
Customizable Route Planning

Daniel Delling1, Andrew V. Goldberg1,
Thomas Pajor2?, and Renato F. Werneck1

1 Microsoft Research Silicon Valley
{dadellin,goldberg,renatow}@microsoft.com

2 Karlsruhe Institute of Technology
pajor@kit.edu

Abstract. We present an algorithm to compute shortest paths on con-
tinental road networks with arbitrary metrics (cost functions). The ap-
proach supports turn costs, enables real-time queries, and can incorpo-
rate a new metric in a few seconds—fast enough to support real-time
traffic updates and personalized optimization functions. The amount of
metric-specific data is a small fraction of the graph itself, which allows
us to maintain several metrics in memory simultaneously.

1 Introduction

The past decade has seen a great deal of research on finding point-to-point short-
est paths on road networks [7]. Although Dijkstra’s algorithm [10] runs in almost
linear time with very little overhead, it still takes a few seconds on continental-
sized graphs. Practical algorithms use a two-stage approach: preprocessing takes
a few minutes (or even hours) and produces a (linear) amount of auxiliary data,
which is then used to perform queries in real time. Most previous research fo-
cused on the most natural metric, driving times. Real-world systems, however,
often support other natural metrics as well, such as shortest distance, walking,
biking, avoid U-turns, avoid/prefer freeways, or avoid left turns.

We consider the customizable route planning problem, whose goal is to per-
form real-time queries on road networks with arbitrary metrics. Such algorithms
can be used in two scenarios: they may keep several active metrics at once (to
answer queries for any of them), or new metrics can be generated on the fly.
A system with these properties has obvious attractions. It supports real-time
traffic updates and other dynamic scenarios, allows easy customization by han-
dling any combination of standard metrics, and can even provide personalized
driving directions (for example, for a truck with height and weight restrictions).
To implement such a system, we need an algorithm that allows real-time queries,
has fast customization (a few seconds), and keeps very little data for each met-
ric. Most importantly, it must be robust: all three properties must hold for any
metric. No existing algorithm meets these requirements.

To achieve these goals, we distinguish between two features of road networks.
The topology is a set of static properties of each road segment or turn, such as
? This work was done while the third author was at Microsoft Research Silicon Valley.
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physical length, road category, speed limits, and turn types. The metric encodes
the actual cost of traversing a road segment or taking a turn. It can often be
described compactly, as a function that maps (in constant time) the properties
of an edge/turn into a cost. We assume the topology is shared by the metrics
and rarely changes, while metrics may change quite often and even coexist.

To exploit this separation, we consider algorithms for customizable route
planning with three stages. The first, metric-independent preprocessing, may be
relatively slow, since it is run infrequently. It takes only the graph topology as
input, and may produce a fair amount of auxiliary data (comparable to the input
size). The second stage, metric customization, is run once for each metric, and
must be much quicker (a few seconds) and produce little data—a small fraction
of the original graph. Finally, the query stage uses the outputs of the first two
stages and must be fast enough for real-time applications.

In Section 2 we explore the design space by analyzing the applicability of
existing algorithms to this setting. We note that methods with a strong hier-
archical component, the fastest in many situations, are too sensitive to metric
changes. We focus on separator-based methods, which are more robust but have
often been neglected in recent research, since published results made them seem
uncompetitive: the highest speedups over Dijkstra observed were lower than
60 [17], compared to thousands or millions with other methods.

Section 3 revisits and thoroughly reengineers a separator-based algorithm. By
applying existing acceleration techniques, recent advances in graph partitioning,
and some engineering effort, we can answer queries on continental road networks
in about a millisecond, with much less customization time (a few seconds) and
space (a few tens of megabytes) than existing acceleration techniques.

Another contribution of our paper is a careful treatment of turn costs (Sec-
tion 4). It has been widely believed that any algorithm can be easily augmented
to handle these efficiently, but we note that some methods actually have a sig-
nificant performance penalty, especially if turns are represented space-efficiently.
In contrast, we can handle turns naturally, with little effect on performance.

