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Abstract. Up to now, research on speed-up techniques for DIJKSTRA’s algo-
rithm focused on single-criteria scenarios. The goal was to find the quickest route
within a transportation network. However, the quickest route is often not the best
one. A user might be willing to accept slightly longer travel times if the cost of
the journey is less. A common approach to cope with such a situation is to find
Pareto-optimal (concerning other metrics than travel times) routes. Such routes
have the property that each route is better than any other route with respect to at
least one metric under consideration, e.g., travel costs or number of train changes.
In this work, we study multi-criteria search in road networks. On the one hand,
we focus on the problem of limiting the number of Pareto paths. On the other
hand, we present a multi-criteria variant of our recent SHARC algorithm.

1 Introduction

The computation of quickest paths in graphs is used in many real-world applications
like route planning in road networks, timetable information for railways, or scheduling
for airplanes. In general, DIJKSTRA’s algorithm [1] finds a quickest path between a
given source s and target t. Unfortunately, the algorithm is far too slow to be used
on huge datasets. Thus, several speed-up techniques have been developed (see [2] for
an overview) that can retrieve the quickest path in a road network within less than a
millisecond.

However, the quickest route in transportation networks is often not the “best” one.
For example, users traveling by car may be willing to accept (slightly) longer travel
times if the costs of the journey (toll, fuel consumption) is lower. A possible approach
to such better routes is to run a multi-criteria query which incorporates other metrics
besides travel times for finding a set of attractive routes from which a user can choose.
Unfortunately, all methods developed during the last years only work in single-criteria
scenarios. We here present an augmented version of our recently developed SHARC
(SHortcuts + ARC-flags) algorithm working in such a multi-criteria scenario.

1.1 Related Work

A lot of speed-up techniques for single-criteria scenarios have been developed during
the last years. Due to space limitations, we direct the interested reader to [2], which
gives a recent overview over single-criteria routing techniques.
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Basics. The straightforward approach to find all Pareto optimal paths is the gener-
alization [3, 4] of DIJKSTRA’s algorithm: Each node v ∈ V gets a number of multi-
dimensional labels assigned, representing all Pareto paths to v. For the bicriteria case,
[3] was the first presenting such a generalization, while [5] describes multi-criteria al-
gorithms in detail. By this generalization, DIJKSTRA loses the label-setting property,
i.e., now a node may be visited more than once. It turns out that a crucial problem for
multi-criteria routing is the number of labels assigned to the nodes. The more labels are
created, the more nodes are reinserted in the priority queue yielding considerably slow-
downs compared to the single-criteria setup. In the worst case, the number of labels can
be exponential in |V | yielding impractical running times [3]. Hence, [3, 6] present an
FPAS for the bicriteria shortest path problem.

Speed-up Techniques. Most of the work on speed-up techniques for multi-criteria sce-
narios was done on networks deriving from timetable information. In such networks, [7]
observed that the number of labels is often limited such that the brute force approach for
finding all Pareto paths is often feasible. Experimental studies finding all Pareto paths
in timetable graphs can be found in [8–10]. However, to the best of our knowledge, all
previous work only uses basic speed-up techniques for accelerating the multi-criteria
query. In most cases a special version of A∗ is adapted to this scenario. Unfortunately,
the resulting speed-ups only reach up to a factor of 5 which is much less than for the
(single-criteria) speed-up techniques developed during the last years.

1.2 Our Contribution

In this work, we present the first efficient speed-up technique for multi-criteria routing,
namely an augmented version of SHARC [11]. Similar to the time-dependent version
of SHARC [12], the key observation is that the basic concept of SHARC stays un-
touched. By augmenting the main subroutines of SHARC to multi-criteria variants and
by changing the intuition when setting Arc-Flags [13, 14], we end up in a very efficient
multi-criteria speed-up technique.

We start our work on multi-criteria routing with basic definitions in Section 2. We
also shortly report how SHARC works in a single-criteria scenario. In Section 3, we
show how the main ingredients of SHARC—DIJKSTRA’s algorithm, contraction, and
arc-flags—can be augmented such that correctness can be guaranteed in a multi-criteria
scenario. It turns out that adaption of contraction is straight-forward, while for arc-flags,
we have to alter the intuition of a true arc-flag slightly. In Section 4 we assemble our
augmented ingredients to present a multi-criteria variant of SHARC. The key observa-
tion is that the basic concept of SHARC stays untouched, we only need to additionally
augment the last ingredient, i.e., arc-flags refinement. This routine can be generalized
by substituting local single-criteria DIJKSTRA-searches by multi-criteria ones.

