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Abstract. Speed-up techniques that exploit given node coordinates
have proven useful for shortest-path computations in transportation net-
works and geographic information systems. To facilitate the use of such
techniques when coordinates are missing from some, or even all, of the
nodes in a network we generate artificial coordinates using methods from
graph drawing. Experiments on a large set of German train timetables
indicate that the speed-up achieved with coordinates from our network
drawings is close to that achieved with the actual coordinates.

1 Introduction

In travel-planning systems, shortest-path computations are essential for answer-
ing connection queries. While still computing the optimal paths, heuristic speed-
up techniques tailored to geographic networks have been shown to reduce re-
sponse times considerably [20, 19] and are, in fact, used in many such systems.

The problem we consider has been posed by an industrial partner1 who is a
leading provider of travel planning services for public transportation. They are
faced with the fact that quite often, much of the underlying geography, i.e. the
location of nodes in a network, is unknown, since not all transport authorities
provide this information to travel service providers or competitors. Coordinate
information is costly to obtain and to maintain, but since the reduction in query
response time is important, other ways to make the successful geometric speed-
up heuristics applicable are sought.

The existing, yet unknown, underlying geography is reflected in part by travel
times, which in turn are given in the form of timetables. Therefore, we can con-
struct a simple undirected weighted graph in the following way. Each station
represents a vertex, and two vertices are adjacent, if there is a non-stop connec-
tion between the two corresponding stations. Edge weights are determined from
travel times, thus representing our distance estimates. Reasonable (relative) lo-
cation estimates are then obtained by embedding this graph in the plane such
that edge lengths are approximately preserved.

? Research partially supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant WA 654/10-4.

1 HaCon Ingenieurgesellschaft mbh, Hannover.



Our specific scenario and geometric speed-up heuristics for shortest-path
computations are reviewed briefly in Sect. 2. In Sect. 3, we consider the spe-
cial case in which the locations of a few stations are known and show that a
simple and efficient graph drawing technique yields excellent substitutes for the
real coordinates. This approach is refined in Sect. 4 to be applicable in more
general situations. In Sect. 5, both approaches are experimentally evaluated on
timetables from the German public train network using a snapshot of half a
million connection queries.

2 Preliminaries

Travel information systems for, e.g., car navigation [21, 12] or public trans-
port [17, 18, 22], often make use of geometric speed-up techniques for shortest-
path computations. We consider the (simplified) scenario of a travel information
system for public railroad transport used in a recent pilot study [19]. It is based
solely on timetables ; for each train there is one table, which contains the depar-
ture and arrival times of that train at each of its halts. In particular, we assume
that every train operates daily.

The system evaluates connection queries of the following kind: Given a de-
parture station A, a destination station B, and an earliest departure time, find
a connection from A to B with the minimum travel time (i.e., the difference
between the arrival time at B and the departure time at A).

To this end, a (directed) timetable graph is constructed from timetables in a
preprocessing step. For each departure and arrival of a train there is one vertex
in the graph. So, each vertex is naturally associated with a station, and with a
time label (the time the departure or arrival of the train takes place). There are
two different kinds of edges in the graph:

– stay edges: The vertices associated with the same station are ordered accord-
ing to their time label. Then, there is a directed edge from every vertex to
its successor (for the last vertex there is an edge to the first vertex). Each of
these edges represents a stay at the station, and the edge length is defined
by the duration of that stay.

– travel edges: For every departure of a train there is a directed edge to the
very next arrival of that train. Here, the edge length is defined to be the
time difference between arrival and departure.

Answering a connection query now amounts to finding a shortest path from
a source to one out of several target vertices: The source vertex is the first vertex
at the start station representing a departure that takes place not earlier than the
earliest departure time, and each vertex at the destination station is a feasible
target vertex.

2.1 Geometric speed-up techniques

In [19], Dijkstra’s algorithm is used as a basis for these shortest-path computa-
tions and several speed-up techniques are investigated. We focus on the purely



geometric ones, i.e. those based directly on the coordinates of the stations, which
can be combined with other techniques.

Goal-directed search. This strategy is found in many textbooks (e.g., see [1,
16]). For every vertex v, a lower bound b(v) satisfying a certain consistency
criterion is required for the length of a shortest path to the target. In a timetable
graph, a suitable lower bound can be obtained by dividing the Euclidean distance
to the target by the maximum speed of the fastest train. Using these lower
bounds, the length λ{u,v} of each edge is modified to λ′

{u,v} = λ{u,v}−b(u)+b(v).
It can be shown that a shortest path in the original graph is a shortest path in
the graph with the modified edge lengths, and vice versa. If Dijkstra’s algorithm
is applied to the modified graph, the search will be directed towards a correct
target.