We stress that our algorithms are not meant to be the fastest on any partic-
ular metric. For “nice” metrics, our queries are somewhat slower than the best
hierarchical methods. However, our queries are robust and suitable for real-time
applications with arbitrary metrics, including those for which the hierarchical
methods fail. Our method can quickly process new metrics, and the metric-
specific information is small enough to keep several metrics in memory at once.

2 Previous Techniques

There has been previous work on variants of the route planning problem that
deal with multiple metrics in a nontrivial way. The preprocessing of SHARC [3]
can be modified to handle multiple (known) metrics at once. In the flexible rout-
ing problem [11], one must answer queries on linear combinations of a small set
of metrics (typically two) known in advance. Queries in the constrained rout-
ing problem [23] must avoid entire classes of edges. In multi-criteria optimiza-
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tion [8], one must find Pareto-optimal paths among multiple metrics. ALT [14]
and CH [12] can adapt to small changes in a benign base metric without rerun-
ning preprocessing in full. All these approaches must know the base metrics in
advance, and for good performance the metrics must be few, well-behaved, and
similar to one another. In practice, even seemingly small changes to the metric
(such as higher U-turn costs) render some approaches impractical. In contrast,
we must process metrics as they come, and assume nothing about them.

We now discuss the properties of existing point-to-point algorithms to de-
termine how well they fit our design goals. Some of the most successful existing
methods—such as reach-based routing [15], contraction hierarchies (CH) [12],
SHARC [3], transit node routing [2], and hub labels [1]—rely on the strong hi-
erarchy of road networks with travel times: the fastest paths between faraway
regions of the graph tend to use the same major roads.

For metrics with strong hierarchies, such as travel times, CH has many of
the features we want. During preprocessing, CH heuristically sorts the vertices in
increasing order of importance, and shortcuts them in this order. (To shortcut v,
we temporarily remove it from the graph and add arcs as necessary to preserve
the distances between its neighbors.) Queries run bidirectional Dijkstra, but
only follow arcs or shortcuts to more important vertices. If a metric changes
only slightly, one can keep the order and recompute the shortcuts in about a
minute [12]. Unfortunately, an order that works for one metric may not work for
a substantially different one (e.g., travel times and distances, or a major traffic
jam). Furthermore, queries are much slower on metrics with less-pronounced
hierarchies [4]. More crucially, the preprocessing stage can become impractical
(in terms of space and time) for bad metrics, as Section 4 will show.

In contrast, techniques based on goal direction, such as PCD [21], ALT [14],
and arc flags [16], produce the same amount of auxiliary data for any metric.
Queries are not robust, however: they can be as slow as Dijkstra for bad metrics.
Even for travel times, PCD and ALT are not competitive with other methods.

A third approach is based on graph separators [17–19, 25]. During prepro-
cessing, one computes a multilevel partition of the graph to create a series
of interconnected overlay graphs. A query starts at the lowest (local) level
and moves to higher (global) levels as it progresses. These techniques predate
hierarchy-based methods, but their query times are widely regarded as uncom-
petitive in practice, and they have not been tested on continental-sized road
networks. (The exceptions are recent extended variants [6, 22] that achieve great
query times by adding many more edges during preprocessing, which is costly in
time and space.) Because preprocessing and query times are essentially metric-
independent, separator-based methods are the most natural fit for our problem.

3 Our Approach

We will first describe a basic algorithm, then consider several techniques to make
it more practical, using experimental results to guide our design. Our code is
written in C++ (with OpenMP for parallelization) and compiled with Microsoft
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Visual C++ 2010. We use 4-heaps as priority queues. Experiments were run
on a commodity workstation with an Intel Core-i7 920 (four cores clocked at
2.67GHz and 6GB of DDR3-1066 RAM) running Windows Server 2008R2. Our
standard benchmark instance is the European road network, with 18 million
vertices and 42 million arcs, made available by PTV AG for the 9th DIMACS
Implementation Challenge [9]. Vertex IDs and arc costs are both 32-bit integers.