The experimental evaluation in Section 5 confirms the excellent speed-up achieved
by our multi-criteria variant of SHARC: The speed-up over the generalized DIJKSTRA’s
algorithm is the same as in a single-criteria scenario. However, it turns out that in road
networks, multi-criteria searches yield too many possible routes to the target. Hence,
we introduce several reasonable constraints how to prune unattractive paths both during
preprocessing and queries. Here, the key observation is that we define a main metric



(we use travel times) and only allow other paths if they do not yield too long of a delay.
Moreover, we also introduce a constraint called pricing. Paths with longer travel times
are only accepted if they yield significant improvements in other metrics. With these
additional constraints we are able to compute reasonable Pareto paths in continental-
sized road networks. In addition, we run experiments with similar metrics where we do
not need the just mentioned constraints and also present results on synthetic data sets.
We conclude our work with a summary and possible future work in Section 6.

2 Preliminaries

The main difference between single- and multi-criteria routing is that the labels assigned
to edges contain more than one weight. In this work, we restrict ourselves to vectors in
R

k
+. Let L = (w1, . . . ,wk) and L′ = (w′1, . . . ,w

′
k) be two labels. We use the following

notation and operations in Rk
+: L dominates another label L′ if wi < w′i holds for one

1 ≤ i ≤ k and wi ≤ w′i holds for each 1 ≤ j ≤ k. The sum of L and L′ is defined by
L⊕L′ = (w1 + w′1, . . . ,wk + w′k). We call L = min1≤i≤k wi the minimum component of
L, the maximum component L is defined analogously.

We also restrict ourselves to directed graphs G = (V,E) with a length function len :
E→R

k
+, assigning a k-dimensional label to each edge. Note that we allow multi-edges.

The reverse graph←−G = (V,E) is the graph obtained from G by substituting each (u,v)∈
E by (v,u).

The 2-core of an undirected graph is the maximal node induced subgraph of mini-
mum node degree 2. The 2-core of a directed graph is the 2-core of the corresponding
simple, unweighted, undirected graph. All nodes not being part of the 2-core are called
1-shell nodes. Note that connected components within the 1-shell are trees. Since each
tree is attached to the 2-core, we call these trees attached trees.

A partition of V is a family C = {C0,C1, . . . ,Ck} of sets Ci ⊆V such that each node
v ∈ V is contained in exactly one set Ci. An element of a partition is called a cell. A
multilevel partition of V is a family of partitions {C 0,C 1, . . . ,C L−1} such that for each
l < L−1 and each Cl

i ∈C l a cell Cl+1
j ∈C l+1 exists with Cl

i ⊆Cl+1
j . In that case the cell

Cl+1
j is called the supercell of Cl

i . The supercell of a level-L−1 cell is V . Note that the
number of levels is denoted by L. We denote c j(u) the level- j cell u is assigned to. The
boundary nodes BC of a cell C are all nodes u ∈C for which at least one node v ∈V \C
exists such that (v,u) ∈ E or (u,v) ∈ E.

In a multi-criteria scenario, the length d(s, t) of an s–t path P = (e1, . . . ,er) is given
by len(e1)⊕ . . .⊕ len(er). In contrast to a single-criteria scenario, many paths exist
between two nodes that do not dominate each other. In this work, we are interested
in the Pareto-set D(s, t) = {d1(s, t) . . .dx(s, t)} consisting of all non-dominated path-
lengths di(s, t) between s and t. We call |D(s, t)| the size of a Pareto-set. Note that by
storing a predecessor for each di, we can compute all Pareto-paths as well.

SHARC-Routing. The original arc-flag approach [13, 14] first computes a partition C
of the graph and then attaches a bitvector to each edge e. A bitvector contains, for each
cell Ci ∈ C , a flag AFCi(e) which is true if a shortest path to a node in Ci starts with e.



