand. Moreover, PLS applied
to non-planar graphs requires planarization and retranslation steps, where effects
on the size of the selection set remain quite unclear. These issues are highlighted
in the following prestudies.

5.4.1 Betweenness Approximation. To assess the quality of betweenness approx-
imation and to earmark a parameter setting for practical application, we determine
for different choices of ε vertex selection sets and investigate the average search
space size of belonging multi-level graphs: For a fixed maximum component size,
we construct extended multi-level graphs of road49463, induced by both exact
and approximated betweenness, and with each of these graphs, answer a series of
shortest-path queries. We then evaluate the number of visited edges, i.e., scanned
by the shortest-path algorithm.

Figure 10 shows the ratio of the numbers of visited edges with approximated
and exact betweenness values, for choices of ε of up to 2: the larger this ratio,
the smaller is the speed-up achieved with BAP. We observe that with increasing ε,
performance of the multi-level approach at first worsens only very slowly but for
ε ≥ 1, slumps dramatically.

For subsequent experiments with BAP, we want to play safe by setting ε to a
value of only 0.2. Nevertheless, this leads to a drastically reduced preprocessing
time of about 0.5 % of that needed to compute exact betweenness. Further tests
with other road graphs confirmed this choice of ε as appropriate.

18 · Martin Holzer et al.

graph n∗ |S∗| |S| |Sopt|

road19463 479 165 196 177
road49625 1060 336 410 382
road99529 2591 773 941 855
road199739 3754 2176 2636 2315
road299790 8025 3399 4104 3628

lrail1650 645 22 38 16
lrail2239 1830 68 107 55
lrail2348 3458 154 132 58
lrail4553 11447 605 412 164
lrail6848 3169 183 399 164

Table III. Application of the planar-separator algorithm to non-planar graphs (road and lrail).
The following measurements (average values with different maximum component sizes) are re-
flected: number n∗ of crossings in the input graph/planarization vertices, size |S∗| of the separator
for the planarized graph, size |S| of the retranslated separator, and size |Sopt| of the separator for
the input graph after removal of redundant vertices.

5.4.2 Planar Separator. As mentioned in Section 5.1.1, our planar-separator
algorithm can be applied also to non-planar graphs: Planarize the input graph by
introducing a vertex for each crossing, run the separation algorithm, and retranslate
the separator found to the original graph by possibly including further vertices in
the separator set. Afterwards, a simple procedure can be used to optimize the
separator set by sorting out ‘redundant’ vertices. The main issues that we want to
cover in this prestudy are: the number of crossings in the input graph (and thus
the number n∗ of planarization vertices) and the size |Sopt| of the separator set
induced for the original graph. We respect road and lrail graphs, with maximum
component sizes of 500 and 1000.

The results are depicted in Table III, showing for each graph the number of
crossings as well as the separator sizes (for the planarized graph, the original graph,
and after optimization). As alluded above, the road graphs are already almost
planar, which is not true for the rail graphs. This is underpinned by the values
for n∗, ranging around 2 percent of the number of original vertices for road graphs,
but between 39 and an enormous 251 percent for lrail. The optimized separator
sets Sopt are quite small for both classes, however, consisting of roughly 1 percent
and up to 3.6 percent of vertices in the input graph, respectively. This outcome
suggests for further experiments that decomposition by PLS at least of our real-
world graphs through a ‘reasonable’ number of vertices is possible.

One alternative to the planar-separator algorithm is the graph-partitioning tool
METIS [Karypis 2005], which computes balanced edge partitions rather than vertex
separations (from an edge partition, a vertex separator can be derived by a simple
greedy heuristic). In [Holzer et al. 2005], it is shown that separators obtained
through METIS are of almost the same quality (with respect to both separator
size and component balance) as those received by our planar-separator algorithm.
Preliminary experiments corroborate that this observation carries over to the multi-
level approach in that performance with selected vertices determined via METIS is
slightly worse than with PLS-computed selections.

