Algorithms for graph visualization

Contact representations of planar graphs.
In a **contact representation** of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.
Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

![Contact representation diagram]
Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

- 6-gons are necessary and sufficient for planar graphs! (Gansner et. al. 2010)
In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

Every 3-connected cubic planar graph admits a contact representation with triangles (Kobourov et. al. 2012)
In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

Every 4-connected planar graph admits a contact representation with rectangles (Xin He 1993)
In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

- Every triangle-free planar graph has a contact representation with line segments in just three directions (de Castro et. al. 1999)
In a contact representation of a planar graph each vertex is represented as a geometrical object such that two object touch if and only if the corresponding vertices are connected by an edge.

Each planar graph has a touching disks representation (Koebe 1936)
Application: visualization of a clustering

- Run force directed algorithm on the graph
- Compute voronoi diagram of the points representing the vertices
Application: visualization of a clustering

- Run force directed algorithm on the graph
- Compute voronoi diagram of the points representing the vertices
- Color voronoi cell according to the clustering
Application: visualization of a clustering

- Run force directed algorithm on the graph
- Compute voronoi diagram of the points representing the vertices
- Color voronoi cell according to the clustering
- Merge cells of the same cluster

Inspired by GMap (Gansner et al.)
Application: visualization of a clustering

- Just a heuristic, there are no guarantees that:
 - The strong adjacencies between clusters are represented by contacts of the countries
Application: visualization of a clustering

- Just a heuristic, there are no guarantees that:
 - The strong adjacencies between clusters are represented by contacts of the countries
 - The length of the boundary is representing the strength of the adjacency
Application: visualization of a clustering

- Just a heuristic, there are no guarantees that:
 - The strong adjacencies between clusters are represented by contacts of the countries
 - The length of the boundary is representing the strength of the adjacency
 - The size of the country is proportional to the population size
Application: visualization of a clustering

- Just a heuristic, there are no guarantees that:
 - The strong adjacencies between clusters are represented by contacts of the countries
 - The length of the boundary is representing the strength of the adjacency
 - The size of the country is proportional to the population size
 - The countries may be fragmented

Application: visualization of a clustering

- Just a heuristic, there are no guarantees that:
 - The strong adjacencies between clusters are represented by contacts of the countries
 - The length of the boundary is representing the strength of the adjacency
 - The size of the country is proportional to the population size
 - The countries may be fragmented

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

Every 4-connected planar graph* admits a contact representation with rectangles (Xin He 1993*)
Today

Contact representation

In a contact representation of a planar graph each vertex is represented as a geometrical object such that two objects touch if and only if the corresponding vertices are connected by an edge.

Contact representation with rectangles

- Every 4-connected planar graph* admits a contact representation with rectangles (Xin He 1993*)
- A contact representation of G with rectangles, without holes and with rectangular outer boundary is called a rectangular dual of G
Rectangular Dual

Which graphs have a rectangular dual?
Rectangular Dual

- Which graphs have a rectangular dual?

Separating triangle

Let G be a graph. A triangle C of G whose removal results in at least two disconnected components is called a **separating triangle** of G.
Which graphs have a rectangular dual?

Separating triangle

Let G be a graph. A triangle C of G whose removal results in at least two disconnected components is called a **separating triangle** of G.

Does not have a rectangular dual!

(In order to enclose an area we need at least four boxes)
Rectangular Dual

Which graphs have a rectangular dual?

Separating triangle

Let G be a graph. A triangle C of G whose removal results in at least two disconnected components is called a separating triangle of G.

Does not have a rectangular dual!
(In order to enclose an area we need at least four boxes)

No four rectangles meet a a point!
Rectangular Dual

Which graphs have a rectangular dual?

Separating triangle

Let G be a graph. A triangle C of G whose removal results in at least two disconnected components is called a separating triangle of G.

Does not have a rectangular dual!

(In order to enclose an area we need at least four boxes)

No four rectangles meet a a point! Each face of G must be a triangle!

5 - 5
Rectangular Dual

Necessary conditions for a planar graph G to have a rectangular dual:

- G must have at least 4 vertices on the outer face
- G must have no separating triangle
- each internal face of G must be a triangle
Rectangular Dual

Necessary conditions for a planar graph G to have a rectangular dual:
- G must have at least 4 vertices on the outer face
- G must have no separating triangle
- each internal face of G must be a triangle

We will prove that these conditions are sufficient!
Rectangular Dual

Necessary conditions for a planar graph G to have a rectangular dual:

- G must have at least 4 vertices on the outer face
- G must have no separating triangle
- each internal face of G must be a triangle

We will prove that these conditions are sufficient!