A modified DIJKSTRA then only considers those edges for which the flag of the target
node’s cell is true. This idea was extended to a 2-level setup in [15]. Preprocessing of
static SHARC [11] is divided into three sections. During the initialization phase, we ex-
tract the 2-core of the graph and perform a multi-level partition of G. Then, an iterative
process starts. At each step i we first contract the graph by bypassing unimportant nodes
and set the arc-flags automatically for each removed edge. In the contracted graph we
compute the arc-flags of level i by growing a partial centralized shortest-path tree from
each cell Ci

j. In the finalization phase, we assemble the output-graph, refine arc-flags of
edges removed during contraction and finally reattach the 1-shell nodes removed at the
beginning.

The query of static SHARC is a multi-level Arc-Flags DIJKSTRA adapted from the
two-level Arc-Flags DIJKSTRA presented in [15]. The query is a modified DIJKSTRA
that operates on the output graph. The modifications are as follows: When settling a
node n, we compute the lowest level i on which n and the target node t are in the same
supercell. When relaxing the edges outgoing from n, we consider only those edges
having a set arc-flag on level i for the corresponding cell of t.

3 Augmenting Ingredients

From our augmentation of SHARC to a time-dependent scenario [12], we learned that
it is sufficient to augment its ingredients, i.e., local DIJKSTRA-searches, arc-flags com-
putation, and contraction. In this section we show how to augment all these ingredients
such that correctness is guaranteed even in a multi-criteria scenario.

3.1 Dijkstra

Computing a Pareto set D(s, t) can be done by a straightforward generalization of DIJK-
STRA’s algorithm, as presented in [3, 4]. For managing the different distance-vectors at
each node v, we maintain a list of labels list(v). The list at the source node s is initial-
ized with a label d(s,s) = (0, . . . ,0), any other list is empty. We insert d(s,s) to a priority
queue. Then, in each iteration step, we extract the label with the smallest minimum com-
ponent. Then for all outgoing edges (u,v) a temporary label d(s,v) = d(s,u)⊕ len(u,v)
is created. If d(s,v) is not dominated by any of the labels in list(v), we add d(s,v) to
list(v), add d(s,v) to the priority queue, and remove all labels from list(v) that are
dominated by d(s,v). We may stop the query as soon as list(t) 6= /0 and all labels in
the priority queue are dominated by all labels in list(t).

Pareto Path Graphs. In the following, we construct Pareto path graphs (PPG) by com-
puting D(s,u) for a given source s and all nodes u∈V , with our generalized DIJKSTRA
algorithm. We call an edge (u,v) a PPG-edge if L ∈ list(u) and L′ ∈ list(v) exist
such that L⊕ len(u,v) = L′. In other words, (u,v) is a PPG-edge iff it is part of at least
one Pareto-optimal path from s to v. Note that by this notion one edge of two parallel
ones can be a PPG-edge while the other one is not.



3.2 Arc-Flags

In a single-criteria scenario, an arc-flag AFC(e) denotes whether e has to be considered
for a shortest-path query targeting a node within C. In other words, the flag is set if
e is important for (at least one target node) in C. In [12], we adapted Arc-Flags to a
time-dependent scenario by setting a flag to true as soon as it is important for at least
one departure time. The adaption to a multi-criteria scenario is very similar: we set an
arc-flag AFC(e) to true, if e is important for at least one Pareto path targeting a node
in C.

Unlike in the time-dependent scenario—where we needed approximations—we can
settle for the straightforward approach for augmenting Arc-Flags. We build a Pareto
path graph in ←−G for all boundary nodes b ∈ BC of all cells C at level i. We stop the
growth as soon as all labels in the priority queue are dominated by all labels L(v,b)
assigned to the nodes v in the supercell of C. Then we set AFC(u,v) = true if (u,v) is a
PPG-edge for at least one PPG grown from all boundary nodes b ∈ BC. Moreover, we
set all own-cell flags to true.

Multi-Level Arc-Flags. SHARC is based on multi-level Arc-Flags. Hence, we need to
augment the concept of multi-level Arc-Flags to a multi-criteria scenario. The augmen-
tation is similar to the one to time-dependent networks. We describe a two-level setup
which can be extended to a multi-level scenario easily.