Angle restriction. In contrast to the goal-directed search, this technique re-
quires a preprocessing step, which has to be carried out once for the timetable
graph and is independent of the subsequent queries. For every vertex v repre-
senting the departure of a train, a circle sector C(v) with origin at the location
of the vertex is computed. That circle sector is stored using its two bounding
angles, and has the following interpretation: If a station A is not inside the circle
sector C(v), then there is a shortest path from v to A, which starts with the
outgoing stay edge.

Hence, if Dijkstra’s algorithm is applied to compute a shortest path to some
destination station D, if some vertex u is processed, and D is not inside the
circle sector C(u), then the outgoing travel edge can be ignored, because there
is a shortest path from u to D starting with the stay edge.

2.2 Estimating distances from travel times

The location of stations is needed to determine lower bounds for goal-directed
search, or circle sectors for the angle-restriction heuristic. If the actual geo-
graphic locations are not provided, the only related information available from
the timetables are travel times. We use them to estimate distances between
stations that have a non-stop connection, which in turn are used to generate
locations suitable for the geometric heuristics, though in general far from being
geographically accurate.

The (undirected, simple) station graph of a set of timetables contains a vertex
for each station listed, and an edge between every pair of stations connected by
a train not stopping inbetween. The length λe of an edge e in the station graph
will represent our estimate of the distance between its endpoints.

Distance between two stations can be expected to be roughly a linear function
in the travel time. However, for different classes of trains the constant involved
will be different, and closely related to mean velocity of trains in this class. We
therefore estimate the length of an edge e in the station graph, i.e. the distance



between two stations, using the mean over all non-stop connections inducing this
edge of their travel time times the mean velocity of the vehicle serving them.

Mean velocities have been extracted from the data set described in Sect. 5,
for which station coordinates are known. For two train categories, the data are
depicted in Fig. 1, indicating that no other function is obviously better than our
simple linear approximation. Note that all travel times are integer, since they are
computed from arrival and departure times. As a consequence, slow trains are
often estimated to have unrealistically high maximum velocities, thus affecting
the modified edge lengths in the goal-directed search heuristic.
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(a) high-speed trains
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(b) local trains

Fig. 1. Euclidean distance vs. travel time for non-stop connections. For both service
categories, all data points are shown along with the average distance per travel time
and a linear interpolation

3 Networks with Partially Known Geography

In our particular application, it may occasionally be the case that the geographic
locations of at least some of the major hubs of the network are known, or can be
obtained easily. We therefore first describe a simple method to generate coordi-
nates for the other stations that exploits the fact that such hubs are typically
well-distributed and thus form a scaffold for the overall network. Our approach
for the more general case, described in the next section, can be viewed as an
extension of this method.

Let p = (pv)v∈V be a vector of vertex positions, then the potential function

UB(p) =
∑

{u,v}∈E

ω{u,v} · ‖pu − pv‖
2 (1)

where ωe = 1

λe

, e ∈ E, weights the influence of an edge according to its estimated
length λe, defines a weighted barycentric layout model [25]. This model has an



interesting physical analogy, since each of the terms in (1) can be interpreted as
the potential energy of a spring with spring constant ωe and ideal length zero.

A necessary condition for a local minimum of UB(p) is that all partial deriva-
tives vanish. That is, for all pv = (xv , yv), v ∈ V , we have

xv =
1

∑

u : {u,v}∈E

ω{u,v}
·

∑

u : {u,v}∈E

ω{u,v} · xu

yv =
1

∑

u : {u,v}∈E

ω{u,v}
·

∑

u : {u,v}∈E

ω{u,v} · yu.

In other words, each vertex must be positioned in the weighted barycenter of
its neighbors. It is well known that this system of linear equations has a unique
solution, if at least one pv in each connected component of G is given (and
the equations induced by v are omitted) [3]. Note that, in the physical analogy,
this corresponds to fixing some of the points in the spring system. Moreover, the
matrix corresponding to this system of equations is weakly diagonally dominant,
so that iterative equation solvers can be used to approximate a solution quickly
(see, e.g., [10]).

Assuming that the given set of vertex positions provides the cornerstones
necessary to unfold the network appropriately, we can thus generate coordinates
for the other vertices using, e.g., Gauss-Seidel iteration, i.e. by iteratively placing
them at the weighted barycenter of their neighbors. Figure 2 indicates that this
approach is highly dependent on the set of given positions. As is discussed in
Sect. 5, it nevertheless has some practical merits.

Fig. 2. Barycentric layout of an 72× 72 grid with the four corners fixed, and the same
grid with 95 and with 10 randomly selected vertices fixed

4 A Specific Layout Model for Connection Networks

The main drawbacks of the barycentric approach are that all vertices are posi-
tioned inside of the convex hull of the vertices with given positions, and that the



estimated distances are not preserved. In this section, we modify the potential (1)
to take these estimates into account.