We must minimize metric customization time, metric-dependent space (ex-
cluding the original graph), and query time, while keep metric-independent time
and space reasonable. We evaluate our algorithms on 10 000 s–t queries with s
and t picked uniformly at random. We focus on finding shortest path costs; Sec-
tion 4 shows how to retrieve the actual paths. We report results for travel times
and travel distances, but by design our algorithms work well for any metric.

Basic Algorithm. Our metric-independent preprocessing stage partitions the
graph into connected cells with at most U (an input parameter) vertices each,
with as few boundary arcs (arcs with endpoints in different cells) as possible.

The metric customization stage builds a graph H containing all boundary
vertices (those with at least one neighbor in another cell) and boundary arcs of
G. It also contains a clique for each cell C: for every pair (v, w) of boundary
vertices in C, we create an arc (v, w) whose cost is the same as the shortest
path (restricted to C) between v and w (or infinite if w is not reachable from
v). We do so by running Dijkstra from each boundary vertex. Note that H is an
overlay [24]: the distance between any two vertices in H is the same as in G.

Finally, to perform a query between s and t, we run a bidirectional version of
Dijkstra’s algorithm on the graph consisting of the union of H, Cs, and Ct. (Here
Cv denotes the subgraph of G induced by the vertices in the cell containing v.)

As already mentioned, this is the basic strategy of separator-based methods.
In particular, HiTi [19] uses edge-based separators and cliques to represent each
cell. Unfortunately, HiTi has not been tested on large road networks; experiments
were limited to small grids, and the original proof of concept does not appear to
have been optimized using modern algorithm engineering techniques.

Our first improvement over HiTi and similar algorithms is to use PUNCH [5]
to partition the graph. Recently developed to deal with road networks, it rou-
tinely finds solutions with half as many boundary edges (or fewer), compared to
the general-purpose partitioners (such as METIS [20]) commonly used by previ-
ous algorithms. Better partitions reduce customization time and space, leading
to faster queries. For our experiments, we used relatively long runs of PUNCH,
taking about an hour. Our results would not change much if we used the basic
version of PUNCH, which is only about 5% worse but runs in mere minutes.

We use parallelism: queries run forward and reverse searches on two CPU
cores, and customization uses all four (each cell is processed independently).

Sparsification. Using full cliques in the overlay graph may seem wasteful,
particularly for well-behaved metrics. At the cost of making its topology metric-
dependent, we consider various techniques to reduce the overlay graph.
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The first approach is edge reduction [24], which eliminates clique arcs that
are not shortest paths. After computing all cliques, we run Dijkstra from each
vertex v in H, stopping as soon as all neighbors of v (in H) are scanned. Note
that these searches are usually quick, since they only visit the overlay.

A more aggressive technique is to preserve some internal cell vertices [6, 17,
25]. If B = {v1, v2, . . ., vk} is the set of boundary vertices of a cell, let Ti

be the shortest path tree (restricted to the cell) rooted at vi, and let T ′i be
the subtree of Ti consisting of the vertices with descendants in B. We take the
union C = ∪k

i=1T ′i of these subtrees, and shortcut all internal vertices with two
neighbors or fewer. Note that this skeleton graph is technically not an overlay,
but it preserves distances between all boundary vertices, which is what we need.

Finally, we tried a lightweight contraction scheme. Starting from the skeleton
graph, we greedily shortcut low-degree internal vertices, stopping when no such
operation is possible without increasing the number of edges by more than one.

Fig. 1 (left) compares all four overlays (cliques, reduced cliques, skeleton,
and CH-skeleton) on travel times and travel distances. Each plot relates the
total query time and the amount of metric-independent data for different values
of U (the cell size). Unsurprisingly, all overlays need more space as the number of
cells increases (i.e., as U decreases). Query times, however, are minimized when
the effort spent on each level is balanced, which happens for U ≈ 215.

To analyze preprocessing times (not depicted in the plots), take U = 215

(with travel times) as an example. Finding full cliques takes only 40.8 s, but
edge reduction (45.8 s) or building the skeleton graph (45.1 s) are almost as
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Fig. 1. Effect of sparsification (left) and goal direction (right) for travel times (top)
and distances (bottom). The i-th point from the left indicates U = 220−i.
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cheap. CH-skeleton, at 79.4 s, is significantly more expensive, but still practical.
Most methods get faster as U gets smaller: full cliques take less than 5 s with
U = 256. The exception is CH-skeleton: when U is very small, the combined size
of all skeletons is quite large, and processing them takes minutes.