Preprocessing is done as follows. Arc-flags on the upper level are computed as de-
scribed above. For the lower flags, we grow a PPG in ←−G for all boundary nodes b on
the lower level. We may stop the growth as soon as all labels attached to the nodes in
the supercell of C dominate all labels in the priority queue. Then, we set an arc-flag to
true if the edge is a PPG edge of at least one Pareto path graph.

3.3 Contraction

Our augmented Pareto contraction routine is very similar to a static one: we first re-
duce the number of nodes by removing unimportant ones and—in order to preserve
Pareto paths between non-removed nodes—add new edges, called shortcuts, to the
graph. Then, we apply an edge-reduction step that removes unneeded shortcuts.

Node-Reduction. We iteratively bypass nodes until no node is bypassable any more.
To bypass a node x we first remove x, its incoming edges I and its outgoing edges O
from the graph. Then, for each combination of ei ∈ I and eo ∈ O, we introduce a new
edge with label len(ei)⊕ len(eo). Note that we explicitly allow multi-edges. Also note
that contraction gets more expensive in a multi-criteria scenario due to multi-edges. As
for static node reduction, we use a heap to determine the next bypassable node. Let
#shortcut be the number of new edges that would be inserted into the graph if x was
bypassed and let ζ (x) =#shortcut/(|I|+ |O|) be the expansion of node x. Furthermore,
let h(x) be the hop number of the hop-maximal shortcut. Then we set the key of a node x
within the heap to h(x)+10 ·ζ (x), smaller keys have higher priority. To keep the costs
of shortcuts limited we do not bypass a node if its removal results in a hop number
greater than h or an expansion greater than c. We say that the nodes that have been
bypassed belong to the component, while the remaining nodes are called core-nodes.



Edge-Reduction. We identify unneeded shortcuts by growing a Pareto path graph from
each node u of the core. We stop the growth as soon as all neighbors v of u have their
final Pareto-set assigned. Then we may remove all edges from u to v whose label is
dominated by at least one of the labels list(v). In order to limit the running time of
this procedure, we restrict the number of priority-queue removals to 1 000.

4 Multi-Criteria SHARC

With the augmented ingredients at hand, we are ready to augment SHARC. Remark-
ably, the augmentation is now very similar to time-dependent SHARC [12]. During
perprocessing, we apply the augmented routines from Section 3 instead of their single-
criteria counterparts, while the query is a modified multi-criteria DIJKSTRA pruning
unimportant edges.

Preprocessing runs in several phase, explained in the following. During the initializa-
tion phase, we extract the 2-core of the graph and perform a multi-level partition of G
according to an input parameter P. We can safely extract the 2-core since we can di-
rectly assign correct arc-flags to attached trees that are fully contained in a cell: Each
edge targeting the 2-core gets all flags assigned true while those directing away from the
2-core only get their own-cell flag set true. By removing 1-shell nodes before comput-
ing the partition we ensure that an attached tree is fully contained in a cell by assigning
all its nodes to the cell of its 2-core root. After the last step of our preprocessing we
simply reattach the nodes and edges of the 1-shell to the output graph.

After the initialization, our iterative process starts. Each iteration step is divided
into two parts: contraction and arc-flag computation. First, we apply a contraction step
according to Section 3. In order to perserve correctness of multi-criteria SHARC, we
have to use cell-aware contraction, i.e., a node u is never marked as bypassable if any of
its neighboring nodes is not in the same cell as u. We have to set arc-flags for all edges of
our output-graph, including those we remove during contraction. As for static SHARC,
we can set arc-flags for all removed edges automatically. We set the arc-flags of the
current and all higher levels depending on the tail u of the deleted edge. If u is a core
node, we only set the own-cell flag to true (and others to false) because this edge can
only be relevant for a query targeting a node in this cell. If u belongs to the component,
all arc-flags are set to true as a query has to leave the component in order to reach a
node outside this cell. Setting arc-flags of those edges not removed from the graph is
more time-consuming since we apply the preprocessing of multi-level Arc-Flags from
Section 3.

