Algorithms for Graph Visualization
Layered Layout

Tamara Mchedlidze
5.12.2016
Example

- Which are the properties?
- Which aesthetic criteria are useful?
Layered Layout

Given: directed graph \(D = (V, A) \)

Find: drawing of \(D \) that emphasized the hierarchy
Layered Layout

Given: directed graph $D = (V, A)$

Find: drawing of D that emphasized the hierarchy

Criteria:
- many edges pointing to the same direction
- edges preferably straight and short
- position nodes on (few) horizontal lines
- preferably few edge crossings
- nodes distributed evenly
Layered Layout

Given: directed graph \(D = (V, A) \)

Find: drawing of \(D \) that emphasized the hierarchy

Criteria:
- many edges pointing to the same direction
- edges preferably straight and short
- position nodes on (few) horizontal lines
- preferably few edge crossings
- nodes distributed evenly

⚠️ Optimization criteria partially overlap
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Layered Layout

given
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given

resolve cycles
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given

resolve cycles

layer assignement
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given

resolve cycles

layer assignment

crossing minimization
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer assignment

crossing minimization node positioning
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer assignment

crossing minimization node positioning edge drawing
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

- paper cited more than 1400 times (200 in the past two years)
- implemented in
 - yEd
 - graphviz/dot
 - tulip
 - ...

Layered Layout

Sugiyama Framework

Given

Layer assignment

Crossing minimization

Node positioning

Edge drawing

Implemented in

- yEd
- graphviz/dot
- tulip
- ...

Dr. Tamara Mchedlidze · Algorithmen zur Visualisierung von Graphen
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Given

Resolve cycles

Layer assignment

crossing minimization

Node positioning

Edge drawing
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given

resolve cycles

layer assignment

crossing minimization

node positioning

edge drawing
Step 1: Resolve Cycles

How would you proceed?
Feedback Arc Set

Idea:
- find maximum acyclic subgraph
- inverse the directions of the other edges
Feedback Arc Set

Idea:
- find maximum acyclic subgraph
- inverse the directions of the other edges

Maximum Acyclic Subgraph
Given: directed graph $D = (V, A)$
Find: acyclic subgraph $D' = (V, A')$ with maximum $|A'|$
Feedback Arc Set

Idea:
- find maximum acyclic subgraph
- inverse the directions of the other edges

Maximum Acyclic Subgraph
Given: directed graph \(D = (V, A) \)
Find: acyclic subgraph \(D' = (V, A') \) with maximum \(|A'|\)

Minimum Feedback Arc Set (FAS)
Given: directed graph \(D = (V, A) \)
Find: \(A_f \subset A \), with \(D_f = (V, A \setminus A_f) \) acyclic with minimum \(|A_f|\)
Feedback Arc Set

Idea:
- find maximum acyclic subgraph
- inverse the directions of the other edges

Maximum Acyclic Subgraph
Given: directed graph $D = (V, A)$
Find: acyclic subgraph $D' = (V, A')$ with maximum $|A'|$

Minimum Feedback Arc Set (FAS)
Given: directed graph $D = (V, A)$
Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f)$ acyclic with minimum $|A_f|$

Minimum Feedback Set (FS)
Given: directed graph $D = (V, A)$
Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f \cup \text{rev}(A_f))$ acyclic with minimum $|A_f|$
Feedback Arc Set

Idea:
- find maximum acyclic subgraph
- inverse the directions of the other edges

Maximum Acyclic Subgraph

Given: directed graph \(D = (V, A) \)

Find: acyclic subgraph \(D' = (V, A') \) with maximum \(|A'| \)

Minimum Feedback Arc Set (FAS)

Given: directed graph \(D = (V, A) \)

Find: \(A_f \subset A \), with \(D_f = (V, A \setminus A_f) \) acyclic with minimum \(|A_f| \)

Minimum Feedback Set (FS)

Given: directed graph \(D = (V, A) \)

Find: \(A_f \subset A \), with \(D_f = (V, A \setminus A_f \cup \text{rev}(A_f)) \) acyclic with minimum \(|A_f| \)

All three problems are NP-hard!
Heuristic 1 (Berger, Shor 1990)

\[A' := \emptyset; \]

\textbf{foreach} \(v \in V \) \textbf{do}

\textbf{if} \(|N \rightarrow (v)| \geq |N \leftarrow (v)| \) \textbf{then}

\[A' := A' \cup N \rightarrow (v); \]