In terms of query times and metric-dependent space, however, CH-skeleton
dominates pure skeleton graphs. Decreasing the number of edges (from 1.2M
with reduced cliques to 0.8M with skeletons, for U = 215 with travel times) may
not be enough to offset an increase in the number of vertices (from 34K to 280K),
to which Dijkstra-based algorithms are more sensitive. This also explains why
reduced cliques yield the fastest queries, with full cliques not far behind.

All overlays have worse performance when we switch from travel times to
distances (with less pronounced hierarchies), except full cliques. Since edge re-
duction is relatively fast, we use reduced cliques as the default overlay.

Goal-direction. For even faster queries, we can apply more sophisticated tech-
niques (than bidirectional Dijkstra) to search the overlay graph. While in prin-
ciple any method could be used, our model restricts us to those with metric-
independent preprocessing times. We tested PCD and ALT.

To use PCD (Precomputed Cluster Distances) [21] with our basic algorithm,
we do the following. Let k be the number of cells found during the metric indepen-
dent preprocessing (k ≈ n/U). During metric customization, we run Dijkstra’s
algorithm k times on the overlay graph to compute a k× k matrix with the dis-
tances between all cells. Queries then use the matrix to guide the bidirectional
search by pruning vertices that are far from the shortest path. Note that, unlike
“pure” PCD, we use the overlay graph during customization and queries.

Another technique is core ALT (CALT) [4]. Queries start with bidirectional
Dijkstra searches restricted to the source and target cells. Their boundary ver-
tices are then used as starting points for an ALT (A∗ search/ landmarks/triangle
inequality) query on the overlay graph. The ALT preprocessing runs Dijkstra
O(L) times to pick L vertices as landmarks, and stores distances between these
landmarks and all vertices in the overlay. Queries use these distances and the
triangle inequality to guide the search towards the goal. A complication of core-
based approaches [15, 4] is the need to pick nearby overlay vertices as proxies for
the source or target to get their distance bounds. Hence, queries use four CPU
cores: two pick the proxies, while two conduct the actual bidirectional search.

Fig. 1 (right) shows the query times and the metric-dependent space con-
sumption for the basic algorithm, CALT (with 32 avoid landmarks [15]), and
PCD, with reduced cliques as overlay graphs. With some increase in space, both
goal-direction techniques yield significantly faster queries (around one millisec-
ond). PCD, however, needs much smaller cells, and thus more space and cus-
tomization time (about a minute for U = 214) than ALT (less than 3 s). Both
methods are more effective for travel times than travel distances.

Multiple Levels. To accelerate queries, we can use multiple levels of overlay
graphs, a common technique for partition-based approaches, including HiTi [19].
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Fig. 2. Performance of 2-level CALT with travel times (left) and distances (right). For
each line, U1 is fixed and U0 varies; the i-th point from the right indicates U0 = 27+i.

We need nested partitions of G, in which every boundary edge at level i is also
a boundary edge at level i − 1, for i > 1. The level-0 partition is the original
graph, with each vertex as a cell. For the i-th level partition, we create a graph
Hi as before: it includes all boundary arcs, plus an overlay linking the boundary
vertices within a cell. Note that Hi can be computed using only Hi−1. We use
PUNCH to create multilevel partitions, in top-down fashion.

An s–t query runs bidirectional Dijkstra on a restricted graph Gst. An arc
(v, w) from Hi will be in Gst if both v and w are in the same cell as s or t at
level i + 1. Goal-direction can still be used on the top level.

Fig. 2 shows the performance of the multilevel algorithm with two overlay
levels (with reduced cliques) and ALT on the top level. We report query times
and metric-dependent space for multiple values of U0 and U1, the maximum cell
sizes on the bottom and top levels. A comparison with Fig. 1 reveals that using
two levels enables much faster queries for the same space. For travel times, a
query takes 1ms with about 40MB (with U0 = 211 and U1 = 216). Here it takes
16 s to compute the bottom overlay, 5 s to compute the top overlay, and only
0.5 s to process landmarks. With 60MB, queries take as little as 0.5ms.