A planar graph $G = (V, E)$ has a rectangular dual R with four rectangles on the boundary of R if and only if the following conditions hold:

- Every interior face of G is a triangle and the exterior face of G is a quadrangle;
- G has no separating triangles
Rectangular Dual

Necessary conditions for a planar graph G to have a rectangular dual:
- G must have at least 4 vertices on the outer face
- G must have no separating triangle
- each internal face of G must be a triangle

We will prove that these conditions are sufficient!

A planar graph $G = (V, E)$ has a rectangular dual R with four rectangles on the boundary of R if and only if the following conditions hold:
- Every interior face of G is a triangle and the exterior face of G is a quadrangle;
- G has no separating triangles

Proper Triangular Planar Graph (PTP)
In order to construct a rectangular dual we need to partition our edges on **vertical** and **horizontal**. **Regular edge labeling** (REL, for short) is a tool for that.
In order to construct a rectangular dual we need to partition our edges on vertical and horizontal. Regular edge labeling (REL, for short) is a tool for that.

Regular edge labeling

For each internal vertex:

For the boundary vertices:

\[vW \quad vN \quad vS \quad vE \]
Rectangular Dual

Theorem

Let $G = (V, E)$ be a PTP graph. There exists a labeling of the vertices of G $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W).
- v_k is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$. If $k \leq k - 2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.
Rectangular Dual

Theorem

Let $G = (V, E)$ be a PTP graph. There exists a labeling of the vertices of G \(v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N \) such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W).
- v_k is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$. If $k \leq k - 2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Canonical ordering with extra condition on v_k!
Rectangular Dual

Theorem (Refined canonical ordering)

Let $G = (V, E)$ be a PTP graph. There exists a labeling of the vertices of G $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W).
- v_k is in exterior face of G_{k-1}, and its neighbors in G_{k-1} form (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$. If $k \leq k - 2$, v_k has at least 2 neighbors in $G \setminus G_{k-1}$.

Canonical ordering with extra condition on v_k!
Rectangular Dual

Refined canonical ordering

9 - 5
Rectangular Dual

Refined canonical ordering
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 1

Left edge or right edge can not be a base edge.
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 1

Left edge or right edge can not be a base edge.

Proof: Assume that left edge (v_k, v_{k_1}) is the base edge of v_{k_1}.
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 1

Left edge or right edge can not be a base edge.

Proof: Assume that left edge (v_k, v_{k_1}) is the base edge of v_{k_1}.
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 2

An edge is either a left edge, a right edge or a base edge.

Proof:

- The exclusive “or” follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k.
- v_{t_a} is right point of $v_{t_{a-1}}, v_{t_{a-1}}$ is right point of $v_{t_{a-2}}, \text{generally } v_{t_{i+1}}$ is right point of $v_{t_i}, 1 \leq i < a - 1$
- Edges $(v_{t_i}, v_k), 1 \leq i < a - 1$, are right edges;
- Similarly we prove that edges $(v_{t_i}, v_k), a + 1 \leq i < l$, are left edges;
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

\[\text{Lemma 2} \]

An edge is either a left edge, a right edge or a base edge.

Proof:

- The exclusive “or” follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k.
- v_{t_a} is right point of $v_{t_{a-1}}$, $v_{t_{a-1}}$ is right point of $v_{t_{a-2}}$, generally $v_{t_{i+1}}$ is right point of v_{t_i}, $1 \leq i < a - 1$.
- Edges (v_{t_i}, v_k), $1 \leq i < a - 1$, are right edges;
- Similarly we prove that edges (v_{t_i}, v_k), $a + 1 \leq i < l$, are left edges;
Rectangular Dual

Given a refined canonical ordering of G we construct a REL as follows:

- For each (v_i, v_j) orient it from v_i to v_j, for $i < j$;
- Base edge of v_k is (v_l, v_k), where $l < k$ is minimal.
- v_k has incoming edges from v_{t_1}, \ldots, v_{t_l}, we say that v_{t_1} is left point of v_k and v_{t_l} is right point of v_k.
- If v_{k_1}, \ldots, v_{k_l} are higher numbered neighbors of v_k, we call (v_k, v_{k_1}) left edge and (v_k, v_{k_l}) right edge.

Lemma 2

An edge is either a left edge, a right edge or a base edge.

