Algorithms for graph visualization

Layouts for planar graphs. Shift method.
Motivation

- Till now we look at planar and straight-line drawings of trees and SP-graphs
Motivation

- Till now we look at planar and straight-line drawings of trees and SP-graphs
- Today we are going to continue in this direction...
Motivation

- Till now we look at planar and straight-line drawings of trees and SP-graphs
- Today we are going to continue in this direction...
- Why straight-line, and Why planar?
Motivation

- Till now we look at planar and straight-line drawings of trees and SP-graphs
- Today we are going to continue in this direction...
- Why straight-line, and Why planar?
Motivation

- Till now we look at planar and straight-line drawings of trees and SP-graphs
- Today we are going to continue in this direction...
- Why straight-line, and Why planar?
- Bennett, Ryall, Spalteholz and Gooch, 2007 at Computational Aesthetics in Graphics, Visualization, and Imaging

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph \([BMRW98, Har98, DH96, Pur02, TR05, TBB88]\). The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph \([Pur02, TR05, TBB88]\). Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend’s position on the edge and its angle \([TR05]\). If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.
Motivation

- Till now we look at planar and straight-line drawings of trees and SP-graphs
- Today we are going to continue in this direction...
- Why straight-line, and Why planar?
- Bennett, Ryall, Spalteholz and Gooch, 2007 at Computational Aesthetics in Graphics, Visualization, and Imaging

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend’s position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.
Motivation

- Till now we look at planar and straight-line drawings of trees and SP-graphs
- Today we are going to continue in this direction...
- Why straight-line, and Why planar?
- Bennett, Ryall, Spalteholz and Gooch, 2007 at Computational Aesthetics in Graphics, Visualization, and Imaging

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend’s position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.
History

- Straight line drawing of a planar graph
History

- Straight line drawing of a planar graph
History

- Straight line drawing of a planar graph

Theorem [Wagner ’36, Fary ’48, Stein ’51]
Every planar graph has a planar straight-line drawing.
History

- Straight line drawing of a planar graph

Theorem [Wagner ’36, Fary ’48, Stein ’51]
Every planar graph has a planar straight-line drawing.

- These algorithms produce drawings with area not bounded by any polynomial on n.
This lecture:

Theorem [De Fraysseix, Pach, Pollack ’90]

Every n-vertex planar graph has a planar straight-line drawing of a size $(2n - 4) \times (n - 2)$.

Next lecture:

Theorem [Schnyder ’90]

Every n-vertex planar graph has a planar straight-line drawing of a size $(n - 2) \times (n - 2)$.
Outline

- Canonical ordering. Existence.
- Canonical ordering. Computation.
- Shift algorithm.
- Proof of planarity.
- Implementational details.
Canonical Ordering

Definition: Canonical Ordering

Let $G = (V, E)$ be a triangulated planar embedded graph of $n \geq 3$ vertices. An ordering $\pi = (v_1, v_2, \ldots, v_n)$ is called a canonical ordering, if the following conditions hold for each $k, 3 \leq k \leq n$.

- (C1) Vertices \(\{v_1, \ldots, v_k\} \) induce a 2-connected internally triangulated graph, call it G_k.
Canonical Ordering

Definition: Canonical Ordering

Let $G = (V, E)$ be a triangulated planar embedded graph of $n \geq 3$ vertices. An ordering $\pi = (v_1, v_2, \ldots, v_n)$ is called a canonical ordering, if the following conditions hold for each $k, \ 3 \leq k \leq n$.

- (C1) Vertices $\{v_1, \ldots v_k\}$ induce a 2-connected internally triangulated graph, call it G_k.
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k.
Canonical Ordering

Definition: Canonical Ordering

Let $G = (V, E)$ be a triangulated planar embedded graph of $n \geq 3$ vertices. An ordering $\pi = (v_1, v_2, \ldots, v_n)$ is called a canonical ordering, if the following conditions hold for each k, $3 \leq k \leq n$.

- (C1) Vertices $\{v_1, \ldots, v_k\}$ induce a 2-connected internally triangulated graph, call it G_k
- (C2) Edge (v_1, v_2) belongs to the outer face of G_k
- (C3) If $k < n$ then vertex v_{k+1} lies in the outer face of G_k, and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.
Example of Canonical Ordering
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar \textbf{embedded} graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Example of Canonical Ordering

Given a planar **embedded** graph...
Lemma

Every triangulated plane graph has a canonical ordering.

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
Canonical Ordering Existence

Lemma

Every triangulated plane graph has a canonical ordering.

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.

Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.
Lemma

Every triangulated plane graph has a canonical ordering.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
- Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.
- Consider G_k. We search for v_k.
Lemma

Every triangulated plane graph has a canonical ordering.

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.

Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.