Recall that each of the terms in the barycentric model corresponds to the
potential energy of a spring of length zero between pairs of adjacent vertices.
Kamada and Kawai [13] use springs of length λ{u,v} = dG(u, v), i.e. equal to the
length of a shortest path between u and v, between every pair of vertices. The
potential then becomes

UKK(p) =
∑

u,v∈V

ω{u,v} ·
(

‖pu − pv‖ − λ{u,v}

)2

, (2)

the idea being that constituent edges of a shortest path in the graph should form
a straight line in the drawing of the graph. To preserve local structure, spring
constants are chosen as ωe = 1

λ2
e

, so that long springs are more flexible than short

ones. (The longer a path in the graph, the less likely are we able to represent it
straight.) Note that this is a special case of multidimensional scaling, where the
input matrix contains all pairwise distances in the graph.

This model certainly does reflect our layout objectives more precisely. Note,
however, that it is NP-hard to determine whether a graph has an embedding
with given edge lengths, even for planar graphs [7]. In contrast to the barycentric
model, the necessary condition of vanishing partial derivatives leads to a system
of non-linear equations, with dependencies between x- and y-coordinates. There-
fore, we can no longer iteratively position vertices optimally with respect to the
temporarily fixed other vertices as in the barycentric model. As a substitute,
a modified Newton-Raphson method can be used to approximate an optimal
move for a single vertex [13]. Since this method does not scale to graphs with
thousands of vertices, we next describe our modifications to make it work on
connection graphs.2

Sparsening. If springs are introduced between every pair of vertices, a single
iteration takes time quadratic in the number of vertices. Since at least a linear
number of iterations is needed, this is clearly not feasible. Since, moreover, we are
not interested in a readable layout of the graph, but in supporting the geometric
speed-up heuristics for shortest-path computations, there is no need to introduce
springs between all pairs of vertices.

We cannot omit springs corresponding to edges, but in connection graphs,
the number of edges is of the order of the number of vertices, so most of the
pairs in (2) are connected by a shortest path with at least two edges. If a train
runs along a path of k edges, we call this path a k-connection. To model the
plausible assumption that, locally, trains run fairly straight, we include only
terms corresponding to edges (or 1-connections) and to 2- and 3-connections
into the potential. Whenever there are two or more springs for a single pair of

2 In the graph drawing literature, similar objective functions have been subjected to
simulated annealing [5, 4] and genetic algorithms [14, 2]. These methods seem to scale
even worse.



vertices, they are replaced by a single spring of the average length. For realistic
data, the total number of springs thus introduced is linear in the number of
vertices.

Long-range dependencies. Since we omit most of the long-range dependen-
cies (i.e. springs connecting distant pairs of vertices), an iterative method starting
from a random layout is almost surely trapped in a very poor local minimum.

We therefore determine an initial layout by computing a local minimum
of the potential on an even sparser graph, that does only include the long-
range dependencies relevant for our approach. That is, we consider the subgraph
consisting of all stations that have a fixed position or are a terminal station
of some train, and introduce springs only between the two terminal stations of
each train, and between pairs of the selected vertices that are consecutive on the
path of any train. We refer to these additional pairs as long-range connections.
In case the resulting graph has more components than the connection graph, we
heuristically add some stations touched by trains inducing different components
and the respective springs. After running our layout algorithm on this graph
(initialized with a barycentric layout), the initial position for all other vertices is
determined from a barycentric layout in which those positions that have already
been computed are fixed.

Iterative improvement. We compute a local minimum of a potential U(p)
by relocating one vertex at a time according to the forces acting on it, i.e. the
negative of the gradient, −∇U(p).

For each node v (in arbitrary order) we move only this node in dependence
of U(pv). The node is shifted in the opposite direction of

d := ∇U(pv) :=

〈

∂U(pv)

∂xv

,
∂U(pv)

∂yv

,
∂U(pv)

∂zv

〉

A substantial parameter of a gradient descent is the size of each step. For
small graphs it is often sufficient to take a fixed multiple of the gradient (see
the classic example of [6]), while others suggest some sort of step size reduction
schedule (e.g., see [8]). We applied a more elaborate method that is robust against
change of scale, namely the method of Wolfe and Powell (see, e.g., [23, 15]). The
step size σ ∈ (0,∞) is determined by

∇U(pv − σd)d

∇U(pv)d
≤ κ

U(pv) − U(pv − σd)

σ · ∇U(pv)d
≥ δ

for given parameters δ ∈ (0, 0.5) and κ ∈ (δ, 1). Roughly speaking, this guar-
antees that the potential is reduced and that the step is not too small. In our
experiments, this method clearly outperformed the simpler methods both in
terms of convergence and overall running time.



