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Abstract. In this paper we introduce trajectory-based labeling, a new variant
of dynamic map labeling where a movement trajectory for the map viewport is
given. We define a general labeling model and study the active range maximiza-
tion problem in this model. The problem isNP-complete andW[1]-hard. In the
restricted, yet practically relevant case that no more than k labels can be active at
any time, we give polynomial-time algorithms. For the general case we present a
practical ILP formulation with an experimental evaluation as well as approxima-
tion algorithms.

1 Introduction

In contrast to traditional static maps, dynamic digital maps support continuous move-
ment of the map viewport based on panning, rotation, or zooming. Creating smooth
visualizations under such map dynamics induces challenging geometric problems, e.g.,
continuous generalization [12] or dynamic map labeling [2]. In this paper, we focus
on map labeling and take a trajectory-based view on it. In many applications, e.g., car
navigation, a movement trajectory is known in advance and it becomes interesting to
optimize the visualization of the map locally along this trajectory.

Selecting and placing a maximum number of non-overlapping labels for various
map features is an important cartographic problem. Labels are usually modeled as rect-
angles and a typical objective in a static map is to find a maximum (possibly weighted)
independent set of labels. This is known to be NP-complete [6]. There are several
approximation algorithms and PTAS’s in different labeling models [1, 5], as well as
practically useful heuristics [13, 14].

With the increasing popularity of interactive dynamic maps, e.g., as digital globes
or on mobile devices, the static labeling problem has been translated into a dynamic
setting. Due to the temporal dimension of the animations occurring during map move-
ment, it is necessary to define a notion of temporal consistency or coherence for map
labeling as to avoid distracting effects such as jumping or flickering labels [2]. Previ-
ously, consistent labeling has been studied from a global perspective under continuous
zooming [3] and continuous rotation [8]. In practice, however, an individual map user
with a mobile device, e.g., a tourist or a car driver, is typically interested only in a spe-
cific part of a map and it is thus often more important to optimize the labeling locally
for a certain trajectory of the map viewport than globally for the whole map.

We introduce a versatile trajectory-based model for dynamic map labeling, and de-
fine three label activity models that guarantee consistency. We apply this model to point
feature labeling for a viewport that moves and rotates along a differentiable trajectory
in a fixed-scale base map in a forward-facing way. Although we present our approach in
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Fig. 1: Illustration of the viewport moving along a trajectory. Left the user’s view and right a
general view of the map and the viewport.

a very specific problem setting, our model is very general. Our approach can be applied
for every dynamic labeling problem that can be expressed as a set of label availability
intervals over time and a set of conflict intervals over time for pairs of labels. The exact
algorithms hold for the general model, the approximation algorithm itself is also appli-
cable, but the analysis of the approximation ratio requires problem-specific geometric
arguments, which must be adjusted to the specific setting.
Contribution. For our specific problem, we show that maximizing the number of vis-
ible labels integrated over time in our model is NP-complete; in fact it is evenW[1]-
hard and thus it is unlikely that a fixed-parameter tractable algorithm exists. We present
an integer linear programming (ILP) formulation for the general unrestricted case,
which is supported by a short experimental evaluation. For the special case of unit-
square labels we give an efficient approximation algorithm with different approximation
ratios depending on the actual label activity model. Moreover, we present polynomial-
time algorithms for the restricted case that no more than k labels are active at any time
for some constant k. We note that limiting the number of simultaneously active labels is
of practical interest as to avoid overly dense labelings, in particular for dynamic maps
on small-screen devices such as in car navigation systems. Due to space constraints we
omitted some proofs, which can be found in the full version [7] of the paper.