\textbf{else}

\[A' := A' \cup N \leftarrow (v); \]

\text{remove} \(v \) \text{ and } N(v) \text{ from } D. \]

\textbf{return} \((V, A') \)

\[N \rightarrow (v) := \{(v, u) : (v, u) \in A\} \]

\[N \leftarrow (v) := \{(u, v) : (u, v) \in A\} \]

\[N(v) := N \rightarrow (v) \cup N \leftarrow (v) \]
Heuristic 1 (Berger, Shor 1990)

\[A' := \emptyset; \]

\[\text{foreach } v \in V \text{ do} \]

\[\quad \text{if } |N^{-}(v)| \geq |N^{+}(v)| \text{ then} \]

\[\quad \quad A' := A' \cup N^{-}(v); \]

\[\quad \text{else} \]

\[\quad \quad A' := A' \cup N^{+}(v); \]

\[\quad \text{remove } v \text{ and } N(v) \text{ from } D. \]

\[\text{return } (V, A') \]

- \[D' = (V, A') \] is a DAG
- \[A \setminus A' \] is a feedback arc set

\[N^{-}(v) := \{(v, u) : (v, u) \in A\} \]

\[N^{+}(v) := \{(u, v) : (u, v) \in A\} \]

\[N(v) := N^{-}(v) \cup N^{+}(v) \]

- Why \(D' \) does not contain cycles?
- Is \(D'' = (V, A' \cup \text{rev}(A \setminus A')) \) acyclic?
- What is the running time?
- What one can say about \(|A'|\)?
Heuristic 1 (Berger, Shor 1990)

\[A' := \emptyset; \]

\[
\text{foreach } v \in V \text{ do}
\]

\[
\quad \text{if } |N^\rightarrow(v)| \geq |N^\leftarrow(v)| \text{ then}
\quad \quad A' := A' \cup N^\rightarrow(v);
\]

\[
\quad \text{else}
\quad \quad A' := A' \cup N^\leftarrow(v);
\]

\[
\text{remove } v \text{ and } N(v) \text{ from } D.
\]

\[
\text{return } (V, A')
\]

- \(D' = (V, A') \) is a DAG
- \(A \setminus A' \) is a feedback arc set
- Running time \(O(|V| + |A|) \)
- \(|A'| \geq |A|/2 \)
Heuristic 1 (Berger, Shor 1990)

Lemma 1: Let $D = (V, A)$ be a connected, directed digraph. Heuristic 1 produces an acyclic digraph $D' = (V, A')$.

proof:
For the sake of contradiction assume there is a cycle C. Let u be the first visited vertex of C. Either incoming or outgoing edges of u are not in A', i.e. D' can not contain a cycle.
Heuristc 1 (Berger, Shor 1990)

Lemma 2: The digraph $D'' = (V, A' \cup \text{rev}(A \setminus A'))$, where A' is produced by Heuristic 1, is acyclic.

proof:
Heuristic 1 (Berger, Shor 1990)

Lemma 2: The digraph \(D'' = (V, A' \cup \text{rev}(A \setminus A')) \), where \(A' \) is produced by Heuristic 1, is acyclic.

proof:
- For the sake of contr. assume there is a cycle \(C \) in \(D'' \).
- Let \(u \) be the first visited vertex of \(C \). Cycle \(C \) contains a reversed edge incident to \(u \), otherwise \(u \) can not have both incoming and outgoing edges in \(C \).
Heuristic 1 (Berger, Shor 1990)

Lemma 2: The digraph $D'' = (V, A' \cup \text{rev}(A \setminus A'))$, where A' is produced by Heuristic 1, is acyclic.

proof:
- For the sake of contr. assume there is a cycle C in D''.
- Let u be the first visited vertex of C. Cycle C contains a reversed edge incident to u, otherwise u can not have both incoming and outgoing edges in C.
- W.l.o.g. assume (u, v) is the reversed edge. I.e. the original edge was (v, u), i.e. $(v, u) \in A \setminus A'$. Therefore, no other incoming edge to u is in A'. I.e. u has no incoming edges in C that are in A'.
Heuristic 1 (Berger, Shor 1990)

Lemma 2: The digraph $D'' = (V, A' \cup \text{rev}(A \setminus A'))$, where A' is produced by Heuristic 1, is acyclic.

proof:
- For the sake of contr. assume there is a cycle C in D''.
- Let u be the first visited vertex of C. Cycle C contains a reversed edge incident to u, otherwise u can not have both incomming and outgoing edges in C.
- W.l.o.g. assume (u, v) is the reversed edge. I.e. the original edge was (v, u), i.e. $(v, u) \in A \setminus A'$. Therefore, no other incomming edge to u is in A'. I.e. u has no incomming edges in C that are in A'.
- Therefore the incomming edge to u in C is also a reversed edge. I.e. both incomming and outgoing edges of u in C are in $A \setminus A'$, which is impossible, as u is the first vertex visited by the algorithm in C.

