Algorithms for Graph Visualization
Layered Layout – Part 2

Tamara Mchedlidze
Layered Layout

Given: directed graph $D = (V, A)$

Find: drawing of D that emphasized the hierarchy
Layered Layout

Given: directed graph \(D = (V, A) \)

Find: drawing of \(D \) that emphasized the hierarchy

Criteria:
- many edges pointing to the same direction
- edges preferably straight and short
- position nodes on (few) horizontal lines
- preferably few edge crossings
- nodes distributed evenly
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given

resolve cycles

layer assignment

crossing minimization

node positioning

edge drawing
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

- **given**
- **resolve cycles**
- **layer assignment**
- **crossing minimization**
- **node positioning**
- **edge drawing**
Step 3: Crossing Minimization

How would you proceed?
Problem Statement

Given: DAG $D = (V, A)$, nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized
Problem Statement

Given: DAG $D = (V, A)$, nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized

Properties

- Problem is NP-hard even for two layers (Bipartite Crossing Number [Garey, Johnson '83])
- Hardly any approach over several layers simultaneously
- Usually iterative optimization for two adjacent layers
- For that: insert dummy nodes at the intersection of edges with layers
One-sided Crossing Minimization (OSCM)

Given: 2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2, such that the number of crossings among E is minimum
One-sided Crossing Minimization (OSCM)

Given: 2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2, such that the number of crossings among E is minimum

Observation:
- The number of crossings in 2-layered drawing of G depends only on x_1 and x_2, not from the exact positions
- for $u, v \in L_2$ the number of crossings among incident to them edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the positions of other vertices
One-sided Crossing Minimization (OSCM)

Given: 2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2, such that the number of crossings among E is minimum

Observation:
- The number of crossings in 2-layered drawing of G depends only on x_1 and x_2, not from the exact positions.
- For $u, v \in L_2$ the number of crossings among incident to them edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the positions of other vertices.

Def: $c_{uv} := |\{(uw, vz) \mid w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$

For $x_2(u) < x_2(v)$

\[
\begin{align*}
\text{Def: } c_{uv} &= 5 \\
c_{vu} &= 7
\end{align*}
\]
One-sided Crossing Minimization (OSCM)

Given: 2-Layered-Graph $G = (L_1, L_2, E')$ and ordering of the nodes x_1 of L_1

Find: Node ordering x_2 of L_2, such that the number of crossings among E is minimum

Observation:
- The number of crossings in 2-layered drawing of G depends only on x_1 and x_2, not from the exact positions
- for $u, v \in L_2$ the number of crossings among incident to them edges depends on whether $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$ and not on the positions of other vertices

Def: $c_{uv} := |\{(uw, vz) \mid w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$

for $x_2(u) < x_2(v)$

$\begin{array}{c}
c_{uv} = 5 \\
c_{vu} = 7
\end{array}$
Further Properties

Def: Crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $\text{cr}(G, x_1, x_2)$; for fixed x_1 then $\text{opt}(G, x_1) = \min_{x_2} \text{cr}(G, x_1, x_2)$

Lemma 1: The following equalities hold:
- $\text{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- $\text{opt}(G, x_1) \geq \sum_{\{u,v\}} \min\{c_{uv}, c_{vu}\}$
Further Properties

Def: Crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $\text{cr}(G, x_1, x_2)$; for fixed x_1 then $\text{opt}(G, x_1) = \min_{x_2} \text{cr}(G, x_1, x_2)$

Lemma 1: The following equalities hold:

- $\text{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$
- $\text{opt}(G, x_1) \geq \sum_{\{u,v\}} \min\{c_{uv}, c_{vu}\}$

Efficient computation of $\text{cr}(G, x_1, x_2)$ see Exercise.
Iterative Crossing Minimization

Let $G = (V, E)$ be a DAG with layers L_1, \ldots, L_h.

