Algorithms for graph visualization

Divide and Conquer - Tree Layouts
Overview

- Basic Definitions
- Level-based tree layout algorithm
- H(horizontal) V(vertical) tree layout algorithm
- Radial tree layout algorithm
- Other visualization styles
Basic Definitions

- Tree - connected graph without cycles
- Binary tree
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search

- Pre-order (First parent, then subtrees)
- In-order (Left child, parent, right child)
- Post-order (First subtrees, then parent)
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
- Pre-order (First parent, then subtrees)
- In-order (Left child, parent, right child)
- Post-order (First subtrees, then parent)

Breadth-first search
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
- Pre-order (First parent, then subtrees)
- In-order (Left child, parent, right child)
- Post-order (First subtrees, then parent)

Breadth-first search
- Assignes vertices to levels corresponding to depth

Tree - connected graph without cycles
Binary tree

Root of the tree

Pre-order (First parent, then subtrees)
In-order (Left child, parent, right child)
Post-order (First subtrees, then parent)

Binary tree

Depth-first search

Assignes vertices to levels corresponding to depth

Breadth-first search
Basic Definitions

- Tree - connected graph without cycles
- Binary tree

Tree traversals

Depth-first search
- Pre-order (First parent, then subtrees)
- In-order (Left child, parent, right child)
- Post-order (First subtrees, then parent)

Breadth-first search
- Assignes vertices to levels corresponding to depth

Isomorphism (of ordered trees)

Simple

3 - 7
Applications

Decision tree analysis for prediction of outcome after traumatic brain injury

Nature Reviews Neurology
Applications

Chart to aid students in shaping geographical questions by Gaultier, 1821
Applications

Chart to aid students in shaping geographical questions by Gaultier, 1821.

X-MEN FAMILY TREE

Applications
Level-Based Layout of a Tree

Discuss with your neighbour or in groups of three and write down

- What are the properties of the layout?
- What are the drawing conventions and the aesthetics that we have to take into account?
Level-Based Layout of a Tree

Discuss with your neighbour or in groups of three and write down

- What are the properties of the layout?
- What are the drawing conventions and the aesthetics that we have to take into account?

Drawing Conventions

- Vertices lie on layers
- Parent is above the children
- Edges are straight lines
- Parent is centred with respect to the children
- Isomorphic subtrees have identical drawings
Level-Based Layout of a Tree

Discuss with your neighbour or in groups of three and write down

- What the properties of the layout?
- What are the drawing conventions and the aesthetics that we have to take into account?

Drawing Conventions

- Vertices lie on layers
- Parent is above the children
- Edges are straight lines
- Parent is centred with respect to the children
- Isomorphic subtrees have identical drawings

Drawing Aesthetics

- Area

6 - 3
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:

Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:

Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:

Some agreed distance
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:
Level-based Layout

Algorithm Outline:
Input: A binary tree
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T

Conquer:

Parent is centered wrt to children

Some agreed distance
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

\[T_l(v) \quad T_r(v) \]
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child.

![Diagram of a graph with labels $T_l(v)$ and $T_r(v)$ and node v.]
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$

Level-based Layout
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- “Summ up” the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \) to obtain the displ. of the children of \(v \)
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- “Summ up” the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \) to obtain the displ. of the children of \(v \)
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- “Summ up” the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$ to obtain the displ. of the children of v
Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- “Summ up” the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$ to obtain the displ. of the children of v
- Store at v the left and the right boundaries of $T(v)$
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

Preorder traversal: Compute \(x \)- and \(y \)-coordinates.
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Implementation Details (postorder and preorder traversals)

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout: Time Complexity

Think and write down and then discuss with your neighbour(s)

- What is the time complexity of the algorithm?
- What should we keep in mind to achieve this time complexity?