Heuristic 2 (Eades, Lin, Smyth 1993)

1 $A' := \emptyset$;

2 while $V \neq \emptyset$ do
3 while in V exists a sink v do
4 $A' \leftarrow A' \cup N^{-}(v)$
5 remove v and $N^{-}(v)$: $\{V, n, m\}_{\text{sink}}$

6 Remove all isolated node from V.

7 while in V exists a source v do
8 $A' \leftarrow A' \cup N^{+}(v)$
9 remove v and $N^{+}(v)$: $\{V, n, m\}_{\text{source}}$

10 if $V \neq \emptyset$ then
11 let $v \in V$ such that $|N^{-}(v)|-|N^{-}(v)|_{\text{max}}$;
12 $A' \leftarrow A' \cup N^{-}(v)$
13 remove v and $N^{-}(v)$:
Heuristic 2 (Eades, Lin, Smyth 1993)

1. \[A' := \emptyset; \]
2. while \(V \neq \emptyset \) do
 3. while in \(V \) exists a sink \(v \) do
 4. \[A' \leftarrow A' \cup N^\leftarrow(v) \]
 5. remove \(v \) and \(N^\leftarrow(v): \{V, n, m\}_{sink} \]
Heuristic 2 (Eades, Lin, Smyth 1993)

1 \(A' := \emptyset; \)
2 \(\textbf{while } V \neq \emptyset \textbf{ do} \)
3 \(\quad \textbf{while in } V \textbf{ exists a sink } v \textbf{ do} \)
4 \(\quad A' \leftarrow A' \cup N^\leftarrow(v) \)
5 \(\quad \text{remove } v \text{ and } N^\leftarrow(v): \{V, n, m\}_{\text{sink}} \)

\[
\]
Heuristic 2 (Eades, Lin, Smyth 1993)

1. $A' := \emptyset$;

2. while $V \neq \emptyset$ do

3. while in V exists a sink v do

4. $A' \leftarrow A' \cup N^{\leftarrow}(v)$

5. remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\text{sink}}$
Heuristic 2 (Eades, Lin, Smyth 1993)

1. \(A' := \emptyset \);
2. \(\textbf{while } V \neq \emptyset \textbf{ do} \)
3. \(\quad \textbf{while in } V \textbf{ exists a sink } v \textbf{ do} \)
4. \(\quad A' \leftarrow A' \cup N^\leftarrow(v) \)
5. \(\quad \text{remove } v \text{ and } N^\leftarrow(v): \{V, n, m\}_{\text{sink}} \)
6. \(\quad \text{Remove all isolated node from } V: \{V, n, m\}_{\text{iso}} \)

Layered Layout
Heuristic 2 (Eades, Lin, Smyth 1993)

1. $A' := \emptyset$;

2. while $V \neq \emptyset$ do

 3. while in V exists a sink v do

 4. $A' \leftarrow A' \cup N^{\leftarrow}(v)$

 5. remove v and $N^{\leftarrow}(v): \{V, n, m\}_{\text{sink}}$

 6. Remove all isolated node from $V: \{V, n, m\}_{\text{iso}}$

 7. while in V exists a source v do

 8. $A' \leftarrow A' \cup N^{\rightarrow}(v)$

 9. remove v and $N^{\rightarrow}(v): \{V, n, m\}_{\text{source}}$
Heuristic 2 (Eades, Lin, Smyth 1993)

1. $A' := \emptyset$;

2. while $V \neq \emptyset$ do

 3. while in V exists a sink v do

 4. $A' \leftarrow A' \cup N^{-}(v)$

 5. remove v and $N^{-}(v)$: $\{V, n, m\}_{\text{sink}}$

 Remove all isolated node from V: $\{V, n, m\}_{\text{iso}}$

4. while in V exists a source v do

 7. $A' \leftarrow A' \cup N^{+}(v)$

 8. remove v and $N^{+}(v)$: $\{V, n, m\}_{\text{source}}$

5. if $V \neq \emptyset$ then

 10. let $v \in V$ such that $|N^{+}(v)| - |N^{-}(v)|$ maximal;