Streamlined Implementation. Although sparsification techniques save space
and goal direction accelerates queries, the improvements are moderate and come
at the expense of preprocessing time, implementation complexity, and metric-
independence (the overlay topology is only metric-independent with full cliques).
Furthermore, the time and space requirements of the simple clique implemen-
tation can be improved by representing each cell of the partition as a matrix,
making the performance difference even smaller. The matrix contains the 32-
bit distances among its entry and exit vertices (these are the vertices with at
least one incoming or outgoing boundary arc, respectively; most boundary ver-
tices are both). We also need arrays to associate rows (and columns) with the
corresponding vertex IDs, but these are small and shared by all metrics.

We thus created a matrix-based streamlined implementation that is about
twice as fast as the adjacency-based clique implementation. It does not use edge
reduction, since it no longer saves space, slows down customization, and its
effectiveness depends on the metric. (Skipping infinite matrix entries would make
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Table 1. Performance of various algorithms for travel times and distances.

travel times travel distances
customizing queries customizing queries
time space vertex time time space vertex time

algorithm [cell sizes] [s] [MB] scans [ms] [s] [MB] scans [ms]
CALT [211:216] 21.3 37.1 5292 0.92 17.2 48.9 5739 1.26
MLD-1 [214] 4.9 10.1 45420 5.81 4.8 10.1 47417 6.12
MLD-2 [212:218] 5.0 18.8 12683 1.82 5.0 18.8 13071 1.83
MLD-3 [210:215:220] 5.2 32.7 6099 0.91 5.1 32.7 6344 0.98
MLD-4 [28:212:216:220] 4.7 59.5 3828 0.72 4.7 59.5 4033 0.79
CH economical 178.4 151.3 383 0.12 1256.9 182.5 1382 1.33
CH generous 355.6 122.8 376 0.10 1987.4 165.8 1354 1.29

queries only slightly faster.) Similarly, we excluded CALT from the streamlined
representation, since its queries are complicated and have high variance [4].

Customization times are typically dominated by building the overlay of the
lowest level, since it works on the underlying graph directly (higher levels work
on the much smaller cliques of the level below). As we have observed, smaller
cells tend to lead to faster preprocessing. Therefore, as an optimization, the
streamlined implementation includes a phantom level (with U = 32) to accelerate
customization, but throws it away for queries, keeping space usage unaffected.
For MLD-1 and MLD-2, we use a second phantom level with U = 256 as well.

Table 1 compares our streamlined multilevel implementation (called MLD,
with up to 4 levels) with the original 2-level implementation of CALT. For each
algorithm, we report the cell size bounds in each level. (Because CALT acceler-
ates the top level, it uses different cell sizes than MLD-2.) We also consider two
versions of CH: the first (economical) minimizes preprocessing times, and the
second (generous) the number of shortcuts. For CH, we report the total space
required to store the shortcuts (8 bytes per arc, excluding the original graph).
For all algorithms, preprocessing uses four cores and queries use at least two.

We do not permute vertices after CH preprocessing (as is customary to im-
prove query locality), since this prevents different metrics from sharing the same
graph. Even so, with travel times, CH queries are one order of magnitude faster
than our algorithm. For travel distances, MLD-3 and MLD-4 are faster than CH,
but only slightly. For practical purposes, all variants have fast enough queries.

The main attraction of our approach is efficient metric customization. We
require much less space: for example, MLD-2 needs about 20MB, which is less
than 5% of the original graph and an order of magnitude less than CH. Most
notably, customization times are small. We need only 5 seconds to deal with
a new metric, which is fast enough to enable personalized driving directions.
This is two orders of magnitude faster than CH, even for a well-behaved metric.
Phantom levels help here: without them, MLD-1 would need about 20 s.