Proof:

- The exclusive “or” follows from Lemma 1.
- Let (v_{t_a}, v_k) be base edge of v_k.
- v_{t_a} is right point of $v_{t_a - 1}$, $v_{t_a - 1}$ is right point of $v_{t_a - 2}$, generally $v_{t_{i+1}}$ is right point of v_{t_i}, $1 \leq i < a - 1$
- Edges (v_{t_i}, v_k), $1 \leq i < a - 1$, are right edges;
- Similarly we prove that edges (v_{t_i}, v_k), $a + 1 \leq i < l$, are left edges;
Rectangular Dual

right edges

left edges

base edge

v_k
Rectangular Dual

right edges

base edge

left edges

v_k

u
Rectangular Dual
Rectangular Dual
We call T_b blue edges and T_r red edges.
Rectangular Dual

We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_l \geq 2$
Rectangular Dual

We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

\[k_l \geq 2 \]
Rectangular Dual

We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_l \geq 2$
Rectangular Dual

We call \(T_b \) blue edges and \(T_r \) red edges.

Lemma 3
\(\{T_r, T_b\} \) is a regular edge labeling.

Proof:
Rectangular Dual

We call T_b blue edges and T_r red edges.

Lemma 3
{T_r, T_b} is a regular edge labeling.

Proof:

$$k_d = \max\{v_k_1 \cdots v_k_l\}$$

$$k_l \geq 2$$
Rectangular Dual

We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_d = \max\{v_{k_1} \ldots v_{k_l}\}$

$k_1 < k_2 < \ldots < k_d \text{ and } k_d > k_{d+1} > \ldots > k_l$

v_{k_1}

$\{v_{k_2}, \ldots v_{k_{l-1}}\}$

$v_{k_l} \geq 2$
Rectangular Dual

We call \(T_b \) blue edges and \(T_r \) red edges.

Lemma 3
\(\{T_r, T_b\} \) is a regular edge labeling.

Proof:
\[k_d = \max\{v_{k_1} \cdots v_{k_l}\} \quad \Rightarrow \quad k_1 < k_2 < \cdots < k_d \quad \text{and} \quad k_d > k_{d+1} > \cdots > k_l \]
Rectangular Dual

We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_d = \max\{v_{k_1} \cdots v_{k_l}\}$

$k_1 < k_2 < \cdots < k_d$ and

$k_d > k_{d+1} > \cdots > k_l$

$(v_k, v_{k_i}), 2 \leq i \leq d - 1$ are red

$(v_k, v_{k_i}), d + 1 \leq i \leq l - 1$ are blue

edge (v_k, v_{k_d}) is either red or blue
Rectangular Dual

We call T_b blue edges and T_r red edges.

Lemma 3

$\{T_r, T_b\}$ is a regular edge labeling.

Proof:

$k_d = \max\{v_{k_1} \ldots v_{k_l}\}$

$k_1 < k_2 < \cdots < k_d$ and $k_d > k_{d+1} > \cdots > k_l$

$(v_k, v_{k_i}), 2 \leq i \leq d - 1$ are red

$(v_k, v_{k_i}), d + 1 \leq i \leq l - 1$ are blue

Edge (v_k, v_{k_d}) is either red or blue
Rectangular Dual

Algorithmen zur Visualisierung von Graphen
Tamara Mchedlidze

Institut f"ur Theoretische Informatik
Lehrstuhl Algorithmik I
Rectangular Dual
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

W-E net G_{W-E}
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual
Rectangular Dual
Rectangular Dual
Rectangular Dual

Algorithmen zur Visualisierung von Graphen

Tamara Mchedlidze

Institut für Theoretische Informatik
Lehrstuhl Algorithmik I
Rectangular Dual
Rectangular Dual
Rectangular Dual

Algorithm Rectangular dual
Input: A PTP graph $G = (V, E)$

- Find a REL T_r, T_b of G;
- Construct a S-N net G_{S-N} of G (consists of T_r plus outer edges)
- Construct the dual G^*_{S-N} of G_{S-N} and compute a topological ordering f_{sn} of G^*_{S-N}
- For each vertex $v \in V$, let f and g be the face on the left and face on the right of v. Set $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$.
- Define $x_1(v_N) = x_1(v_S) = 1$ and $x_2(v_N) = x_2(v_S) = \max f_{sn} - 1$
Rectangular Dual

Algorithm Rectangular dual

Input: A PTP graph $G = (V, E)$

1. Find a REL T_r, T_b of G
2. Construct a S-N net G_{S-N} of G (consists of T_r plus outer edges)
3. Construct the dual G^{\star}_{S-N} of G_{S-N} and compute a topological ordering f_{sn} of G^{\star}_{S-N}
4. For each vertex $v \in V$, let f and g be the face on the left and face on the right of v. Set $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$.
5. Define $x_1(v_N) = x_1(v_S) = 1$ and $x_2(v_N) = x_2(v_S) = \max f_{sn} - 1$
Rectangular Dual