The final phase of our preprocessing-routine assembles the output graph. It contains
the original graph, shortcuts added during preprocessing and arc-flags for all edges of
the output graph. However, some edges may have no arc-flag set to true. As these edges
are never relaxed by our query algorithm, we directly remove such edges from the
output graph. Moreover, we improve on those flags set to true during the contraction
process. by Refinement of Arc-Flags. This is achieved by propagating flags of edges
outgoing from high-level nodes to those outgoing from low-level nodes. In a time-
independent scenario [11], we grow shortest path trees to find the so called exit nodes



of each node, while in a time-dependent scenario [12], we use profile graphs to deter-
mine these nodes. In our multi-criteria scenario, we now grow Pareto path graphs from
each node. The propergation itself stays untouched, the only difference is that a node
might have more than one predecessor, which all have to be examined when identify-
ing the corresponding outgoing edge. Unfortunately, growing Pareto path graphs can
get expensive. Hence, we limit the growth to n log(n)/|Vl |, where Vl denotes the nodes
in level l, priority-queue removals. In order to preserve correctness, we then may only
propagate the flags from the exit nodes to u if the stopping criterion is fulfilled before
this number of removals.

Query. Augmenting the SHARC-query is straightforward. For computing a Pareto-set
D(s, t), we use a modified multi-criteria DIJKSTRA (Section 3) that operates on the
output graph. The modifications are then the same as for the single-criteria variant of
SHARC: When settling a node n, we compute the lowest level i on which n and the tar-
get node t are in the same supercell. Moreover, we consider only those edges outgoing
from n having a set arc-flag on level i for the corresponding cell of t. In other words, we
prune edges that are not important for the current query. The stopping criterion is the
same as for a multi-criteria DIJKSTRA.

5 Experiments

In this section, we present our experimental evaluation. Our implementation is written
in C++ using solely the STL at some points. As priority queue we use a binary heap.
Our tests were executed on one core of an AMD Opteron 2218 running SUSE Linux
10.3. The machine is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2
cache. The program was compiled with GCC 4.2, using optimization level 3.

Inputs. We use four real world road networks for our experimental evaluation. The
first one is the largest strongly connected component of the road network of Western
Europe, provided by PTV AG for scientific use. It has approximately 18 million nodes
and 42.6 million edges. However, it turns out this input is too big for finding all Pareto
routes. Hence, we also use three smaller networks, namely the road network of Lux-
emburg consisting of 30661 nodes and 71619 edges, a road network of Karlsruhe and
surrounding (77740 nodes, 196327 edges), and the road network of the Netherlands
(892392 nodes, 2159589 edges). Note that we use the latter network for testing the
impact of our rules of label reduction. As metrics we use travel times for fast cars/slow
trucks, costs (toll + fuel consumption), travel distances, and unit lengths. Note that the
last metric depicts the number of street segments of a route. Hence, it somehow reflects
the number of turns of a journey.

Default Setting. For Europe, we use a 6-level partition obtained by SCOTCH [16]
with 4 cells per supercell on levels 0 to 3, 8 cells per supercell on level 4, and 104
cells on level 5. A 3-level partition is applied when using Luxemburg and Karlsruhe
as input, with 4 cells per supercell on levels 0 and 1, and 56 cells on level 2. For the
Netherlands, we apply a 4-level partition, with 4 cells per supercell on levels 0 and 1,



8 cells on level 2, and 112 cells on level 3. We use c = 2.5 as maximal expansions
during node-reduction and for the all levels. The hop-bound of our contraction is set
to h = 10. To keep preprocessing times limited, we use an economical variant, i.e., we
compute arc-flags only for the topmost level and do not refine arc-flags for the lowest
two levels. For static single-criteria SHARC, this reduces preprocessing times by a
factor of 3, but query performance increases only be a factor of 2. In the following,
we report preprocessing times and the overhead of the preprocessed data in terms of
additional bytes per node. Moreover, we provide the average number of settled nodes,
i.e., the number of nodes taken from the priority queue, and the average query time.
For random s-t queries, the nodes s and t are picked uniformly at random. All figures
in this paper are based on 1 000 random s-t queries and refer to the scenario that only
distance labels of the Pareto paths have to be determined, without outputting a complete
description of the paths. However, our efficient implementation for unpacking shortcuts
due to [17] needs about 4 additional bytes per node of preprocessed data. Then it takes
less than 0.5 ms to unpack a shortest path. Since we allow multi-edges we could apply
this unpacking routine to our multi-criteria variant of SHARC.

Full Pareto-Setting. Table 1 depicts the performance of multi-criteria SHARC on our
Luxemburg instance in a full Pareto bicriteria setting. For comparison, we also report
the performance of single-criteria SHARC on all five metrics.