1. compute a random ordering x_1 for layer L_1
2. for $i = 1, \ldots, h - 1$ consider layers L_i and L_{i+1} and minimize $\text{cr}(G, x_i, x_{i+1})$ with fixed x_i (→ OSCM)
3. for $i = h - 1, \ldots, 1$ consider layers L_{i+1} and L_i and minimize $\text{cr}(G, x_i, x_{i+1})$ with fixed x_{i+1} (→ OSCM)
4. repeat (2) and (3) until no further improvement happens
5. repeat steps (1)–(4) with another x_1
6. return the best found solution
Iterative Crossing Minimization

Let $G = (V, E)$ be a DAG with layers L_1, \ldots, L_h.

(1) compute a random ordering x_1 for layer L_1
(2) for $i = 1, \ldots, h - 1$ consider layers L_i and L_{i+1} and minimize $cr(G, x_i, x_{i+1})$ with fixed x_i (\rightarrow OSCM)
(3) for $i = h - 1, \ldots, 1$ consider layers L_{i+1} and L_i and minimize $cr(G, x_i, x_{i+1})$ with fixed x_{i+1} (\rightarrow OSCM)
(4) repeat (2) and (3) until no further improvement happens
(5) repeat steps (1)–(4) with another x_1
(6) return the best found solution

Theorem 1: The One-Sided Crossing Minimization (OSCM) problem is NP-hard [Eades, Wormald 1994].
Algorithms for OSCM

Heuristics:
- Barycenter
- Median
- ...

Exact:
- ILP Model
Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

- set

\[x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(u) \]

- in case of equality introduce tiny gap
Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

- set

\[x_2(u) = \frac{1}{\text{deg}(u)} \sum_{v \in N(u)} x_1(u) \]

- in case of equality introduce tiny gap

Properties:

- trivial implementation
- fast
- usually very good results...
- finds optimum if \(\text{opt}(G, x_1) = 0 \) (see Exercises)
- there are graphs on which it performs \(\Omega(\sqrt{n}) \) times worse than optimal
Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neighbours

- for a node $v \in L_2$ with neighbours v_1, \ldots, v_k set

 \[x_2(v) = \text{med}(v) = x_1(v_{\lfloor k/2 \rfloor}) \]

 and $x_2(v) = 0$ if $N(v) = \emptyset$

- if $x_2(u) = x_2(v)$ and u, v have different parity, place the node with odd degree to the left

- if $x_2(u) = x_2(v)$ and u, v have the same parity, place an arbitrary of them to the left

- Runs in time $O(|E|)$
Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neighbours

- for a node $v \in L_2$ with neighbours v_1, \ldots, v_k set
 $x_2(v) = \text{med}(v) = x_1(v_{\lfloor k/2 \rfloor})$
 and $x_2(v) = 0$ if $N(v) = \emptyset$
- if $x_2(u) = x_2(v)$ and u, v have different parity, place the node with odd degree to the left
- if $x_2(u) = x_2(v)$ and u, v have the same parity, place an arbitrary of them to the left
- Runs in time $O(|E|)$

Properties:

- trivial implementation
- fast
- mostly good performance
- finds optimum when $\text{opt}(G, x_1) = 0$
- **Factor-3 Approximation**
Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1. Then it holds that $	ext{med}(G, x_1) \leq 3 \text{opt}(G, x_1)$.
Approximation Factor

Theorem 2: Let $G = (L_1, L_2, E)$ be a 2-layered graph and x_1 an arbitrary ordering of L_1. Then it holds that

$$\text{med}(G, x_1) \leq 3 \text{opt}(G, x_1).$$
Approximation Factor

Theorem 2: Let \(G = (L_1, L_2, E) \) be a 2-layered graph and \(x_1 \) an arbitrary ordering of \(L_1 \). Then it holds that
\[
\text{med}(G, x_1) \leq 3 \text{opt}(G, x_1).
\]
Integer Linear Programming

Properties:

- branch-and-cut technique for DAGS of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed
Integer Linear Programming

Properties:
- branch-and-cut technique for DAGS of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed

Modell: see Blackboard
Experimental Evaluation \hspace{1mm} (Jünger, Mutzel 1997)

Results for 100 instances on 20 + 20 nodes with increasing density

Time for 100 instances on 20 + 20 nodes with increasing density
Experimental Evaluation (Jünger, Mutzel 1997)

Results for 10 instances of sparse graphs with increasing size

Time for 10 instances of sparse graphs with increasing size
Example
Example
Example
Example
Example
Example
Example
Example
There was even an iPad game **CrossingX** for the OSCM Problem!