5+5 min
Level-based Layout

Time Complexity

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- Summ up the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \)
- Store at \(v \) the left and the right boundaries of \(T(v) \)

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_L(v)$ and the left boundary of $T_R(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

1. Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
2. Summ up the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \)
3. Store at \(v \) the left and the right boundaries of \(T(v) \)

Preorder traversal: Compute x- and y-coordinates.
Level-based Layout

Time Complexity

Postorder traversal: For each vertex v compute horizontal displacement of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$
- Summ up the horizontal displacements of the right boundary of $T_l(v)$ and the left boundary of $T_r(v)$
- Store at v the left and the right boundaries of $T(v)$

Preorder traversal: Compute x- and y-coordinates.

To compute the displacement: constant number of operations at each vertex
Level-based Layout

Time Complexity

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- Summ up the horizontal displacements of the right boundary of \(T_l(u) \) and the left boundary of \(T_r(u) \)
- Store at \(v \) the left and the right boundaries of \(T(v) \)

Preorder traversal: Compute x- and y-coordinates.

To compute the displacement: constant number of operations at each vertex
Level-based Layout

Time Complexity

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- Summ up the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \)
- Store at \(v \) the left and the right boundaries of \(T(v) \)

Preorder traversal: Compute x- and y-coordinates.

To compute the displacement: constant number of operations at each vertex
Level-based Layout

Time Complexity

Postorder traversal: For each vertex \(v \) compute horizontal displacement of the left and the right child

- Assume at each vertex \(u \) (below \(v \)) we have stored the left and the right boundary of the subtree \(T(u) \)
- Summ up the horizontal displacements of the right boundary of \(T_l(v) \) and the left boundary of \(T_r(v) \)
- Store at \(v \) the left and the right boundaries of \(T(v) \)

Preorder traversal: Compute x- and y-coordinates.

To compute the displacement: constant number of operations at each vertex

\(O(n) \)
Level-based Layout

Theorem (Reingold & Tilford)

Let T be a binary tree with n vertices. Algorithm (R & T) constructs a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar and straight-line
- $\forall v \in T$ y-coordinate of v is $-\text{depth}(v)$
- Vertical and horizontal distance is at least 1
- Area of Γ is
Level-based Layout

Theorem (Reingold & Tilford)

Let T be a binary tree with n vertices. Algorithm (R & T) constructs a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar and straight-line
- $\forall v \in T$ y-coordinate of v is $-depth(v)$
- Vertical and horizontal distance is at least 1
- Area of Γ is $O(n^2)$
Level-based Layout

Theorem (Reingold & Tilford)

Let T be a binary tree with n vertices. Algorithm (R & T) constructs a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar and straight-line
- $\forall v \in T$ y-coordinate of v is $-\text{depth}(v)$
- Vertical and horizontal distance is at least 1
- Area of Γ is $O(n^2)$
- Each vertex is centered with respect to its children
Level-based Layout

Theorem (Reingold & Tilford)

Let T be a binary tree with n vertices. Algorithm (R & T) constructs a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar and straight-line
- $\forall v \in T$ y-coordinate of v is $-\text{depth}(v)$
- Vertical and horizontal distance is at least 1
- Area of Γ is $O(n^2)$
- Each vertex is centered with respect to its children
- Simply isomorphic subtrees have congruent (coincident) drawing, up to translation
- Axially isomorphic trees have congruent drawing, up to translation and reflection around y-axis
Level-based Layout

The presented algorithm tries to minimize width
Level-based Layout

- The presented algorithm tries to minimize width
Level-based Layout

- The presented algorithm tries to minimize width
- Does not achieve that!
Level-based Layout

- The presented algorithm tries to minimize width
- Does not achieve that!
- Divide-and-conquer strategy cannot achieve optimal width
Level-based Layout

- The presented algorithm tries to minimize width.
- Does not achieve that!
- Divide-and-conquer strategy cannot achieve optimal width.

Drawing with min width and properties of our algorithm can be constructed by an LP.
Level-based Layout

- The presented algorithm tries to minimize width
- Does not achieve that!
- Divide-and-conquer strategy cannot achieve optimal width

Drawing with min width and properties of our algorithm can be constructed by an LP
- If integer coordinates are required, then it is NP-hard
Level-based Layout for Trees

- Book Di Battista et al: Chapter 3.1.2
- Skript: Chapter 6.1