2 Trajectory-Based Labeling Model

LetM be a labeled north-facing, fixed-scale map, i.e., a set of points P = {p1, . . . , pN}
in the plane together with a corresponding set L = {`1, . . . , `N} of labels. Each label `i
is represented by an axis-aligned rectangle of individual width and height. We call the
point pi the anchor of the label `i. Here we assume that each label has an arbitrary but
fixed position relative to its anchor, e.g., with its lower left corner coinciding with the
anchor. The viewport R is an arbitrarily oriented rectangle of fixed size that defines the
currently visible part of M on the map screen. The viewport follows a trajectory that
is given by a continuous differentiable function T : [0, 1] → R2. For an example see
Fig. 1. More precisely, we describe the viewport by a function V : [0, 1]→ R2×[0, 2π].
The interpretation of V (t) = (c, α) is that at time t the center of the rectangle R is
located at c and R is rotated clockwise by the angle α relatively to a north base line of
the map. Since R moves along T we define V (t) = (T (t), α(t)), where α(t) denotes
the direction of T at time t. For simplicity, we sometimes refer toR at time t as V (t). To
ensure good readability, we require that the labels are always aligned with the viewport



axes as the viewport changes its orientation, i.e., they rotate around their anchors by the
same angle α(t), see Fig. 1. We denote the rotated label rectangle of ` at time t by `(t).

We say that a label ` is present at time t, if V (t) ∩ `(t) 6= ∅. As we consider the
rectangles `(t) and V (t) to be closed, we can describe the points in time for which `
is present by closed intervals. We define for each label ` the set Ψ` that describes all
disjoint subintervals of [0, 1] for which ` is present, thus Ψ` = {[a, b] | [a, b] ⊆ [0, 1] is
maximal so that ` is present at all t ∈ [a, b]}. Further, we define the disjoint union Ψ =
{([a, b], `) | [a, b] ∈ Ψ` and ` ∈ L} of all Ψ`. We abbreviate ([a, b], `) ∈ Ψ by [a, b]`
and call [a, b]` ∈ Ψ a presence interval of `. In the remainder of this paper we denote
the number of presence intervals by n.

Two labels ` and `′ are in conflict with each other at time t if `(t) ∩ `′(t) 6= ∅.
If `(t) ∩ `′(t) ∩ V (t) 6= ∅ we say that the conflict is present at time t. As in [8] we can
describe the occurrences of conflicts between two labels `, `′ ∈ L by a set of closed
intervals: C`,`′ = {[a, b] ⊆ [0, 1] | [a, b] is maximal and ` and `′ are in conflict at
all t ∈ [a, b]}. We define the disjoint union C = {([a, b], `, `′) | [a, b] ∈ C`,`′ and
`, `′ ∈ L} of all C`,`′ . We abbreviate ([a, b], `, `′) ∈ C as [a, b]`,`′ and call it a conflict
interval of ` and `′. Two presence intervals [a, b]` and [c, d]`′ are in conflict if there is a
conflict [f, g]`,`′ ∈ C s.t. the intersection of the intervals [f, g]`,`′ ∩ [a, b]`∩ [c, d]`′ 6= ∅.

The tuple (P,L, Ψ,C) is called an instance of trajectory-based labeling. Note that
the essential information of T is implicitly given by Ψ and C and that for each la-
bel ` ∈ L there can be several presence intervals. In this paper we assume that Ψ and C
is given as input. In practice, however, we usually first need to compute Ψ and C given
a continuous and differentiable trajectory T . An interesting special case is that T is a
continuous, differentiable chain of m circular arcs (possibly of infinite radius), e.g., ob-
tained by approximating a polygonal route in a road network. Niedermann [11] showed
that in this case the set Ψ can be computed inO(m ·N) time and the set C inO(m ·N2)
time. His main observation was that for each arc of T the viewport can in fact be treated
as a huge label and that “conflicts” with the viewport correspond to presence intervals.
We refer to [11, Chapter 15] for details.

Next we define the activity of labels, i.e., when to actually display which of the
present labels on screen. We restrict ourselves to closed and disjoint intervals describing
the activity of a label ` and define the set Φ` = {[a, b] ⊆ [0, 1] | [a, b] is maximal such
that ` is active at all t ∈ [a, b]}, as well as the disjoint union Φ = {([a, b], `) | [a, b] ∈ Φ`
and ` ∈ L} of all Φ`. We abbreviate ([a, b], `) ∈ Φ with [a, b]` and call [a, b]` ∈ Φ an
active interval of `.