We observe a good performance of multi-criteria SHARC in general. Preprecessing
times are less than 15 minutes which is sufficient for most applications. Interestingly, the
speed-up over DIJKSTRA’s algorithm with respect to query times even increases when
switching to multi-criteria SHARC. However, comparing single- and multi-criteria, we

Table 1. Performance of single- and multi-criteria SHARC applying different metrics for our
Luxemburg and Karlsruhe inputs. Column prepro shows the computation time of the preprocess-
ing in hours and minutes and the eventual additional bytes per node needed for the preprocessed
data. For queries, we report the number of labels created at the target node, the number of nodes
removed from the priority queue, execution times in milliseconds, and speed-up over DIJKSTRA’s
algorithm.

Luxemburg Karlsruhe
PREPRO QUERY PREPRO QUERY

time space target #del. time spd time space target #del. time spd
metrics [h:m] [B/n] labels mins [ms] up [h:m] [B/n] labels mins [ms] up
fast car (fc) < 0:01 12.4 1.0 138 0.03 114 < 0:01 12.4 1.0 206 0.04 188
slow truck (st) < 0:01 12.6 1.0 142 0.03 111 < 0:01 12.7 1.0 212 0.04 178
costs < 0:01 12.0 1.0 151 0.03 96 < 0:01 15.4 1.0 244 0.05 129
distances < 0:01 14.7 1.0 158 0.03 87 < 0:01 15.7 1.0 261 0.06 119
unit < 0:01 13.7 1.0 149 0.03 96 < 0:01 14.1 1.0 238 0.05 147
fc + st 0:01 14.7 2.0 285 0.09 100 0:01 15.3 1.9 797 0.26 108
fc + costs 0:04 24.1 29.6 4 149 6.49 263 1:30 26.6 52.7 15 912 80.88 184
fc + dist. 0:14 22.3 49.9 8 348 20.21 78 3:58 23.6 99.4 31 279 202.15 153
fc + unit 0:06 23.7 25.7 4 923 5.13 112 0:17 26.6 27.0 11 319 16.04 200
costs + dist. 0:02 20.4 29.6 3 947 4.87 119 1:11 21.9 67.2 19 775 67.75 160



observe that query performance highly depends on the size of the Pareto set at the target
node. For similar metrics (fast car and slow truck), bicriteria queries are only 3 times
slower than a single-criteria queries. This stems from the fact that the average size of
the Pareto-set is only 2. If more labels are created, like for fast car + costs, multi-criteria
queries are up to 673 times slower. Even worse, this slow-down increases even further
when we apply our Karlsruhe network. Here, the queries are up to 3 366 times slower.

Summarizing, the number of labels created, and thus, the loss in query performance
over single-criteria queries, is too high for using a full Pareto-setting for a big input like
Western Europe. Hence, we show in the following how to reduce the number of labels
such that “unimportant” Pareto-routes are pruned as early as possible.

Reduction of Labels. As observed in Tab. 1, the number of labels assigned to a node
increases with growing graph size. In order to efficiently compute Pareto-paths for our
European road network, we need to reduce the number of labels both during prepro-
cessing and queries. We achieve this by tightening the definition of dominance. There-
fore, we define the travel time metric to be the dominating metric W . Then, our tight-
ened definition of dominance is as follows: Besides the constraints from Section 2, we
say a label L = (W,w1, . . . ,wk−1) dominates another label L′ = (W ′,w′1, . . . ,w

′
k−1) if

W · (1 + ε) < W ′ holds. In other words, we only allow Pareto-paths which are up to ε

times longer (with respect to the dominating metric). Note that by this notion, this has
to hold for all sub-paths as well.

Table 2 reports the performance of bicriteria SHARC using the tightened definition
of dominance (with varying ε) during preprocessing and queries. As input, we use three
networks: Karlsruhe, the Netherlands, and Europe. We here focus on the probably most
important combination of metrics, namely fast car travel time and costs). We observe
that our additional constraint works: Preprocessing times decrease and query perfor-

Table 2. Performance of bi-criteria SHARC with varying ε using travel times and costs as metrics.
The inputs are Karlsruhe, the Netherlands, and Europe.