Algorithm Rectangular dual
Input: A PTP graph $G = (V, E)$

1. Find a REL T_r, T_b of G;
2. Construct a W-E net G_{W-E} of G (consists of T_b plus outer edges);
3. Construct the dual G_{SN} and compute a topological ordering f_{SN} of G_{SN};
4. For each vertex $v \in V$, let f and g be the face on the left and face on the right of v. Set $x_1(v) = f_{SN}(f)$ and $x_2(v) = f_{SN}(g)$.
5. Define $x_1(v_{SN}) = x_1(v_{S}) = 1$ and $x_2(v_{SN}) = x_2(v_{S}) = max f_{SN} - 1$.
Rectangular Dual

Algorithm Rectangular dual
Input: A PTP graph $G = (V, E)$

1. Find a REL T_r, T_b of G;
2. Construct a W-E net $GW - E$ of G (consists of T_b plus outer edges);
3. Construct the dual $G^*_{W - E}$ and compute a topological ordering f_{we} of $G^*_{W - E}$;
4. For each vertex $v \in V$, let f and g be the face on the left and face on the right of v. Set $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$.
5. Define $x_1(v_N) = x_1(v_S) = 1$ and $x_2(v_N) = x_2(v_S) = max f_{sn} - 1$.
Rectangular Dual

Algorithm Rectangular dual
Input: A PTP graph $G = (V, E)$

- Find a REL T_r, T_b of G;
- Construct a $W-E$ net of G (consists of T_b plus outer edges);
- Construct the dual G^*_{W-E} of G and compute a topological ordering f_{we} of G^*_{W-E};
- For each vertex $v \in V$, let f and g be the face below and face above v. Set $y_1(v) = f_{sn}(f)$ and $y_2(v) = f_{sn}(g)$;
- Define $x_1(v) = 1$ and $x_2(v) = \max f_{sn} - 1$.
Rectangular Dual

Algorithm Rectangular dual

Input: A PTP graph \(G = (V, E) \)

- Find a REL \(T_r, T_b \) of \(G \);
- Construct a W-E net \(G_{W-E} \) of \(G \) (consists of \(T_b \) plus outer edges)
- Construct the dual \(G^*_{W-E} \) of \(G_{W-E} \) and compute a topological ordering \(f_{we} \) of \(G^*_{W-E} \)
- For each vertex \(v \in V \), let \(f \) and \(g \) be the face below and face above \(v \). Set \(y_1(v) = f_{sn}(f) \) and \(y_2(v) = f_{sn}(g) \).
- Define \(y_1(v_W) = y_1(s_E) = 0 \) and \(y_1(v_W) = y_1(s_E) = \max f_{we} \)
Algorithm Rectangular dual

Input: A PTP graph $G = (V, E)$

- Find a REL T_r, T_b of G;
- Construct a W-E net of G (consists of T_b plus outer edges);
- Construct the dual of G^* and compute a topological ordering f_{we} of G^*_{W-E};
- For each vertex $v \in V$, let f and g be the face below and face above v. Set $y_1(v) = f_{sn}(f)$ and $y_2(v) = f_{sn}(g)$.
- Define $y_1(v_W) = y_1(s_E) = 0$ and $y_1(v_W) = y_1(s_E) = \max f_{we}$.
- For each $v \in V$, assign a rectangle $R(v)$ bounded by x-coordinates $x_1(v), x_2(v)$ and y-coordinates $y_1(v), y_2(v)$.
Rectangular Dual
Rectangular Dual

$x_1(v_N) = 1, \quad x_2(v_N) = 15$
$x_1(v_S) = 1, \quad x_2(v_S) = 15$
$x_1(v_W) = 0, \quad x_2(v_W) = 1$
$x_1(v_E) = 15, \quad x_2(v_E) = 16$
$x_1(a) = 1, \quad x_2(a) = 3$
$x_1(b) = 3, \quad x_2(b) = 5$
$x_1(c) = 5, \quad x_2(c) = 14$
$x_1(d) = 14, \quad x_2(d) = 15$
$x_1(e) = 13, \quad x_2(e) = 15$
Rectangular Dual

\[
x_1(v_N) = 1, \quad x_2(v_N) = 15 \\
x_1(v_S) = 1, \quad x_2(v_S) = 15 \\
x_1(v_W) = 0, \quad x_2(v_W) = 1 \\
x_1(v_E) = 15, \quad x_2(v_E) = 16 \\
x_1(a) = 1, \quad x_2(a) = 3 \\
x_1(b) = 3, \quad x_2(b) = 5 \\
x_1(c) = 5, \quad x_2(c) = 14 \\
x_1(d) = 14, \quad x_2(d) = 15 \\
x_1(e) = 13, \quad x_2(e) = 15
\]
Rectangular Dual