It remains to define an activity model restricting Φ in order to obtain a reasonable
labeling. Here we propose three activity models AM1, AM2, AM3 with increasing
flexibility. All three activity models exclude overlaps of displayed labels and guarantee
consistency criteria introduced by Been et al. [2], i.e., labels must not flicker or jump.
To that end they share the following properties (A) a label ` can only be active at time t
if it is present at time t, (B) to avoid flickering and jumping each presence interval of `
contains at most one active interval of `, and (C) if two labels are in conflict at a time t,
then at most one of them may be active at t to avoid overlapping labels.

What distinguishes the three models are the possible points in time when labels can
become active or inactive. The first and most restrictive activity model AM1 demands



that each activity interval [a, b]` of a label ` must coincide with a presence interval of `.
The second activity model AM2 allows an active interval of a label ` to end earlier than
the corresponding presence interval if there is a witness label `′ for that, i.e., an active
interval for ` may end at time c if there is a starting conflict interval [c, d]`,`′ and the
conflicting label `′ is active at c. However, AM2 still requires every active interval to
begin with the corresponding presence interval. The third activity model AM3 extends
AM2 by also relaxing the restriction regarding the start of active intervals. An active
interval for a label ` may start at time c if a present conflict [a, c]`,`′ involving ` and an
active witness label `′ ends at time c. In this model active intervals may begin later and
end earlier than their corresponding presence intervals if there is a visible reason for the
map user to do so, namely the start or end of a conflict with an active witness label.

A common objective in both static and dynamic map labeling is to maximize the
number of labeled points. Often, however, certain labels are more important than oth-
ers. To account for this, each label ` can be assigned a weight W` that corresponds
to its significance. Then we define the weight of an interval [a, b]` ∈ Φ as w([a, b]`) =
(b−a)·W`. Given an instance (P,L, Ψ,C), then with respect to one of the three activity
models we want to find an activity Φ that maximizes

∑
[a,b]`∈Φ w([a, b]`); we call this

optimization problem GENERALMAXTOTAL. If we require that at any time t at most k
labels are active for some k, we call the problem k-RESTRICTEDMAXTOTAL. In par-
ticular the latter problem is interesting for small-screen devices, e.g., car navigation
systems, that should not overwhelm the user with additional information.

3 Solving GENERALMAXTOTAL

We first prove that GENERALMAXTOTAL is NP -complete. The membership of GEN-
ERALMAXTOTAL in NP follows from the fact that the start and the end of an active
interval must coincide with the start or end of a presence interval or a conflict interval.
Thus, there is a finite number of candidates for the endpoints of the active intervals so
that a solution L can be guessed. Verifying that L is valid in one of the three models and
that its value exceeds a given threshold can obviously be checked in polynomial time.

For theNP -hardness we apply a straight-forward reduction from theNP-complete
maximum independent set of rectangles problem [6]. We simply interpret the set of
rectangles as a set of labels with unit weight, choose a short vertical trajectory T and a
viewport R that contains all labels at any point of T . Since the conflicts do no change
over time, the reduction can be used for all three activity models. By means of the
same reduction and Marx’ result [10] that finding an independent set for a given set of
axis-parallel unit squares isW[1]-hard we derive the next theorem.

Theorem 1. GENERALMAXTOTAL is NP-complete and W[1]-hard for all activity
models AM1–AM3.

As a consequence, GENERALMAXTOTAL is not fixed-parameter tractable unless
W[1] = FPT . Note that this also means that for k-RestrictedMaxTotal we cannot
expect to find an algorithm that runs in O(p(n) · C(k)) time, where p(n) is a poly-
nomial that depends only on the number n of presence intervals and the computable
function C(k) depends only on the parameter k.



3.1 Integer Linear Programming for GENERALMAXTOTAL

Since we are still interested in finding an optimal solution for GENERALMAXTOTAL
we have developed integer linear programming (ILP) formulations for all three activity
models. We present the formulation for the most involved model AM3 and then argue
how to adapt it to the simpler models AM1 and AM2.
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Fig. 2: Depiction of presence intervals
(light gray), active intervals (hatched), and
conflicts (dark gray).