Karlsruhe The Netherlands Europe
PREP QUERY PREP QUERY PREP QUERY

time target #del. time time target #del. time time target #del. time
ε [h:m] labels mins [ms] [h:m] labels mins [ms] [h:m] labels mins [ms]

0.000 < 0:01 1.0 265 0.09 0:01 1.0 452 0.21 0:53 1.0 3 299 2.6
0.001 < 0:01 1.1 271 0.09 0:01 1.1 461 0.21 1:00 1.1 3 644 4.1
0.002 < 0:01 1.1 302 0.10 0:01 1.2 489 0.22 1:03 1.2 4 340 7.1
0.005 < 0:01 1.3 307 0.11 0:01 1.4 517 0.24 1:18 1.4 5 012 11.3
0.010 < 0:01 1.5 322 0.11 0:01 1.7 590 0.27 1:58 2.4 9 861 19.2
0.020 < 0:01 1.9 387 0.13 0:01 2.2 672 0.32 4:10 5.0 24 540 48.1
0.050 < 0:01 2.5 495 0.18 0:02 3.3 1 009 0.51 14:12 23.4 137 092 412.7
0.100 < 0:01 4.2 804 0.33 0:04 4.8 1 405 0.82 >24:00 – – –
0.200 0:01 6.4 1,989 1.86 0:09 7.2 2 225 1.67
0.500 0:02 14.0 3 193 3.61 0:39 12.8 4 227 4.85
1.000 0:13 24.0 9 072 14.86 3:44 20.0 12 481 26.85

∞ 1:30 52.7 15 912 80.88 >24:00 – – –



mance gets much better. However, as expected, very small ε values yield a small subset
of the Pareto-set and high ε values yield high preprocessing times. For small and mid-
size inputs, i.e., less than 1 million nodes, setting ε to 0.5 yields a reasonable amount
of Pareto paths combined with good preprocessing times and good query performance.
Unfortunately, for our European input, only ε ≤ 0.02 yields practical preprocessing and
query times.

Table 3. Performance of bi-criteria SHARC
with varying γ using travel times and costs
as metrics. ε is fixed to 0.5. The input is
Europe.

PREPRO QUERY

time space target #del. time
γ [h:m] [B/n] labels mins [ms]

1.100 0:58 19.1 1.2 2 538 1.8
1.050 1:07 19.6 1.3 3 089 2.2
1.010 1:40 20.4 1.7 4 268 3.2
1.005 2:04 20.6 1.9 5 766 4.1
1.001 3:30 20.8 2.7 7 785 6.1
1.000 7:12 21.3 5.3 19 234 35.4
0.999 15:43 22.5 15.2 87 144 297.2
0.995 >24:00 – – – –

Further Reduction. As observable in Tab. 2,
our approach for reducing the number of la-
bels is only practical for very small ε if we
use Europe as input. As we are interested in
paths with bigger ε values as well, we add an-
other constraint, called pricing, in order to de-
fine dominance. Besides the constraints from
Section 2 and from above, we say a label
L = (W,w1, . . . ,wk−1) dominates another la-
bel L′ = (W ′,w′1, . . . ,w

′
k−1) if ∑i w′i/∑i wi >

W/W ′ · γ holds for some constant γ . In other
words, we only accept labels with longer
travel times if this results in a decrease in
the other metrics under consideration. With
this further tightened definition of label dom-
inance, we are finally ready to run multi-
criteria queries on our European instance. Ta-
ble 3 shows the performance of multi-criteria SHARC with varying γ in a bicriteria
scenario (travel times + costs) for Europe. Note that we fix ε = 0.5. It turns out that our
additional constraints work. With γ = 1.0, we create 5.3 labels in 35.42 ms on average at
the target node, being sufficient for practical applications. Preprocessing times are still
within reasonable times, i.e., less than 8 hours. If we want to generate more labels, we
could set γ = 0.999. However, query times drop to almost 300 ms and preprocessing
increases drastically. Summarizing, bicriteria queries for travel times and travel costs
are possible if we use γ = 1.0 and ε = 1.5.