Another dimension. Generally speaking, a set of desired edge lengths can be
resembled more closely in higher-dimensional Euclidean space. Several models
make use of this observation by temporarily allowing additional coordinates and
then penalizing their deviation from zero [24] or projecting down [9].

We use a third coordinate during all phases of the layout algorithm, but
ignore it in the final layout. Since projections do not preserve the edge lengths,
we use a penalty function

∑

v∈V ct · z2

v , where ct is the penalty weight at the tth
iteration, to gradually reduce the value of the z-coordinate towards the end of the
layout computation. Experimentation showed that the final value of the potential
is reduced by more than 10% with respect to an exclusively two-dimensional
approach.

In summary, our layout algorithm consists of the following four steps:

1. barycentric layout of graph of long-range connections
2. iterative improvement
3. barycentric layout of graph of 2-, 3-, and long-range connections
4. iterative improvement with increasing z-coordinate penalties

In each of these steps, the iteration is stopped when none of the stations was
moved by more than a fixed distance. Figure 3 shows the results of this approach
when applied to the graph of Fig. 2.

Fig. 3. Layouts of the graph of Fig. 2, where fictitious trains run along grid lines, under
specific model

5 Results and Discussion

Our computational experiments are based on the timetables of the Deutsche
Bahn AG, Germany’s national train and railroad company, for the winter pe-
riod 1996/97. It contains a total of 933,066 arrivals and departures on 6,961 sta-
tions, for which we have complete coordinate information.

To assess the quality of coordinates generated by the layout algorithms de-
scribed in Sects. 3 and 4, we used a snapshot from the central travel information



server of Deutsche Bahn AG. This data consists of 544,181 queries collected over
several hours of a regular working day.

This benchmark data are unique in the sense that it is the only real network
for which we have both coordinates and query data.

In the experiments, shortest paths are computed for these queries using our
own implementation of Dijkstra’s algorithm and the angle-restriction and goal-
directed search heuristics. All implementations are in C or C++, compiled with
gcc version 2.95.2.

From the timetables we generated the following instances:

– de-org (coordinates known for all stations)
– de-22-important (coordinates known for the 22 most important3 stations)
– de-22-random (coordinates known for 22 randomly selected stations)
– de (no coordinates given)

For these instances, we generated layouts using the barycentric model of
Sect. 3 and the specific model of Sect. 4, and measured the average core CPU
time spent on answering the queries, as well as the number of vertices touched by
the modified versions of Dijkstra’s algorithm. Each experiment was performed
on a single 336 Mhz UltraSparc-II processor of a Sun Enterprise 4000/5000
workstation with 1024 MB of main memory. The results are given in Tab. 1, and
the layouts are shown in Figs. 4–5.

Table 1. Average query response times and number of nodes touched by Dijkstra’s
algorithm. Without coordinates, the average response time is 104.0 ms (18406 nodes)

heuristic: angles goal both

instance layout model ∅ ms nodes ∅ ms nodes ∅ ms nodes

de-org (Fig. 4) 16.4 4585 82.5 11744 13.9 3317

de (Fig. 5) specific 41.1 9034 108.2 15053 40.7 7559

de-22-important barycenteric 18.9 5062 117.1 17699 20.1 4918
(Fig. 6) specific 19.5 5158 84.6 11992 16.8 3762

de-22-random barycentric 18.1 5017 111.4 17029 19.3 4745
(Fig. 7) specific 20.7 5383 88.0 12388 17.9 3985

The results show that the barycentric model seems to match very well with
the angle-restriction heuristic when important stations are fixed. The somewhat
surprising usefulness of this simple model even for the randomly selected stations
seems to be due to the fact that our sample spreads out quite well. It will be
interesting to study this phenomenon in more detail, since the properties that
make a set of stations most useful are important for practical purposes.

The specific model appears to work well in all cases. Note that the aver-
age response time for connection queries is reduced by 60%, even without any
3 Together with the coordinate information, there is an value associated with each

station that indicates its importance as a hub. The 22 selected stations have the
highest attained value.



Fig. 4. de-org

Fig. 5. de



barycentric specific

Fig. 6. de-22-important

barycentric specific

Fig. 7. de-22-random



knowledge of the underlying geography. With the fairly realistic assumption that
the location of a limited number of important stations is known, the speed-up
obtained with the actual coordinates is almost matched.

To evaluate whether the specific model achieves the objective to preserve
given edge length, we generated additional instances from de-org by dropping a
fixed percentage of station coordinates ranging from 0–100%, while setting λe to
its true value. As can be seen in Fig. 8, these distances are reconstructed quite
well.
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Fig. 8. Minimum, mean, and maximum relative error in edge lengths, averaged over
ten instances each

As of now, we do not know how our method compares with the most re-
cent developments in force-directed placement for very large graphs [9, 26], in
particular the method of [11].
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