We define E to be the totally ordered set
of the endpoints of all presence and all con-
flict intervals and include 0 and 1; see Fig. 2.
We call each interval [c, d] between two con-
secutive elements c and d in E an atomic seg-
ment and denote the i-th atomic segment ofE
by E(i). Further, let X(`, i) be the set of la-
bels that are in conflict with ` duringE(i−1),
but not during E(i), i.e., the conflicts end
with E(i−1). Analogously, let Y (`, i) be the
set of labels that are in conflict with ` during E(i + 1), but not during E(i), i.e., the
conflicts begin with E(i + 1). For each label ` we introduce three binary variables
bi, xi, ei ∈ {0, 1} and the following constraints.

b`i = x`i = e`i = 0 ∀1 ≤ i ≤ |E| s.t. ∀[c, d] ∈ Ψ` : E(i) ∩ [c, d] = ∅ (1)∑
j∈J

b`j ≤ 1 and
∑
j∈J

e`j ≤ 1 ∀[c, d] ∈ Ψ` where J = {j | E(j) ⊆ [c, d]} (2)

x`i + x`
′

i ≤ 1 ∀1 ≤ i ≤ |E| ∀[c, d]`,`′ ∈ C : E(i) ⊆ [c, d] (3)

x`i−1 + b`i = x`i + e`i−1 ∀1 ≤ i ≤ |E| (set x0 = e0 = 0) (4)

b`j ≤
∑

`′∈X(`,j)

x`
′

j−1 ∀[c, d]` ∈ Ψ ∀E(j) ⊂ [c, d]` with c 6∈ E(j) (5)

e`j ≤
∑

`′∈Y (`,j)

x`
′

j+1 ∀[c, d]` ∈ Ψ ∀E(j) ⊂ [c, d]` with d 6∈ E(j) (6)

Subject to these constraints we maximize
∑
`∈L

∑|E|−1
i=1 x`i · w(E(i)). The intended

meaning of the variables is that x`i = 1 if ` is active during E(i) and otherwise x`i = 0.
Variable b`i = 1 if and only if E(i) is the first atomic segment of an active interval
of `, and analogously e`i = 1 if and only if E(i) is the last atomic segment of an
active interval of `. Recall the properties of the activity models as defined in Section 2.
Constraints (1)–(3) immediately ensure properties (A)–(C), respectively. Constraint (4)
means that if ` is active during E(i − 1) (x`i−1 = 1), then it must either stay active
during E(i) (x`i = 1) or the active interval ends with E(i − 1) (e`i−1 = 1), and if `
is active during E(i) (x`i = 1) then it must be active during E(i − 1) (x`i−1 = 1)
or the active interval begins with E(i) (b`i = 1). Constraint (5) enforces that for ` to
become active with E(j) at least one witness label of X(`, j) is active during E(j−1).
Analogously, constraint (6) enforces that for ` to become inactive with E(j) at least
one witness label of Y (`, j) is active during E(j + 1). Note that without the explicit
constraints (5) and (6) two conflicting labels could switch activity at any point during
the conflict interval rather than only at the endpoints.



Theorem 2. Given an instance I = (P,L, Ψ,C), the ILP (1)–(6) computes an optimal
solution Φ of GENERALMAXTOTAL in AM3. It uses O(N · (|Ψ |+ |C|)) variables and
constraints.

We can adapt the above ILP to AM1 and AM2 as follows. For AM2 we replace
the right hand side of constraint (5) by 0, and for AM1 we also replace the right hand
side of constraint (6) by 0. This excludes exactly the start- and endpoints of the activity
intervals that are forbidden in AM1 or AM2. It is easy to see that these ILP formulations
can be modified further to solve k-RESTRICTEDMAXTOTAL by adding the constraint∑
`∈L x

`
i ≤ k for each atomic segment E(i).

Corollary 1. Given an instance I = (P,L, Ψ, C), GENERALMAXTOTAL and k-RE-
STRICTEDMAXTOTAL can be solved in AM1, AM2, and AM3 by an ILP that uses
O(N · (|Ψ |+ |C|)) variables and constraints.

Experiments. We have evaluated the ILP in all three models using Open Street Map
data of the city center of Karlsruhe (Germany) which contains more than 2,000 labels.
To this end we generated 1,000 shortest paths on the road network of Karlsruhe by
selecting source and target vertices uniformly at random and transformed those shortest
paths into trajectories consisting of circular arcs. The experimental evaluation in the full
version [7] indicates that the ILP formulations are indeed applicable in practice.