 11. $A' \leftarrow A' \cup N^{+}(v)$

 12. remove v and $N(v)$: $\{V, n, m\}_{\{=,<\}}$
Heuristic 2 (Eades, Lin, Smyth 1993)

\[A' := \emptyset; \]

while \(V \neq \emptyset \) do

while in \(V \) exists a sink \(v \) do

\[A' \leftarrow A' \cup N^\leftarrow(v) \]

remove \(v \) and \(N^\leftarrow(v): \{V, n, m\}_{\text{sink}} \)

Remove all isolated node from \(V: \{V, n, m\}_{\text{iso}} \)

while in \(V \) exists a source \(v \) do

\[A' \leftarrow A' \cup N^\rightarrow(v) \]

remove \(v \) and \(N^\rightarrow(v): \{V, n, m\}_{\text{source}} \)

if \(V \neq \emptyset \) then

let \(v \in V \) such that \(|N^\rightarrow(v)| - |N^\leftarrow(v)| \) maximal;

\[A' \leftarrow A' \cup N^\rightarrow(v) \]

remove \(v \) and \(N(v): \{V, n, m\}\{=,<\} \)
Heuristic 2 (Eades, Lin, Smyth 1993)

1 \(A' := \emptyset; \)

2 \(\textbf{while } V \neq \emptyset \textbf{ do} \)

3 \(\textbf{while in } V \text{ exists a sink } v \textbf{ do} \)

4 \(A' \leftarrow A' \cup N^\leftarrow(v) \)

5 \(\text{remove } v \text{ and } N^\leftarrow(v): \{V, n, m\}_{\text{sink}} \)

6 \(\text{Remove all isolated node from } V: \{V, n, m\}_{\text{iso}} \)

7 \(\textbf{while in } V \text{ exists a source } v \textbf{ do} \)

8 \(A' \leftarrow A' \cup N^\rightarrow(v) \)

9 \(\text{remove } v \text{ and } N^\rightarrow(v): \{V, n, m\}_{\text{source}} \)

10 \(\textbf{if } V \neq \emptyset \textbf{ then} \)

11 \(\text{let } v \in V \text{ such that } |N^\rightarrow(v)| - |N^\leftarrow(v)| \text{ maximal;} \)

12 \(A' \leftarrow A' \cup N^\rightarrow(v) \)

13 \(\text{remove } v \text{ and } N(v): \{V, n, m\}\{=,<\} \)
Heuristic 2 (Eades, Lin, Smyth 1993)

1 \[A' := \emptyset; \]
2 \[\text{while } V \neq \emptyset \text{ do} \]
3 \[\text{while in } V \text{ exists a sink } v \text{ do} \]
4 \[A' \leftarrow A' \cup N^\leftarrow(v) \]
5 \[\text{remove } v \text{ and } N^\leftarrow(v): \{V, n, m\}_{\text{sink}} \]
6 \[\text{Remove all isolated node from } V: \{V, n, m\}_{\text{iso}} \]
7 \[\text{while in } V \text{ exists a source } v \text{ do} \]
8 \[A' \leftarrow A' \cup N^\rightarrow(v) \]
9 \[\text{remove } v \text{ and } N^\rightarrow(v): \{V, n, m\}_{\text{source}} \]
10 \[\text{if } V \neq \emptyset \text{ then} \]
11 \[\text{let } v \in V \text{ such that } |N^\rightarrow(v)| - |N^\leftarrow(v)| \text{ maximal;} \]
12 \[A' \leftarrow A' \cup N^\rightarrow(v) \]
13 \[\text{remove } v \text{ and } N(v): \{V, n, m\}\{=,<\} \]
Heuristic 2 (Eades, Lin, Smyth 1993)

1. $A' := \emptyset$;
2. while $V \neq \emptyset$ do
 3. while in V exists a sink v do
 4. $A' \leftarrow A' \cup N^\leftarrow(v)$
 5. remove v and $N^\leftarrow(v)$: $\{V, n, m\}_\text{sink}$
 6. Remove all isolated node from V: $\{V, n, m\}_\text{iso}$
 7. while in V exists a source v do
 8. $A' \leftarrow A' \cup N^\rightarrow(v)$
 9. remove v and $N^\rightarrow(v)$: $\{V, n, m\}_\text{source}$
10. if $V \neq \emptyset$ then
 11. let $v \in V$ such that $|N^\rightarrow(v)| - |N^\leftarrow(v)|$ maximal;
 12. $A' \leftarrow A' \cup N^\rightarrow(v)$
 13. remove v and $N(v)$: $\{V, n, m\}\{\geq,<\}$
Heuristic 2 (Eades, Lin, Smyth 1993)