\[x_1(v_N) = 1, \ x_2(v_N) = 15 \]
\[x_1(v_S) = 1, \ x_2(v_S) = 15 \]
\[x_1(v_W) = 0, \ x_2(v_W) = 1 \]
\[x_1(v_E) = 15, \ x_2(v_E) = 16 \]
\[x_1(a) = 1, \ x_2(a) = 3 \]
\[x_1(b) = 3, \ x_2(b) = 5 \]
\[x_1(c) = 5, \ x_2(c) = 14 \]
\[x_1(d) = 14, \ x_2(d) = 15 \]
\[x_1(e) = 13, \ x_2(e) = 15 \]
Rectangular Dual

\[x_1(v_N) = 1, \quad x_2(v_N) = 15 \]
\[x_1(v_S) = 1, \quad x_2(v_S) = 15 \]
\[x_1(v_W) = 0, \quad x_2(v_W) = 1 \]
\[x_1(v_E) = 15, \quad x_2(v_E) = 16 \]
\[x_1(a) = 1, \quad x_2(a) = 3 \]
\[x_1(b) = 3, \quad x_2(b) = 5 \]
\[x_1(c) = 5, \quad x_2(c) = 14 \]
\[x_1(d) = 14, \quad x_2(d) = 15 \]
\[x_1(e) = 13, \quad x_2(e) = 15 \]
Rectangular Dual

$x_1(v_N) = 1$, $x_2(v_N) = 15$
$x_1(v_S) = 1$, $x_2(v_S) = 15$
$x_1(v_W) = 0$, $x_2(v_W) = 1$
$x_1(v_E) = 15$, $x_2(v_E) = 16$
$x_1(a) = 1$, $x_2(a) = 3$
$x_1(b) = 3$, $x_2(b) = 5$
$x_1(c) = 5$, $x_2(c) = 14$
$x_1(d) = 14$, $x_2(d) = 15$
$x_1(e) = 13$, $x_2(e) = 15$
Rectangular Dual

\[x_1(v_N) = 1, \quad x_2(v_N) = 15 \]
\[x_1(v_S) = 1, \quad x_2(v_S) = 15 \]
\[x_1(v_W) = 0, \quad x_2(v_W) = 1 \]
\[x_1(v_E) = 15, \quad x_2(v_E) = 16 \]
\[x_1(a) = 1, \quad x_2(a) = 3 \]
\[x_1(b) = 3, \quad x_2(b) = 5 \]
\[x_1(c) = 5, \quad x_2(c) = 14 \]
\[x_1(d) = 14, \quad x_2(d) = 15 \]
\[x_1(e) = 13, \quad x_2(e) = 15 \]

\[y_1(v_W) = 0, \quad y_2(v_W) = 10 \]
\[y_1(v_E) = 0, \quad y_2(v_E) = 10 \]
\[y_1(v_N) = 9, \quad y_2(v_N) = 10 \]
\[y_1(v_S) = 0, \quad y_2(v_S) = 1 \]
\[y_1(a) = 1, \quad y_2(a) = 2 \]
\[y_1(b) = 1, \quad y_2(b) = 2 \]
\[y_1(c) = 1, \quad y_2(c) = 2 \]
\[y_1(d) = 1, \quad y_2(d) = 2 \]
\[y_1(e) = 2, \quad y_2(e) = 3 \]
Rectangular Dual

\[x_1(v_N) = 1, \quad x_2(v_N) = 15 \]
\[x_1(v_S) = 1, \quad x_2(v_S) = 15 \]
\[x_1(v_W) = 0, \quad x_2(v_W) = 1 \]
\[x_1(v_E) = 15, \quad x_2(v_E) = 16 \]
\[x_1(a) = 1, \quad x_2(a) = 3 \]
\[x_1(b) = 3, \quad x_2(b) = 5 \]
\[x_1(c) = 5, \quad x_2(c) = 14 \]
\[x_1(d) = 14, \quad x_2(d) = 15 \]
\[x_1(e) = 13, \quad x_2(e) = 15 \]

\[y_1(v_W) = 0, \quad y_2(v_W) = 10 \]
\[y_1(v_E) = 0, \quad y_2(v_E) = 10 \]
\[y_1(v_N) = 9, \quad y_2(v_N) = 10 \]
\[y_1(v_S) = 0, \quad y_2(v_S) = 1 \]
\[y_1(a) = 1, \quad y_2(a) = 2 \]
\[y_1(b) = 1, \quad y_2(b) = 2 \]
\[y_1(c) = 1, \quad y_2(c) = 2 \]
\[y_1(d) = 1, \quad y_2(d) = 2 \]
\[y_1(e) = 2, \quad y_2(e) = 3 \]
Rectangular Dual