3.2 Approximation of GENERALMAXTOTAL

In this section we describe a simple greedy algorithm for GENERALMAXTOTAL in all
three activity models assuming that all labels are unit squares anchored at their lower-
left corner. Further, we assume that the weight of each presence interval [a, b]` is its
length w([a, b]`) = b− a.

Starting with an empty solution Φ, our algorithm GREEDYMAXTOTAL removes the
longest interval I from Ψ and adds it to Φ, i.e., I is set active. Then, depending on the
activity model, it updates all presence intervals that have a conflict with I in Ψ and
continues until the set Ψ is empty.

For AM1 the update process simply removes all presence intervals from Ψ that
are in conflict with the newly selected interval I . For AM2 and AM3 let Ij ∈ Ψ and
let I1j , . . . , I

k
j be the longest disjoint sub-intervals of Ij that are not in conflict with the

selected interval I . We assume that I1j , . . . , I
k
j are sorted by their left endpoint. The

update operation for AM2 replaces every interval Ij ∈ Ψ that is in conflict with I
with I1j . In AM3 we replace Ij by I1j , if I1j is not fully contained in I . Otherwise,
Ij is replaced by Ikj . Note that this discards some candidate intervals, but the chosen
replacement of Ij is enough to prove the approximation factor. Note that after each
update all intervals in Ψ are valid choices according to the specific model. Hence, we
can conclude that the result Φ of GREEDYMAXTOTAL is also valid in that model.

In the following we analyze the approximation quality of GREEDYMAXTOTAL. To
that end we first introduce a purely geometric packing lemma. Similar packing lemmas
have been introduced before, but to the best of our knowledge for none of them it is
sufficient that only one prescribed corner of the packed objects lies within the container.



Lemma 1. Let C be a circle of radius
√
2 in the plane and let Q be a set of non-

intersecting closed and axis-parallel unit squares with their bottom-left corner in C.
Then Q cannot contain more than eight squares.

Based on Lemma 1 we now show that for any label with anchor p there is no point
of time t ∈ [0, 1] for which there can be more than eight active labels whose anchors
are within distance

√
2 of p. We call a set X ⊆ Ψ conflict-free if it contains no pair of

presence intervals that are in conflict. Further, we say that X is in conflict with I ∈ Ψ if
every element of X is in conflict with I , and we say that X contains t ∈ [0, 1] if every
element of X contains t.

Lemma 2. For every t ∈ [0, 1] and every I ∈ Ψ any maximum cardinality conflict-free
set XI(t) ⊆ Ψ that is in conflict with I and contains t satisfies |XI(t)| ≤ 8.

With this lemma we can finally obtain the approximation guarantees for GREEDY-
MAXTOTAL for all activity models.

Theorem 3. Assuming that all labels are unit squares and w([a, b]) = b−a, GREEDY-
MAXTOTAL is a 1/24-, 1/16-, 1/8-approximation for AM1–AM3, respectively, and needs
O(n log n) time for AM1 and O(n2) time for AM2 and AM3.

Proof. To show the approximation ratios, we consider an arbitrary step of GREEDY-
MAXTOTAL in which the presence interval I = [a, b]` is selected from Ψ . Let CI` be
the set of presence intervals in Ψ that are in conflict with I .

Consider the model AM1. Since I is the longest interval in Ψ when it is chosen,
the intervals in CI` must be completely contained in J = [a− w(I), b+ w(I)]. As CI`
contains all presence intervals that are in conflict with I it is sufficient to consider J to
bound the effect of selecting I . Obviously, the interval J is three times as long as I . By
Lemma 2 we know that for any XI(t) it holds that |XI(t)| ≤ 8 for all t ∈ J . Hence, in
an optimal solution there can be at most eight active labels at each point t ∈ J that are
discarded when [a, b]` is selected. Thus, the cost of selecting [a, b]` is at most 3·8·w(I).

For AM2 we apply the same arguments, but restrict the interval J to J = [a, b +
w(I)], which is only twice as long as I . To see that consider for an interval [c, d]`′ ∈ CI`
the prefix [c, a] if it exists. If [c, a] does not exist (because a < c), removing [c, d]`′

from Ψ changes Ψ only in the range of J . If [c, a] exists, then again Ψ is only changed
in the range of I , because by definition [c, d]`′ is shortened to an interval that at least
contains [c, a] and is still contained in Ψ . Thus, the cost of selecting I is at most 2·8w(I).