Winner of Graph Drawing Game Contest 2012
Step 4: Coordinate Computation

Which could be the goals?
Steightening Edges

Goal: minimize deviation from a straight-line for the edges with dummy-nodes

Idea: use quadratic Program

- let $p_{uv} = (u, d_1, \ldots, d_k, v)$ path with k dummy nodes between u and v
- let $a_i = x(u) + \frac{i}{k+1}(x(v) - x(u))$ the x-coordinate of d_i when (u, v) is straight
- minimize $\sum_{i=1}^{k} (x(d_i) - a_i)^2$ for all paths
- constraints: $x(w) - x(z) \geq \delta$ for consecutive nodes on the same layer, w right from z (δ distance parameter)
Steightening Edges

Goal: minimize deviation from a straight-line for the edges with dummy-nodes

Idea: use quadratic Program

- let \(p_{uv} = (u, d_1, \ldots, d_k, v) \) path with \(k \) dummy nodes between \(u \) and \(v \)
- let \(a_i = x(u) + \frac{i}{k+1}(x(v) - x(u)) \) the \(x \)-coordinate of \(d_i \) when \((u, v)\) is straight
- minimize \(\sum_{i=1}^{k}(x(d_i) - a_i)^2 \) for all paths
- constraints: \(x(w) - x(z) \geq \delta \) for consecutive nodes on the same layer, \(w \) right from \(z \) (\(\delta \) distance parameter)

Properties:

- quadratic program is time-expensive
- width can be exponential
- optimization function can be adapted to optimize ”verticality”
Example
Step 5: Drawing edges

Possibility: Substitute polylines by Bézier curves
Example
Example
Example
Summary

given
resolve cycles
layer assignment
crossing minimization
node positioning
edge drawing
Summary

- flexible Framework to draw directed graphs
- sequential optimization of various criteria
- modelling gives NP-hard problems, which can still can be solved quite well

- crossing minimization
- node positioning
- edge drawing
Applications: UML diagrams

Source: http://betterumldiagrams.blogspot.de
Applications: Storylines

Source: ABC news, Australia
Applications: Text-Variant Graphs

Source: Visualization of Text-Variant Graphs. Jänicke et al.
Christmas Surprise
Christmas Surprise

- Graph Drawing Contest holding at Graph Drawing conference each September
Christmas Surprise

- Graph Drawing Contest holding at Graph Drawing conference each September
- This year graph: data of all publications in the Proceedings of Graph Drawing between 1994 and 2015
Christmas Surprise

- Graph Drawing Contest holding at Graph Drawing conference each September
- This year graph: data of all publications in the Proceedings of Graph Drawing between 1994 and 2015
- id, title, authors, institution, cites, citedby, year
Christmas Surprise

- Graph Drawing Contest holding at Graph Drawing conference each September
- This year graph: data of all publications in the Proceedings of Graph Drawing between 1994 and 2015
- id, title, authors, institution, cites, citedby, year
- task: nice visualization
- it is not compulsory to make use of the extra data
Christmas Surprise

- Graph Drawing Contest holding at Graph Drawing conference each September
- This year graph: data of all publications in the Proceedings of Graph Drawing between 1994 and 2015
- id, title, authors, institution, cites, citedby, year
- task: nice visualization
- it is not compulsory to make use of the extra data
- Will be provided as XML format on the lecture’s web-page during this week
Hiwi

- C++
- JavaScript

We won't be able to deliver our product in time because of some issue with MySQL... WHAT???

Then use somebody else's SQL, but I want the product in time.
Hiwi

- C++
- JavaScript

"We won't be able to deliver our product in time because of some issue with MySQL..."

"WHAT???
Then use somebody else's SQL, but I want the product in time."