$x_1(v_N) = 1$, $x_2(v_N) = 15$
$x_1(v_S) = 1$, $x_2(v_S) = 15$
$x_1(v_W) = 0$, $x_2(v_W) = 1$
$x_1(v_E) = 15$, $x_2(v_E) = 16$
$x_1(a) = 1$, $x_2(a) = 3$
$x_1(b) = 3$, $x_2(b) = 5$
$x_1(c) = 5$, $x_2(c) = 14$
$x_1(d) = 14$, $x_2(d) = 15$
$x_1(e) = 13$, $x_2(e) = 15$

$y_1(v_W) = 0$, $y_2(v_W) = 10$
$y_1(v_E) = 0$, $y_2(v_E) = 10$
$y_1(v_N) = 9$, $y_2(v_N) = 10$
$y_1(v_S) = 0$, $y_2(v_S) = 1$
$y_1(a) = 1$, $y_2(a) = 2$
$y_1(b) = 1$, $y_2(b) = 2$
$y_1(c) = 1$, $y_2(c) = 2$
$y_1(d) = 1$, $y_2(d) = 2$
$y_1(e) = 2$, $y_2(e) = 3$
Rectangular Dual

In the following we prove that presented algorithm constructs a rectangular dual of G.

- Let f_1, \ldots, f_k be the faces of G^*_{S-N} (resp. G^*_{W-E}), enumerated according to st-numbering f_{sn} (resp. f_{we}).

- Let G^i_{S-N} (resp. G^i_{W-E}) denote the subgraph of G that is induced by vertices and edges of f_1, \ldots, f_i.

- We denote P_i (resp. Q_i) the right (resp. top) boundary of G^i_{S-N} (resp. G^i_{W-E}).
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

S-N net G_{S-N}

P_6
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

S-N net G_{S-N}

P_{13}

16 - 4
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

S-N net G_{S-N}
Rectangular Dual

Paths P_i and Q_j for any i, j (except for (a) $i = 0, j = 0$, (b) $i = \max f_{sn} - 1, j = 0$, (c) $i = 0, j = \max f_{we} - 1$, (d) $i = \max f_{sn} - 1, j = \max f_{we} - 1$) cross at exactly one vertex.
Rectangular Dual

- Paths P_i and Q_j for any i, j (except for (a) $i = 0, j = 0$, (b) $i = \max f_{sn} - 1, j = 0$, (c) $i = 0, j = \max f_{we} - 1$, (d) $i = \max f_{sn} - 1, j = \max f_{we} - 1$) cross at exactly one vertex.

Lemma 4

Let $v \in V$, f and g are the left and the right face of v. Let $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$. Vertex v belongs to path P_i if and only if $x_1(v) \leq i \leq x_2(v) - 1$.

Proof

- $f_{sn}(f) \leq i$ and $f_{sn}(g) \geq i + 1$
Rectangular Dual

- Paths P_i and Q_j for any i, j (except for (a) $i = 0, j = 0$, (b) $i = \max f_{sn} - 1, j = 0$, (c) $i = 0, j = \max f_{we} - 1$, (d) $i = \max f_{sn} - 1, j = \max f_{we} - 1$) cross at exactly one vertex.

Lemma 4

Let $v \in V$, f and g are the left and the right face of v. Let $x_1(v) = f_{sn}(f)$ and $x_2(v) = f_{sn}(g)$. Vertex v belongs to path P_i if and only if $x_1(v) \leq i \leq x_2(v) - 1$.

Lemma 5

Let $v \in V$, f and g are the faces below and above v in $G_{W - E}$. Let $y_1(v) = f_{we}(f)$ and $y_2(v) = f_{we}(g)$. Vertex v belongs to path Q_j if and only if $y_1(v) \leq j \leq y_2(v) - 1$.

Proof (identical)
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof:
Lemma 6
The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there **exists a vertex** over this box: \(u \in P_i \cap Q_j \)
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is at most one vertex over this box.
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is at most one vertex over this box.
Rectangular Dual

Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is at most one vertex over this box

\[x_1(u) \leq i \text{ and } i + 1 \leq x_2(u) \]
Rectangular Dual

Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is **at most one vertex** over this box

\[x_1(u) \leq i \text{ and } i+1 \leq x_2(u) \]

\[u \text{ belongs to } P_i \]
Rectangular Dual

Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is **at most one vertex** over this box

\[x_1(u) \leq i \quad \text{and} \quad i+1 \leq x_2(u) \]

(Lemma 4)

\[u \text{ belongs to } P_i \]

Similarly: \(v \in P_i, u \in Q_j, v \in Q_j \).
Rectangular Dual

Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is **at most one vertex** over this box

Paths P_i and Q_j intersect at two vertices u and v.

\[
x_1(u) \leq i \text{ and } i+1 \leq x_2(u) \quad \text{(Lemma 4)}
\]

\[
u \text{ belongs to } P_i
\]

Similarly: $v \in P_i$, $u \in Q_j$, $v \in Q_j$.