Analogously, for AM3 we can argue that it is sufficient to consider the interval J =
[a, b]. By definition of the update operation of GREEDYMAXTOTAL at least the prefix
or suffix subinterval of each [c, d]`′ ∈ CI` remains in Ψ that extends beyond I (if such
an interval exists). Thus, selecting I influences only the interval J and its cost is at most
8w(I). The approximation bounds of 1/24, 1/16, and 1/8 follow immediately.

We use a heap to achieve the time complexity O(n log n) of GREEDYMAXTOTAL
for AM1 since each interval is inserted and removed exactly once. For AM2 and AM3
we use a linear sweep to identify the longest interval contained in Ψ . In each step we
need O(n) time to update all intervals in Ψ , and we need a total of O(n) steps. Thus,
GREEDYMAXTOTAL needs O(n2) time in total for AM2 and AM3. ut



4 Solving k-RESTRICTEDMAXTOTAL

Corollary 1 showed that k-RESTRICTEDMAXTOTAL can be solved by integer linear
programming in all activity models. In this section we prove that unlike GENERAL-
MAXTOTAL the problem k-RESTRICTEDMAXTOTAL can actually be solved in poly-
nomial time. We give a detailed description of our algorithm for AM1, and then show
how it can be extended to AM2. Note that solving k-RESTRICTEDMAXTOTAL is re-
lated to finding a maximum cardinality k-colorable subset of n intervals in interval
graphs. This can be done in polynomial time in both n and k [4]. However, we have to
consider additional constraints due to conflicts between labels, which makes our prob-
lem more difficult. First, we discuss how to solve the case for k = 1, then give an
algorithm that solves k-RESTRICTEDMAXTOTAL for k = 2, and finally extend this
result recursively to any constant k > 2.

4.1 An Algorithm for 2-RESTRICTEDMAXTOTAL

We start with some definitions before giving the actual algorithm. We assume that the
intervals of Ψ = {I1, . . . , In} are sorted in non-decreasing order by their left endpoints;
ties are broken arbitrarily. First note that for the case that at most one label can be active
at any given point in time (k = 1), conflicts between labels do not matter. Thus, it is
sufficient to find an independent subset of Ψ of maximum weight. This is equivalent
to finding a maximum weight independent set on interval graphs, which can be done
in O(n) time using dynamic programming given n sorted intervals [9]. We denote this
algorithm by A1. Let L1[Ij ] be the set of intervals that lie completely to the left of the
left endpoint of Ij . AlgorithmA1 basically computes a table T1 indexed by the intervals
in Ψ , where an entry T1[Ij ] stores the value of a maximum weight independent set Q of
L1[Ij ] and a pointer to the rightmost interval in Q.

We call a pair of presence intervals (Ii, Ij), i < j, a separating pair if Ii and Ij
overlap and are not in conflict with each other. Further, a separating pair v = (Ip, Iq)
is smaller than another separating pair w = (Ii, Ij) if and only if p < i or p = i and
q < j. This induces a total order and we denote the ordered set of all separating pairs by
S2={v1, . . . ,vz}. The weight of a separating pair v is defined as w(v) =

∑
I∈v w(I).

We observe that a separating pair v = (Ii, Ij) contained in a solution of 2-RE-
STRICTEDMAXTOTAL splits the set of presence intervals into two independent subsets.
Specifically, a left (right) subset L2[v] (R2[v]) that contains only intervals which lie
completely to the left (right) of the intersection of Ii and Ij and are neither in conflict
with Ii nor Ij ; see Fig. 3.