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 19

BET BAP CLO COR DEG PCT RCHRND

0
5

1
0

1
5

2
0

BET BAP CLO COR DEG PCT PLS RCHRND

0
5

1
0

1
5

2
0

Fig. 11. Speed-up in terms of visited edges with global (left) and recursive (right) decomposition.
The x-axis denotes the selection criterion; graphs considered (from left to right within each cri-
terion): ci1000 (white), road995 (dark-gray), lrail999 (light-gray), and del1000 (brown). The
boxplots span the average speed-up values with different choices for the number of selected vertices
(3, 5, 8, and 10 percent) and the maximum component size (3, 5, 10, and 20 percent), respectively.
The horizontal line within a box denotes the median, the cross marks the mean value.

5.5 Multi-Level Approach

This section contains a computational study in which we investigate the perfor-
mance of the multi-level approach with different parameters: We consider diverse
combinations of graph class, selection criterion and strategy, and number of levels,
as well as contrast the basic and extended versions. Our experiments are divided
into three sections: first, we focus on extended multi-level graphs and explore dif-
ferent combinations of settings, but restrict ourselves to only one additional level;
then we compare basic multi-level graphs to the extended variant; finally, we factor
multiple levels into our experiments.

As most important measure for speed-up we use the quotient of the number of
edges visited by Dijkstra’s algorithm over that number visited by the search rou-
tine of the multi-level approach. This parameter is implementation- and machine-
independent, and turned out to be closely related to CPU time.

5.5.1 Selection Criteria. We explore all combinations of graph type, selection
criterion, and number of selected vertices or maximum component size, respectively
(due to the large number of combinations, we have to settle for rather small graphs).
According to these results, we pick in a second pass the most promising parameter
settings to run them with a series of larger graphs, where we take a closer look at
the influence of the maximum component size.

Small Graphs. We take into account one graph of each type with about 1000
vertices: ci1000, del1000, road995, and lrail999. With the global strategy, we
choose for the number of selected vertices 3, 5, 8, and 10 percent of the number of
vertices in the graph and with recursive decomposition, the maximum component
size is set to 3, 5, 10, and 20 percent, which in some preliminary runs turned out
to be representative values. For each of these combinations, we run 1000 queries
selected at random and compute the averages of the resulting speed-up values.

Figure 11 presents average speed-up in the form of standard boxplots: Each box
spans, for one criterion and one graph, the range obtained with the four choices
for the number of selected vertices and the maximum component size, respectively.

20 · Martin Holzer et al.

5
1
0

1
5

2
0

2
5

3
0

10 20 50 100

1
0

1
5

2
0

2
5

10 20 50 100

Fig. 12. Average speed-up with PLS (left) and recursive BAP (right) for larger road graphs. The
x-axis denotes the number of vertices in the input graph (in thousands). Maximum component
sizes: 1 (solid), 10 (dashed), and 20 (dotted) percent.

Overall, the highest speed-up values are obtained with recursive BET/BAP (there
is hardly any difference between these two criteria; cf. Section 5.4.1), which work
very well for all graphs but del1000; a factor of almost 20 can be achieved with
road995. The second-best criterion, of similar quality, turns out to be PLS, followed
by recursive RCH. The DEG criterion suitably decomposes lrail999, which can
be explained by the large range of vertex degrees compared to other graphs. Some
of the other criteria work only slightly better than selection by RND. In general,
with recursive decomposition higher speed-ups are attainable.

As for graph classes, del constitutes a hard instance, whereas for the real-world
and ci graphs the approach is well-suited. For ci1000, recursive BET/BAP yields
a maximal speed-up of around 10, which quite corresponds to the value obtained
with a multi-level graph induced by the vertices selected during construction of the
input graph. Analyzing for global and recursive decomposition the variability of the
component sizes and the number of selected vertices in the multi-level graphs, re-
spectively, a strong correlation to the speed-up values becomes evident: the smaller
component size variance and selection set, the better the speed-up. Note that these
results parallel our deliberations on regular decomposition in Section 4.

Medium-Size Graphs. With a series of somewhat larger real-world graphs and the
most promising criteria identified in the previous paragraph, we again run random
queries with different maximum component sizes. We use recursive BAP and PLS
for the road as well as recursive DEG and PLS for the rail graphs.