Note that CH customization can be faster if the processing order is fixed in
advance [12]. The economical variant can rebuild the hierarchy (sequentially)
in 54 s for travel times and 178 s for distances (still slower than our method).
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Unfortunately, using the order for one metric to rebuild another is only efficient
if they are very similar [11]. Also note that one can save space by storing only
the upper part of the hierarchy [7], at the expense of query times.

Table 1 shows that we can easily deal with real-time traffic: if all edge costs
change (due to a traffic update), we can handle new queries after only 5 seconds.
We can also support local updates quite efficiently. If a single edge cost changes,
we must recompute at most one cell on each level, and MLD-4 takes less than
a millisecond to do so. This is another reason for not using edge reduction or
CALT: with either technique, changes in one cell may propagate beyond it.

4 Turns

So far, we have considered a simplified (but standard [7]) representation of road
networks, with each intersection corresponding to a single vertex. This is not very
realistic, since it does not account for turn costs (or restrictions, a special case).
Of course, any algorithm can handle turns simply by working on an expanded
graph. A traditional [7] representation is arc-based: each vertex represents one
exit point of an intersection, and each arc is a road segment followed by a turn.

This is wasteful. We propose a compact representation in which each intersec-
tion becomes a single vertex with some associated information. If a vertex u has
p incoming and q outgoing arcs, we associate a p× q turn table Tu to it, where
Tu[i, j] represents the turn from the ith incoming arc into the jth outgoing arc.3
In addition, we store with each arc (v, w) its tail order (its position among v’s
outgoing arcs) and its head order (its position among w’s incoming arcs). These
orders may be arbitrary. Since degrees are small, 4 bits for each suffice.

In practice, many vertices share the same turn table. The total number of
such intersection types is modest—in the thousands rather than millions. For
example, many degree-four vertices in the United States have four-way stop
signs. Each distinct turn table is thus stored only once, and each vertex keeps a
pointer to the appropriate type, with little overhead.

Dijkstra’s algorithm, however, becomes more complicated. In particular, it
may now visit each vertex (intersection) multiple times, once for each entry point.
It essentially simulates an execution on the arc-based expanded representation,
which increases its running time on Europe from 3 s to about 12 s. With a stalling
technique, we can reduce the time to around 7 s. When scanning one entry point
of an intersection, we can set bounds for its other entry points, which are not
scanned unless their own distance labels are smaller than the bounds. These
bounds depend on the turn table, and can be computed during customization.

To support the compact representation, MLD needs two minor changes. First,
it uses turn-aware Dijkstra on the lowest level (but not on higher ones). Second,
matrices in each cell now represent paths between incoming and outgoing bound-
ary arcs (and not boundary vertices, as before). The difference is subtle. With
turns, the distance from a boundary vertex v to an exit point depends on whether
3 In our customizable setting, each entry should represent just a turn type (such as
“left turn with stop sign”), since its cost may vary with different metrics.
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Table 2. Performance of various algorithms on Europe with varying U-turn costs.

U-turn: 1 s U-turn: 100 s
customizing queries customizing queries
time space vertex time time space vertex time

algorithm [s] [MB] scans [ms] [s] [MB] scans [ms]
MLD-1 [214] 5.9 10.5 44832 9.96 7.5 10.5 62746 12.43
MLD-2 [212:218] 6.3 19.2 12413 3.07 8.4 19.2 16849 3.55
MLD-3 [210:215:220] 7.3 33.5 5812 1.56 9.2 33.5 6896 1.88
MLD-4 [28:212:216:220] 5.8 61.7 3556 1.18 7.5 61.7 3813 1.28
CH expanded 3407.4 880.6 550 0.18 5799.2 931.1 597 0.21
CH compact 846.0 132.5 905 0.19 23774.8 304.0 5585 2.11

we enter the cell from arc (u, v) or arc (w, v), so each arc needs its own entry in
the matrix. Since most boundary vertices have only one incoming (and outgoing)
boundary arc, the matrices are only slightly larger.