We are now ready to describe our dynamic programming algorithm A2. For ease
of notation we add two dummy separating pairs to S2. One pair v0 with presence in-
tervals strictly to the left of 0 and one pair vz+1 with presence intervals strictly to the
right of 1. Since all original presence intervals are completely contained in [0, 1] every
optimal solution contains both dummy separating pairs. Our algorithm computes a one-
dimensional table T2, where for each separating pair v there is an entry T2[v] that stores
the value of the optimal solution for L2[v]. We compute T2 from left to right starting
with the dummy separating pair v0 and initialize T2[v0] = 0. Then, we recursively de-
fine T2[vj ] for every vj ∈ S2 as T2[vj ] = maxi<j{T2[vi]+w(vi)+A1(vi,vj) | vi ∈
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Fig. 3: Illustration of presence intervals. Intervals that are in conflict are connected by a dotted
line. Both (Ii, Ij) and (Ip, Iq) are separating pairs. The intervals ofL2[i, j] (R2[p, q]) are marked
by a left (right) arrow.

S2, vi ⊆ L2[vj ], vj ⊆ R2[vi]}. Additionally, we store a backtracking pointer to the
predecessor pair that yields the maximum value. In other words, for computing T2[vj ]
we consider all possible direct predecessors vi ∈ S2 with i < j, vi ∩ vj = ∅, and no
conflict with vj . Each such vi induces a candidate solution whose value is composed
of T2[vi], w(vi), and the value of an optimal solution of algorithm A1 for the intervals
between vi and vj with vi and vj active.

Since by construction L2[vz+1] = Ψ ∪ v0, the optimal solution to 2-RESTRIC-
TEDMAXTOTAL is stored in T2[vz+1] once v0 is removed. To compute a single entry
T2[vj ] our algorithm needs to consider all possible separating pairs preceding vj , and
for each of them obtain the optimal solution from algorithm A1 under some additional
constraints. For the call A1(vi,vj) in the recursive equation above, we distinguish two
cases. If the rightmost endpoint of vi is to the left of the leftmost endpoint of vj then we
run algorithmA1 on the set of intervalsL2[vj ]∩R2[vi] and obtain the valueA1(vi,vj).
Otherwise, there is an overlap between an interval Ia of vi and an interval Ib of vj .
Since for k = 2 no other interval can cross this overlap, we actually make two calls
to A1, once on the set R2[vi] ∩ L2[(Ia, Ib)] and once on the set R2[(Ia, Ib)] ∩ L2[vj ].
We add both values to obtain A1(vi,vj). Since we run algorithm A1 for each of O(z)
separating pairs, the time complexity to compute a single entry of T2 is O(nz). To
compute the whole table the algorithm repeats this stepO(z) times, which yields a total
time complexity of O(nz2). Note that the number of separating pairs z is in O(n2).

We prove the correctness of the algorithm by contradiction. Assume that there exists
an instance for which our algorithm does not compute an optimal solution and let OPT
be an optimal solution. This means, that there is a smallest separating pair vj for which
the entry in T2[vj ] is less than the value of OPT for L2[vj ]. Note that vj cannot be
the dummy separating pair v0 since T2[v0] is trivially correct. Let vi be the rightmost
separating pair in OPT that precedes vj and is disjoint from it (possibly vi = v0). Since
there is no other disjoint separating pair between vi and vj in OPT, all intervals in OPT
between vi and vj form a subset of R2[vi] ∩ L2[vj ] that is a valid configuration for
k = 1. We can obtain an optimal solution for k = 1 of the intervals inR2[vi]∩L2[vj ] by
computing A1(vi,vj) as described above. Since, by assumption, T2[vi] is optimal, A1

is correct [9], and our algorithm explicitly considers all possible preceding separating
pairs including vi, the entry T2[vj ] must be at least as good as OPT for L[vj ]. This is a
contradiction and the correctness of A2 follows.

Theorem 4. AlgorithmA2 solves 2-RESTRICTEDMAXTOTAL in AM1 in O(nz2) time
and O(z) space, where z is the number of separating pairs in the input instance.