Figure 12 shows the speed-up for road graphs with up to 100 000 vertices. For
the largest graph, a speed-up factor of 31 is reachable. Here, the PLS criterion is
clearly superior to BAP, with which the maximal speed-up is 22. For the maximum
component size, 10 percent turns out to be the best choice. Concerning preprocess-
ing times, decomposition of road99529 takes several minutes with PLS, but around
two hours with BAP. Times for the construction of the multi-level graph, of well
over half an hour, are similar for both criteria.

According to these findings, we settle for a maximum component size of 10 percent
for rail graphs, but distinguish between long- and short-distance networks (cf.
Figure 13, left). Interestingly, for lrail graphs, DEG works better than PLS while
for srail, speed-up with DEG is not very pronounced, whereas PLS yields much
higher factors.

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 21

0

5
1
0

1
5

2
0

5 10 15 0

3
4

5
6

7
8

5 10 15

Fig. 13. Average speed-up with extended (left) and basic (right) multi-level graphs of rail graphs.
The x-axis denotes the number of vertices in the input graph (in thousands). Maximum component
sizes: 10 percent for the extended and 1 percent for the basic multi-level graphs; selection criteria:
recursive DEG (solid) and PLS (dashed); graph classes: lrail (circle) and srail (triangle).

1
.
0

1
.
2

1
.
4

1
.
6

1
.
8

2
.
0

2
.
2

10 20 50 100

2
4

6
8

1
0

1
2

10 20 50 100

Fig. 14. Relative average speed-up with extended (left) and basic (right) multi-level graphs of road
graphs. The x-axis denotes the number of vertices in the input graph (in thousands). Maximum
component sizes: 1 (solid), 10 (dashed), and 20 (dotted) percent; selection criterion is PLS.

5.5.2 Basic Multi-Level Graphs. The main feature that distinguishes basic from
extended multi-level graphs is that no upward and downward edges are maintained
(cf. Section 2.2). Hence, one may expect more edges that have to be visited during
a search and thus less speed-up; at the same time, the overhead of storing additional
edges is smaller. This notion is captured by relative speed-up, which is defined as
speed-up divided by graph expansion, where graph expansion is the quotient of the
numbers of edges in the multi-level and the original graph. We run experiments
with the same medium-sized road and rail graphs as above.

Figure 14 depicts relative speed-up for the road graphs with both extended and
basic multi-level graphs and the PLS criterion. The best value observed with the
extended version is about 2.3, but well over 12 with the basic. Graph expansion of
basic multi-level graphs is only slightly greater than 1, so the right-hand diagram
shows at the same time virtually pure speed-up and can thus be perfectly compared
to Figure 12: best speed-up is obtained with a maximum component size of 1
percent, in contrast to 10 percent for the extended version. This suggests that
the maximum component size should be chosen smaller for basic multi-level graphs
(with respect to relative speed-up, however, 1 percent seems to be advantageous
for both variants). Finally, the right-hand diagram in Figure 13 reflects speed-up
with basic multi-level graphs of rail graphs.

22 · Martin Holzer et al.

3
0

3
5

4
0

4
5

5
0

5 10 15 20

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

5 10 15 20

Fig. 15. Average speed-up with extended (left) and basic (right) multi-level graphs of road99529
with two additional levels. The x-axis denotes the maximum component size (in thousands of
vertices) for level 1; maximum component sizes for level 2: 300 (solid), 500 (dashed), 1000 (dotted),
and 1500 (dotted-dashed) vertices; separation criterion is PLS.

5.5.3 Multiple Levels. The last series of experiments is devoted to the question
of how much speed-up can be gained by introducing more than one level, where we
use medium-sized and large road (cf. Table I) as well as larger ci graphs.

Road Graphs. We consider three-level extended and basic multi-level graphs of
road99529, based on different combinations of vertex selections through PLS. Fig-
ure 15 shows that speed-up can be increased from 31 with one level (cf. Figure 12)
to well over 50 (with maximum component sizes of 15 and 3 to 5 percent) and from
about 13 (cf. Figure 14) to 22 (with 5 and .3 percent) using extended and basic
multi-level graphs, respectively. A similar behavior could be observed with even
larger road graphs: not only could speed-up be improved by introducing another
level; also, with extended multi-level graphs, graph expansion could be reduced
drastically while for basic multi-level graphs, it exhibited as still negligible.