Similar Metrics. Our last experiment for road networks deals with the following sce-
nario. We are interested in the quickest route for different types of vehicles. Hence, we
perform multi-criteria queries on metrics all based on travel times. More precisely, we
use typical average speeds of fast cars, slow cars, fast trucks, and slow trucks. Due to
the very limited size of the resulting Pareto-sets, we afford not to use our tightened defi-
nition of dominance for this experiment. Tab. 4 shows the performance of multi-criteria
SHARC in such a single-, bi- and tri-, and quadro-criteria scenario.

We observe that a full Pareto-setting is feasible if metrics are similar to each other,
mainly because the number labels is very limited. Interestingly, the speed-up of multi-
criteria SHARC over multi-criteria DIJKSTRA is even higher than in a single-criteria
scenario. The slow-down in preprocessing times and query performance is quite high
but still, especially the latter is fast enough for practical applications. Quadro-criteria



Table 4. Performance of multi-criteria SHARC applying different travel time metrics. The inputs
are the Netherlands and Europe.

The Netherlands Europe
PREPRO QUERY PREPRO QUERY

time space target #del. time speed time space target #del. time speed
metrics [h:m] [B/n] labels mins [ms] up [h:m] [B/n] labels mins [ms] up
fast car(fc) 0:01 13.7 1.0 364 0.11 1 490 0:25 13.7 1.0 1,457 0.69 7 536
slow car(sc) 0:01 13.8 1.0 359 0.10 1 472 0:24 13.8 1.0 1,367 0.67 7 761
fast truck(ft) 0:01 13.9 1.0 365 0.10 1 332 0:23 13.9 1.0 1,486 0.71 7 324
slow truck(st) 0:01 13.9 1.0 363 0.10 1 306 0:25 13.9 1.0 1,423 0.68 7 647
fc+st 0:05 16.2 2.2 850 0.33 2 532 2:24 18.3 3.8 6 819 4.35 12 009
fc+ft 0:05 16.2 2.0 768 0.29 2 371 1:30 18.3 3.2 5 466 3.91 11 349
fc+sc 0:05 15.5 1.2 520 0.19 1 896 1:08 17.1 2.0 4 265 2.26 10 234
sc+st 0:05 16.2 1.9 742 0.29 2 009 1:53 18.1 3.3 5 301 4.02 10 874
sc+ft 0:05 16.2 1.7 679 0.26 1 850 1:49 16.2 3.2 5 412 3.65 10 663
ft+st 0:05 15.7 1.3 551 0.21 1 692 1:28 17.4 3.0 5 157 3.73 12 818
fc+sc+st 0:06 19.0 2.3 867 0.37 2 580 2:41 20.3 4.5 6 513 5.70 12 741
fc+sc+ft 0:06 18.9 2.0 764 0.32 2 385 2:47 21.5 3.9 5 989 4.87 12 144
sc+ft+st 0:06 19.0 1.9 740 0.30 2 134 2:59 22.0 4.2 6 348 5.12 13 412
fc+sc+ft+st 0:07 21.8 2.5 942 0.43 2 362 4:41 24.5 6.2 12 766 7.85 15 281

queries need less than 8 ms for our European road networks, being sufficient for most
applications. A generalized DIJKSTRA needs about 120 seconds on average for find-
ing a Pareto-set in this quadro-criteria scenario. This speed-up of more than 15000 is
achieved by a preprocessing taking less than 5 hours.

6 Conclusion

In this work, we presented the first efficient speed-up technique for computing multi-
criteria paths in large-scale networks. By augmenting single-criteria routines to multi-
criteria versions, we were able to present a multi-criteria variant of SHARC. Several ex-
periments confirm that speed-ups over a multi-criteria DIJKSTRA are at least the same
as in a single-criteria scenario, in many cases the speed-up with respect to query times
is even higher. However, if metrics differ strongly, the number of possible Pareto-routes
increases drastically making preprocessing and query times impractical for large in-
stances. By tightening the definition of dominance, we are able to prune unimportant
Pareto-routes both during preprocessing and queries. As a result, SHARC provides a
feasible subset of Pareto-routes in continental sized road network.

Regarding future work, one can think of other ways for pruning the Pareto-set.
Maybe other constraints yield better subsets of the Pareto-set computable in reasonable
time as well. An open challenging problem is the adaption of multi-criteria SHARC to
a fully realistic timetable information system like the ones presented in [9, 10]. Another
interesting question is how good alternative routes can be found in a single-criteria sce-
nario.
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