1. $A' := \emptyset$;
2. while $V \neq \emptyset$ do
 3. while in V exists a sink v do
 4. $A' \leftarrow A' \cup N^\leftarrow(v)$
 5. remove v and $N^\leftarrow(v): \{V, n, m\}_\text{sink}$
 6. Remove all isolated node from $V: \{V, n, m\}_\text{iso}$
 7. while in V exists a source v do
 8. $A' \leftarrow A' \cup N^\rightarrow(v)$
 9. remove v and $N^\rightarrow(v): \{V, n, m\}_\text{source}$
10. if $V \neq \emptyset$ then
 11. let $v \in V$ such that $|N^\rightarrow(v)| - |N^\leftarrow(v)|$ maximal;
 12. $A' \leftarrow A' \cup N^\rightarrow(v)$
 13. remove v and $N(v): \{V, n, m\}_{\{=,<\}}$
Heuristic 2 – Analysis

Theorem 1: Let $D = (V, A)$ be a connected, directed graph without 2-cycles. Heuristic 2 computes a set of edges A' with $|A'| \geq |A|/2 + |V|/6$.

The running time is $O(|A|)$.
Heuristic 2 – Analysis

Theorem 1: Let $D = (V, A)$ be a connected, directed graph without 2-cycles. Heuristic 2 computes a set of edges A' with $|A'| \geq |A|/2 + |V|/6$.

The running time is $O(|A|)$.

Further methods:

- $|A'| \geq |A| \left(1/2 + \Omega \left(\frac{1}{\sqrt{\text{deg}_{\text{max}}(D)}}\right)\right)$ (Berger, Shor 1990)
- exact solution with integer linear programming, using branch-and-cut technique (Grötschel et al. 1985)
Heuristic 2 – Analysis

Theorem 1: Let \(D = (V, A) \) be a connected, directed graph without 2-cycles. Heuristic 2 computes a set of edges \(A' \) with \(|A'| \geq |A|/2 + |V|/6 \).

The running time is \(O(|A|) \).

Further methods:

- \(|A'| \geq |A| \left(1/2 + \Omega \left(\frac{1}{\sqrt{\text{deg}_{\text{max}}(D)}} \right) \right) \) (Berger, Shor 1990)
- exact solution with integer linear programming, using branch-and-cut technique (Grötschel et al. 1985)

For \(|A| \in O(|V|) \) Heuristic 2 performs similarly.
Example
Example
Step 2: Layer Assignment

How would you proceed?
Step 2: Layer Assignment

Given: directed acyclic graph (DAG) $D = (V, A)$

Find: Partition the vertex set V into disjoint subsets (layers) L_1, \ldots, L_h s.t. $(u, v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Def: y-Coordinate $y(u) = i \iff u \in L_i$
Step 2: Layer Assignment

Given.: directed acyclic graph (DAG) \(D = (V, A) \)

Find: Partition the vertex set \(V \) into disjoint subsets (layers) \(L_1, \ldots, L_h \) s.t. \((u, v) \in A, u \in L_i, v \in L_j \Rightarrow i < j \)

Def: \(y \)-Coordinate \(y(u) = i \iff u \in L_i \)

Criteria
- minimize the number of layers \(h \) (= height of the layouts)
- minimize width, e.g. \(\max\{|L_i| \mid 1 \leq i \leq h\} \)
- minimize lengths of the longest edge, d.h. \(\max\{j - i \mid (u, v) \in A, u \in L_i, v \in L_j\} \)
- minimize the total length of edges (\(\approx \) number of dummy nodes)
Height Optimization

Idea: assign each node v to the layer L_i, where i is the length of the longest simple path from a source to v
- all incoming neighbours lie below v
- the resulting height h is minimized
Height Optimization

Idea: assign each node v to the layer L_i, where i is the length of the longest simple path from a source to v