4.2 An Algorithm for k-RESTRICTEDMAXTOTAL

In the following we extend the dynamic programming algorithm A2 to a general algo-
rithmAk for the case k > 2. To this end, we extend the definition of separating pairs to
separating k-tuples. A separating k-tuple v is a set of k presence intervals that are not
in conflict with each other and that have a non-empty intersection Yv =

⋂
I∈v I . We

say a separating k-tuple v is smaller than a separating k-tuple w if Yv begins to the left
of Yw. Ties are broken arbitrarily. This lets us define the ordered set Sk = {v1, . . . ,vz}
of all separating k-tuples of a given set of presence intervals. We say a set C of pres-
ence intervals is k-compatible if no more than k intervals in C intersect at any point
and there are no conflicts in C. Two separating k-tuples v and w are k-compatible
if they are disjoint and v ∪ w is k-compatible. The definitions of the sets R2[v] and
L2[v] extend naturally to the sets Rk[v] and Lk[v] of all intervals completely to the
right (left) of Yv and not in conflict with any interval in v. Now, we recursively de-
fine the algorithm Ak that solves k-RESTRICTEDMAXTOTAL given a pair of active
k-compatible boundary k-tuples. Note that in the recursive definition these boundary
tuples may remain k-dimensional even in Ak′ for k′ < k. For Ak we define as bound-
ary tuples two k-compatible dummy separating k-tuples v0 and vz+1 with all presence
intervals strictly to the left of 0 and to the right of 1, respectively. The algorithm fills a
one-dimensional table Tk. Similarly to the case k = 2, each entry Tk[v] stores the value
of the optimal solution for Lk[v], i.e., the final solution can again be obtained from
Tk[vz+1]. We initialize Tk[v0] = 0. Then, the remaining entries of Tk can be obtained
by computing Tk[vj ] = maxi<j{Tk[vi] + w(vi) + Ak−1(ṽi, ṽj) | vi ∈ Sk, vi ⊆
Lk[vj ] ∪ v0, vj ⊆ Rk[vi] ∪ vz+1, v0 ∪ vz+1 ∪ vi ∪ vj is k-compatible}, which uses
the algorithm Ak−1 recursively on a suitable subset of presence intervals between the
boundary tuples ṽi and ṽj . Here ṽi is defined as the union of the tuple vi and all inter-
vals in v0 ∪ vz+1 that intersect the right endpoint of Yvi

; analogously ṽj is defined as
the union of the tuple vj and all intervals in v0 ∪ vz+1 that intersect the left endpoint
of Yvi . This makes sure that in each subinstance all active intervals that are relevant for
that particular subinstance are known. Note that by the k-compatibility condition ṽi and
ṽj contain at most k elements each. In fact, Ak−1(ṽi, ṽj) uses ṽi and ṽj as boundary
k-tuples (and thus does not create dummy boundary tuples) and the set Rk[vi]∩Lk[vj ]
as the set of presence intervals from which separating (k − 1)-tuples can be formed.

Theorem 5. AlgorithmAk solves k-RESTRICTEDMAXTOTAL in AM1 inO(nk
2+k−1)

time and O(nk) space.

It is natural to ask whether it is possible to extend the dynamic program described
above to the models AM2 and AM3. With some modifications and at the expense of
another polynomial factor in the running time we can extend algorithm Ak to the ac-
tivity model AM2. The important difference between AM1 and AM2 is that presence
intervals can be truncated at their right side if there is an active conflicting witness label
causing the truncation. Hence, we need to add for each presence interval, all possible
subintervals to Ψ that might be contained in an optimal solution. Moreover special care
needs to be taken to ensure the witness condition of AM2 for all truncated intervals. A
more detailed discussion of this extension can be found in the full version [7].



Theorem 6. k-RESTRICTEDMAXTOTAL in AM2 can be solved in polynomial time.

It remains open whether k-RESTRICTEDMAXTOTAL can be solved in polynomial
time in AM3. Another extension of the dynamic programming algorithm is unlikely,
since in AM3 the left and right subinstances created by a separating k-tuple v may
have dependencies and thus cannot be solved independently any more. This is because
a single original presence interval I can have subintervals both in Lk[v] and Rk[v],
which cannot simultaneously be active.

Since the running time of our algorithms are, even for small k, prohibitively ex-
pensive in practice, we propose an approximation algorithm for k-RESTRICTEDMAX-
TOTAL based on GREEDYMAXTOTAL, which can be found in the full version [7].

Theorem 7. There exists an O(n2)-time approximation algorithm for for k-RESTRIC-
TEDMAXTOTAL with unit squares for AM1–AM3 with approximation ratios 1/min{3+
3k, 27}, 1/min{3 + 2k, 19}, 1/min{3 + k, 11}, respectively.
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