Component-Induced Graphs. Last, we want to refer to [Holzer 2003] for an exper-
imental study investigating component-induced graphs with up to 100 000 vertices
and belonging extended multi-level graphs with up to five additional levels, where
vertices used during construction of the input graphs are selected. The main out-
come is that with increasing graph size, speed-up scales to a factor of approximately
1000. These results further confirm the intuition and theoretical results from Sec-
tion 4 and demonstrate the importance of a fairly regular decomposition.

5.5.4 Summary. We want to conclude our empiric study by extracting from the
above experiments some principal insights, which can be seen as a guideline to
choosing good parameter settings for multi-level shortest-path computation. Con-
cerning selection criterion, we would recommend PLS or recursive BAP5, or recur-
sive DEG for real-world graphs with a great variance of vertex degrees. Storage
capacity permitting, the extended variant should be favored over the basic (where
the latter allows for unbeatable relative speed-up), with a maximum component
size of around 10 percent of the vertices in the input graph. For graphs with more
than 1000 vertices, employing two or even more levels should be considered.

5In our experiments, BAP may have incurred greater preprocessing times, but this defect
could be overcome by a more courageous choice of ε, with little loss in speed-up.

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries · 23

6. CONCLUSION

In this survey, we reviewed the multi-level technique for shortest-path computation,
improved the definition of shortest-path overlay/multi-level graphs and introduced a
new—the basic—variant, as well as provided several criteria along with two general
strategies to select vertices in a graph for constructing multi-level graphs. The
theory part provides some common considerations regarding the speed-up that can
be achieved given a regular decomposition of the input graph. In an extensive
experimental study, both variations of multi-level graphs, induced by the different
selection criteria and strategies, were tested with various random and real-world
graphs with respect to speed-up when used for answering shortest-path queries.

As for the results, the recursive strategy performed better than the global one,
and the planar-separator and betweenness criteria clearly outdid the others; further,
betweenness was shown to be approximated efficiently. Also, the degree criterion
sped up query times with long-distance rail graphs. Comparing the two variants in
terms of mere speed-up, extended multi-level graphs were superior to basic ones;
however, the latter turned out to be more efficient when the sizes of the multi-level
graphs were taken into account.

ACKNOWLEDGMENTS

The authors would like to thank Imen Borgi, Sebastian Knopp, and Andrea Schumm
for their support in parts of the implementation work. Special thanks go also to the
two anonymous referees for their thorough corrections and numerous suggestions,
which helped greatly to enhance the quality of this work.

REFERENCES

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. 1993. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall.

Bast, H., Funke, S., Matijevic, D., Sanders, P., and Schultes, D. 2007. Transit to constant

shortest-path queries in road networks. In Proc. 9th Workshop on Algorithm Engineering and

Experiments. SIAM, 46–59.

Bauer, R. 2006. Dynamic speed-up techniques for Dijkstra’s algorithm. M.S. thesis, Universität
Karlsruhe (TH), Fakultät für Informatik.
http://i11www.ira.uka.de/teaching/theses/files/da-rbauer-06.pdf.

Bollobás, B. 1985. Random Graphs. London Academic Press.

Borgi, I., Graf, J., Holzer, M., Schulz, F., and Willhalm, T. 2005. A graph generator.
http://i11www.ira.uka.de/resources/graphgenerator.php.

Brandes, U. and Erlebach, T., Eds. 2005. Network Analysis. LNCS, vol. 3418. Springer.

Delling, D., Holzer, M., Müller, K., Schulz, F., and Wagner, D. 2007. High-performance
multi-level graphs. In Proc. Workshop on DIMACS Shortest-Path Challenge. To appear.
http://i11www.ira.uka.de/members/mholzer/publications/pdf/dhmsw-hpmlg-06.pdf.

Delling, D., Sanders, P., Schultes, D., and Wagner, D. 2007. Highway hierarchies star. In
Proc. Workshop on DIMACS Shortest-Path Challenge. To appear.
http://i11www.ira.uka.de/members/delling/files/dssw-hhs-06.pdf.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathe-

matik 1, 269–271.