18 - 9
Lemma 6

The assignment provided by the algorithm do not produce neither gaps nor overlapping rectangles.

Proof: Show that there is at most one vertex over this box

\[x_1(u) \leq i \text{ and } i+1 \leq x_2(u) \]

(Lemma 4)

\[u \text{ belongs to } P_i \]

Similarly: \(v \in P_i, u \in Q_j, v \in Q_j \).

Paths \(P_i \) and \(Q_j \) intersect at two vertices \(u \) and \(v \).

Which is a contradiction to the property of paths \(P_i, Q_j \) except for the cases when:

(a) \(i = 0, j = 0 \), (b) \(i = \max f_{sn} - 1, j = 0 \), (c) \(i = 0, j = \max f_{we} - 1 \), (d) \(i = \max f_{sn} - 1, j = \max f_{we} - 1 \) (corner boxes).
Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$.
Rectangular Dual

Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$

Proof

\[u \rightarrow v \]
Rectangular Dual

Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$

Proof

![Diagram of a network with a function f from u to v.]
Rectangular Dual

Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$

Proof

- $x_2(u) = f_{sn}(f) = x_1(v)$

19 - 4
Lemma 7

Let \(G_{S-N} \) and \(G_{W-E} \). The following are true:

- If \((u, v) \in G_{W-E} \) then \(x_2(u) = x_1(v) \);
- If there exist a directed path from \(u \) to \(v \) in \(G_{W-E} \) containing at least two edges, then \(x_2(u) < x_1(v) \)

Proof

\[x_2(u) = f_{sn}(f) = x_1(v) \]
Rectangular Dual

Lemma 7
Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$

Proof

- $x_2(u) = f_{sn}(f) = x_1(v)$

19 - 6
Rectangular Dual

Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$

Proof

- $x_2(u) = f_{sn}(f) = x_1(v)$
- $x_2(u) = f_{sn}(f)$
- $x_1(v) = f_{sn}(g)$
- $x_2(u) = f_{sn}(f)$
- $x_1(v) = f_{sn}(g)$

19 - 7
Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$;
- If $(u, v) \in G_{S-N}$ then $y_2(u) = y_1(v)$;
- If there exist a directed path from u to v in G_{S-N} containing at least two edges, then $y_2(u) < y_1(v)$.
Rectangular Dual

Lemma 7

Let G_{S-N} and G_{W-E}. The following are true:

- If $(u, v) \in G_{W-E}$ then $x_2(u) = x_1(v)$;
- If there exist a directed path from u to v in G_{W-E} containing at least two edges, then $x_2(u) < x_1(v)$;
- If $(u, v) \in G_{S-N}$ then $y_2(u) = y_1(v)$;
- If there exist a directed path from u to v in G_{S-N} containing at least two edges, then $y_2(u) < y_1(v)$.

Lemma 8

The assignment provided by the algorithm has the following property: rectangles assigned to vertices u and v have a common segment if and only if there exists edge (u, v) in the graph.

Proof:

19 - 9
Assume $R(u)$ and $R(v)$ have a common boundary.
Rectangular Dual

Assume $R(u)$ and $R(v)$ have a common boundary.

$x_1(v) \leq i, i + 1 \leq x_2(v)$ and $x_1(u) \leq i, i + 1 \leq x_2(u)$
Assume $R(u)$ and $R(v)$ have a common boundary.

$x_1(v) \leq i, i + 1 \leq x_2(v)$ and $x_1(u) \leq i, i + 1 \leq x_2(u)$

(Lemma 4)

u, v belong to P_i
Assume $R(u)$ and $R(v)$ have a common boundary.

\[x_1(v) \leq i, \quad i + 1 \leq x_2(v) \quad \text{and} \quad x_1(u) \leq i, \quad i + 1 \leq x_2(u) \]

(Lemma 4)

\[u, v \text{ belong to } P_i \]

If path between u and v has at least 2 edges, then by Lemma 7,
\[y_2(u) < y_1(v) \]
Rectangular Dual

Assume \(R(u) \) and \(R(v) \) have a common boundary.

\[x_1(v) \leq i, i + 1 \leq x_2(v) \] \(\text{and} \) \[x_1(u) \leq i, i + 1 \leq x_2(u) \]

(Lemma 4)

\(u, v \) belong to \(P_i \)

If path between \(u \) and \(v \) has at least 2 edges, then by Lemma 7,
\[y_2(u) < y_1(v) \]

A contradiction to the hypothesis!
Rectangular Dual

- Assume there exists an edge \((u, v) \in G_{W-E}\).