- all incoming neighbours lie below v
- the resulting height h is minimized

Algorithm

- $L_1 \leftarrow$ the set of sources in D
- set $y(u) \leftarrow \max_{v \in N^{-}(u)} \{y(v)\} + 1$
Height Optimization

Idea: assign each node \(v \) to the layer \(L_i \), where \(i \) is the length of the longest simple path from a source to \(v \)
- all incoming neighbours lie below \(v \)
- the resulting height \(h \) is minimized

Algorithm
- \(L_1 \leftarrow \) the set of sources in \(D \)
- set \(y(u) \leftarrow \max_{v \in N^{-}(u)} \{ y(v) \} + 1 \)

How can we implement the algorithm in \(O(|V| + |A|) \) time?
Example
Example
Total Edge Length

Can be formulated as an integer linear program:

\[
\begin{align*}
\text{min} & \quad \sum_{(u,v) \in A} (y(v) - y(u)) \\
\text{subject to} & \quad y(v) - y(u) \geq 1 \quad \forall (u, v) \in A \\
& \quad y(v) \geq 1 \quad \forall v \in V \\
& \quad y(v) \in \mathbb{Z} \quad \forall v \in V
\end{align*}
\]
Total Edge Length

Can be formulated as an integer linear program:

\[
\begin{align*}
\min \quad & \sum_{(u,v) \in A} (y(v) - y(u)) \\
\text{subject to} \quad & y(v) - y(u) \geq 1 \quad \forall (u, v) \in A \\
& y(v) \geq 1 \quad \forall v \in V \\
& y(v) \in \mathbb{Z} \quad \forall v \in V
\end{align*}
\]

One can show that:

- Constraint-Matrix is totally unimodular
- \(\Rightarrow \) Solution of the relaxed linear program is integer
- The total edge length can be minimized in a polynomial time
Width of the Layout
Width of the Layout

→ bound the width!
Layer Assignment with Fixed Width

Fixed-Width Layer Assignment

Given: directed acyclic graph $D = (V, A)$, width B

Find: layer assignment L of minimum height with at most B nodes per layer
Layer Assignment with Fixed Width

Fixed-Width Layer Assignment

Given: directed acyclic graph $D = (V, A)$, width B

Find: layer assignment \mathcal{L} of minimum height with at most B nodes per layer

→ equivalent to the following scheduling problem:

Minimum Precedence Constrained Scheduling (MPCS)

Given: n Jobs J_1, \ldots, J_n with identical unit processing time, precedence constraints $J_i < J_k$, and B identical machines

Find: Schedule of minimum length, that satisfies all the precedence constraints
Complexity

Theorem 2: It is NP-hard to decide, whether for \(n \) jobs \(J_1, \ldots, J_n \) of identical length, given partial ordering constraints, and number of machines \(B \), there exists a schedule of height at most \(T \), even if \(T = 3 \).
Complexity

Theorem 2: It is NP-hard to decide, whether for \(n \) jobs \(J_1, \ldots, J_n \) of identical length, given partial ordering constraints, and number of machines \(B \), there exists a schedule of height at most \(T \), even if \(T = 3 \).

Corollary: If \(P \neq NP \), there is no polynomial algorithm for MPCS with approximation factor \(< 4/3 \).
Complexity

Theorem 2: It is NP-hard to decide, whether for \(n \) jobs \(J_1, \ldots, J_n \) of identical length, given partial ordering constraints, and number of machinces \(B \), there exists a schedule of height at most \(T \), even if \(T = 3 \).

Corollary: If \(\mathcal{P} \neq \mathcal{NP} \), there is no polynomial algorithm for MPCS with approximation factor \(< \frac{4}{3} \).

Theorem 3: There exist an approximation algorithm for MPCS with factor \(\leq 2 - \frac{1}{B} \).
Complexity

Theorem 2: It is NP-hard to decide, whether for n jobs J_1, \ldots, J_n of identical length, given partial ordering constraints, and number of machines B, there exists a schedule of height at most T, even if $T = 3$.

Corollary: If $P \neq NP$, there is no polynomial algorithm for MPCS with approximation factor $< 4/3$.

Theorem 3: There exist an approximation algorithm for MPCS with factor $\leq 2 - \frac{1}{B}$.

List-Scheduling-Algorithm:
- order jobs arbitrarily as a list \mathcal{L}
- when a machine is free, select an allowed job from \mathcal{L}
- Machine is idle if there is no such job
Summary

given
resolve cycles
layer assignment

crossing minimization
node positioning
edge drawing