Goldberg, A. and Harrelson, C. 2005. Computing the shortest path: A* search meets graph
theory. In Proc. 16th Symposium on Discrete Algorithms. SIAM, 156–165.

Goldberg, A., Kaplan, H., and Werneck, R. 2006. Reach for A*: Efficient point-to-point

24 · Martin Holzer et al.

shortest path algorithms. In Proc. 8th Workshop on Algorithm Engineering and Experiments.

SIAM, 129–143.

Gutman, R. 2004. Reach-based routing: A new approach to shortest path algorithms optimized
for road networks. In Proc. 6th Workshop on Algorithm Engineering and Experiments. SIAM,
100–111.

Holzer, M. 2003. Hierarchical speed-up techniques for shortest-path algorithms. M.S. thesis,
Universität Konstanz, Fachbereich Informatik und Informationswissenschaft.
http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/.

Holzer, M., Prasinos, G., Schulz, F., Wagner, D., and Zaroliagis, C. 2005. Engineering
planar separator algorithms. In Proc. 13th European Symposium on Algorithms. LNCS, vol.
3669. Springer, 628–639.

Holzer, M., Schulz, F., and Willhalm, T. 2004. Combining speed-up techniques for shortest-
path computations. In Proc. 3rd Workshop on Experimental and Efficient Algorithms. LNCS,
vol. 3059. Springer, 269–284.

Jing, N., Huang, Y.-W., and Rundensteiner, E. A. 1998. Hierarchical encoded path views
for path query processing: An optimal model and its performance evaluation. IEEE Trans.

Knowledge and Data Engineering 10, 3.

Jung, S. and Pramanik, S. 2002. An efficient path computation model for hierarchically struc-
tured topographical road maps. IEEE Trans. Knowledge and Data Engineering 14, 5.

Karypis, G. 2005. METIS.
http://www-users.cs.umn.edu/∼karypis/metis.

Lauther, U. 2004. An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In Geoinformation und Mobilität – von der Forschung zur

praktischen Anwendung. Vol. 22. IfGI prints, Institut für Geoinformatik, Münster, 219–230.

Möhring, R. H., Schilling, H., Schütz, B., Wagner, D., and Willhalm, T. 2005. Partitioning
graphs to speed up Dijkstra’s algorithm. In Proc. 4th Workshop on Experimental and Efficient

Algorithms. 189–202.

Näher, S. and Mehlhorn, K. 1999. The LEDA Platform of Combinatorial and Geometric

Computing. Cambridge University Press.
http://www.algorithmic-solutions.com.

Sanders, P. and Schultes, D. 2005. Highway hierarchies hasten exact shortest path queries. In
Proc. 17th European Symposium on Algorithms.

Sanders, P. and Schultes, D. 2006. Engineering highway hierarchies. In Proc. 14th European

Symposium on Algorithms. LNCS, vol. 4168. Springer, 804–816.

Schultes, D. and Sanders, P. 2007. Dynamic highway-node routing. In Proc. 6th Workshop

on Experimental and Efficient Algorithms. LNCS. Springer, 66–79.

Schulz, F. 2005. Timetable information and shortest paths. Ph.D. thesis, Universität Karlsruhe
(TH), Fakultät für Informatik.

Schulz, F., Wagner, D., and Weihe, K. 2000. Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. J. Experimental Algorithmics 5, 12.

Schulz, F., Wagner, D., and Zaroliagis, C. 2002. Using multi-level graphs for timetable infor-
mation in railway systems. In Proc. 4th Workshop on Algorithm Engineering and Experiments.
LNCS, vol. 2409. Springer, 43–59.

Wagner, D. and Willhalm, T. 2003. Geometric speed-up techniques for finding shortest paths
in large sparse graphs. In Proc. 11th European Symposium on Algorithms. LNCS, vol. 2832.
Springer, 776–787.

Willhalm, T. and Wagner, D. 2007. Shortest path speedup techniques. In Algorithmic Methods

for Railway Optimization. LNCS, vol. 4359. Springer.