- Let \(Q_j\) be the path of \(G_{W-E}\) where \((u, v)\) belongs. By Lemma 5, \(y_1(u) \leq j, j + 1 \leq y_2(u)\) and \(y_1(v) \leq j, j + 1 \leq y_2(v)\).

- By Lemma 7, \(x_2(u) = x_1(v)\).
Assume there exists an edge \((u, v) \in G_{W - E}\).

Let \(Q_j\) be the path of \(G_{W - E}\) where \((u, v)\) belongs. By Lemma 5, \(y_1(u) \leq j\), \(j + 1 \leq y_2(u)\) and \(y_1(v) \leq j\), \(j + 1 \leq y_2(v)\).

By Lemma 7, \(x_2(u) = x_1(v)\).
Rectangular Dual

- Assume there exists an edge \((u, v) \in G_{W-E}\).

- Let \(Q_j\) be the path of \(G_{W-E}\) where \((u, v)\) belongs. By Lemma 5, \(y_1(u) \leq j, j + 1 \leq y_2(u)\) and \(y_1(v) \leq j, j + 1 \leq y_2(v)\).

- By Lemma 7, \(x_2(u) = x_1(v)\)

Lemma 8 is proved!
Rectangular Dual

Theorem

Every PTP graph G has a rectangular dual which can be computed in linear time.
Rectangular Dual

Theorem

Every PTP graph G has a rectangular dual which can be computed in linear time.

- Compute a planar embedding of G
- Compute a revised canonical ordering of G
- Traverse the graph and color the edges, construct G_{S-N} and G_{E-W}
- Construct the duals G^*_{S-N} and G^*_{E-W} of G_{S-N} and G_{E-W}, respectively
- Compute a topological ordering of G^*_{S-N} and G^*_{E-W}
- Assign coordinates to the rectangles representing vertices.
Discussion

Proportional Cartogram. Source: http://www.ncgia.ucsb.edu
Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A rectangular layout is **area-universal** if and only if it is **one-sided**.

 [Eppstein et al. SIAM J. Comp. 2012]
A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

A rectangular layout is **area-universal** if and only if it is **one-sided**.

[Eppstein et al. SIAM J. Comp. 2012]

A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

A rectangular layout is **area-universal** if and only if it is **one-sided**.

De Berg et al. 2009: 40 sides

Kawaguchi et al. 2007: 34 sides

Biedl et al. 2011: 12 sides

Alam et al. 2011: 10 sides

Alam et al. 2013: 8 sides (matches the lower bound)
Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A rectangular layout is **area-universal** if and only if it is **one-sided**.

 [Eppstein et al. SIAM J. Comp. 2012]

- Area universal **rectilinear** representation - possible for all planar graphs
 - De Berg et al. 2009: 40 sides
 - Kawaguchi et al. 2007: 34 sides
 - Alam et al. 2011: 10 sides
 - Alam et al. 2013: 8 sides (matches the lower bound)
Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A rectangular layout is **area-universal** if and only if it is **one-sided**.

 [Eppstein et al. SIAM J. Comp. 2012]

- Area universal **rectilinear** representation - possible for all planar graphs

 - De Berg et al. 2009: 40 sides
 - Kawaguchi et al. 2007: 34 sides
 - Biedl et al. 2011: 12 sides
 - Alam et al. 2013: 8 sides (matches the lower bound)
Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A rectangular layout is **area-universal** if and only if it is **one-sided**.

 [Eppstein et al. SIAM J. Comp. 2012]

```
one-sided
```

```
not one-sided
```

- Area universal **rectilinear** representation - possible for all planar graphs

 - De Berg et al. 2009: 40 sides
 - Kawaguchi et al. 2007: 34 sides
 - Biedl et al. 2011: 12 sides
 - Alam et al. 2011: 10 sides
 - Alam et al. 2013: 8 sides (matches the lower bound)
Discussion

A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

A rectangular layout is **area-universal** if and only if it is **one-sided**.

[Eppstein et al. SIAM J. Comp. 2012]

![One-sided and not one-sided layouts](image)

Area universal **rectlinear** representation - possible for all planar graphs

- De Berg et al. 2009: 40 sides
- Kawaguchi et al. 2007: 34 sides
- Biedl et al. 2011: 12 sides
- Alam et al. 2011: 10 sides
- Alam et al. 2013: 8 sides (matches the lower bound)
Discussion

- Circular Arc Cartograms [Kämper, Kobourov, Nöllenburg. IEEE PasViz 2013]

Source: http://cartogram.cs.arizona.edu