We are not aware of publicly-available realistic turn data, so we augment our
standard benchmark instance. For every vertex v, we add a turn between each
incoming and each outgoing arc. A turn from (u, v) to (v, w) is either a U-turn (if
u = w) or a standard turn (if u 6= w), and each of these two types has a cost. We
have not tried to further distinguish between turn types, since any automated
method would not reflect real-life turns. However, adding U-turn costs is enough
to reproduce the key issue we found on realistic (proprietary) data.

Table 2 compares some algorithms on Europe augmented with turns. We
consider two metrics, with U-turn costs set to 1 s or 100 s. The metrics are
otherwise identical: arc costs represent travel times and standard turns have
zero cost. We tested four variants of MLD (with one to four levels) and two
versions of CH (generous): CH expanded is the standard algorithm run on the
arc-based expanded graph, while CH compact is modified to run on the compact
representation. Column vertex scans counts the number of heap extractions.

Small U-turn costs do not change the shortest path structure of the graph
much. Indeed, CH compact still works quite well: preprocessing is only three
times slower (than reported in Table 1), the number of shortcuts created is
about the same, and queries take marginally longer. Using higher U-turn costs
(as in a system that avoids U-turns), however, makes preprocessing much less
practical. Customization takes more than 6 hours, and space more than doubles.
Intuitively, nontrivial U-turn costs are harder to handle because they increase
the importance of certain vertices; for example, driving around the block may
become a shortest path. Query times also increase, but are still practical. (Note
that recent independent work [13] shows that additional tuning can make com-
pact CH somewhat more resilient: changing U-turn costs from zero to 100 s
increases customization time by a factor of only two. Unfortunately, forbidding
U-turns altogether still slows it down by an extra factor of 6.)

With the expanded representation, CH preprocessing is much costlier when
U-turns are cheap (since it runs on a larger graph), but is much less sensitive to
an increase in the U-turn cost; queries are much faster as well. The difference
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in behavior is justified. While the compact representation forces CH to assign
the same “importance” (order) to different entry points of an intersection, the
expanded representation lets it separate them appropriately.

MLD is much less sensitive to turn costs. Compared to Table 1, we observe
that preprocessing space is essentially the same (as expected). Preprocessing and
query times increase slightly, mainly due to the lower level: high U-turn costs
decrease the effectiveness of the stalling technique on the turn-enhanced graph.

In the most realistic setting, with nontrivial U-turn costs, customization takes
less than 10 seconds on our commodity workstation. This is more than enough
to handle frequent traffic updates, for example. If even more speed is required,
one could simply use more cores: speedups are almost perfect. On a server with
two 6-core Xeon 5680 CPUs running at 3.33GHz, MLD-4 takes only 2.4 seconds,
which is faster than just running sequential Dijkstra on this input.

Path Unpacking. So far, we have reported the time to compute only the
distance between two points. Following the parent pointers of the meeting vertex
of forward and backward searches, we may obtain a path containing shortcuts. To
unpack a level-i shortcut, we run bidirectional Dijkstra on level i−1 (and recurse
as necessary). Using all 4 cores, unpacking less than doubles query times, with
no additional customization space. (In contrast, standard CH unpacking stores
the “middle” vertex of every shortcut, increasing the metric-dependent space by
50%.) For even faster unpacking, one can store a bit with each arc at level i
indicating whether it appears in a shortcut at level i + 1. This makes unpacking
4 times faster for MLD-2, but has little effect on MLD-3 and MLD-4.

5 Conclusion
Recent advances in graph partitioning motivated us to reexamine the separator-
based multilevel approach to the shortest path problem. With careful engineer-
ing, we drastically improved query speedups relative to Dijkstra from less than
60 [17] to more than 3000. With turn costs, the speedup increases even more,
to 7000. This makes real-time queries possible. Furthermore, by explicitly sepa-
rating metric customization from graph partitioning, we enable new metrics to
be processed in a few seconds. The result is a flexible and practical solution to
many real-life variants of the problem. It should be straightforward to adapt it
to augmented scenarios, such as mobile or time-dependent implementations. (In
particular, a unidirectional version of MLD is also practical.) Since partitions
have a direct effect on performance, we would like to improve them further,
perhaps by explicitly taking the size of the overlay graph into account.
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