Consider G_k. We search for v_k.

\[v_k \]
Canonical Ordering Existence

Lemma

Every triangulated plane graph has a canonical ordering.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
- Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.
- Consider G_k. We search for v_k.

v_k should not be adjacent to a chord
Lemma

Every triangulated plane graph has a canonical ordering.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions C1-C3 hold.
- Induction hypothesis: vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k + 1 \leq i \leq n$.
- Consider G_k. We search for v_k.

v_k should not be adjacent to a chord
Is it sufficient?
Canonical Ordering Existence

Statement If \(v_k \) is not adjacent to a chord then removal of \(v_k \) leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.
Canonical Ordering Existence

Statement If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

Contradiction to the fact that the edges are consecutive!
Why a vertex not adjacent to a chord exists?
Why a vertex not adjacent to a chord exists?
Computing Canonical Ordering

Algorithm CO

forall the $v \in V$ do
 chords(v) \leftarrow 0; out(v) \leftarrow false; mark(v) \leftarrow false;
 out(v_1), out(v_2), out(v_n) \leftarrow true;
for $k = n$ to 3 do
 choose $v \neq v_1, v_2$ such that mark(v) = false, out(v) = true,
 chords(v) = 0;
 $v_k \leftarrow v$; mark(v) \leftarrow true;
 // Let $w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2$ denote the boundary of G_{k-1};
 // and let w_p, \ldots, w_q be the unmarked neighbors v_k;
 out(w_i) \leftarrow true for all $p < i < q$;
 update number of chords for w_i and its neighbors;

- chord(v) - number of chords adjacent to v
- mark(v) = true iff vertex v was numbered
- out(v) = true iff v is the outer vertex of current plane graph
Algorithm CO

forall the $v \in V$ do
 chords(v) ← 0; out(v) ← false; mark(v) ← false;
 out(v_1), out(v_2), out(v_n) ← true;
for $k = n$ to 3 do
 choose $v \neq v_1, v_2$ such that mark(v) = false, out(v) = true,
 chords(v) = 0;
 $v_k ← v$; mark(v) ← true;
 // Let $w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2$ denote the boundary of G_{k-1};
 and let w_p, \ldots, w_q be the unmarked neighbors v_k;
 out(w_i) ← true for all $p < i < q$;
 update number of chords for w_i and its neighbors;

- chord(v) - number of chords adjacent to v
- mark(v) = true iff vertex v was numbered
- out(v) = true iff v is the outer vertex of current plane graph
Computing Canonical Ordering

Algorithm CO

forall the \(v \in V \) do
\hspace{1em} chords\((v)\) ← 0; out\((v)\) ← false; mark\((v)\) ← false;
\hspace{1em} out\((v_1)\), out\((v_2)\), out\((v_n)\) ← true;
\hspace{1em} for \(k = n \) to 3 do
\hspace{2em} choose \(v \neq v_1, v_2 \) such that mark\((v)\) = false, out\((v)\) = true,
\hspace{2em} chords\((v)\) = 0;
\hspace{2em} \(v_k \leftarrow v \); mark\((v)\) ← true;
\hspace{2em} // Let \(w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 \) denote the boundary of \(G_{k-1} \);
\hspace{2em} and let \(w_p, \ldots, w_q \) be the unmarked neighbors \(v_k \);
\hspace{2em} out\((w_i)\) ← true for all \(p < i < q \);
\hspace{2em} update number of chords for \(w_i \) and its neighbors;

Lemma

Algorithm CO computes a canonical ordering of a graph in \(O(n) \) time.
De Fraysseix Pach Pollack (Shift) Algorithm

even Manhattan distance

y

x
De Fraysseix Pach Pollack (Shift) Algorithm

even Manhattan distance

Algorithm invariants: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

even Manhattan distance
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: G_{k-1} is drawn such that
- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

even Manhattan distance
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

even Manhattan distance
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: G_{k-1} is drawn such that
- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

even Manhattan distance

Overlaps! What could be the solution?
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: G_{k-1} is drawn such that

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: G_{k-1} is drawn such that:

- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

even Manhattan distance
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: G_{k-1} is drawn such that
- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: \(G_{k-1} \) is drawn such that

- \(v_1 \) is on \((0, 0)\), \(v_2 \) is on \((2k - 6, 0)\)
- Boundary of \(G_{k-1} \) (minus edge \((v_1, v_2)\)) is drawn \(x \)-monotone
- Each edge of the boundary of \(G_{k-1} \) (minus edge \((v_1, v_2)\)) is drawn with slopes ±1

even Manhattan distance

\[
\begin{array}{c}
\text{Algorithm invariants: } G_{k-1} \text{ is drawn such that} \\
\quad \text{- } v_1 \text{ is on } (0, 0), \quad v_2 \text{ is on } (2k - 6, 0) \\
\quad \text{- Boundary of } G_{k-1} \text{ (minus edge } (v_1, v_2)\text{) is drawn } x\text{-monotone} \\
\quad \text{- Each edge of the boundary of } G_{k-1} \text{ (minus edge } (v_1, v_2)\text{) is drawn with slopes } \pm 1
\end{array}
\]
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm invariants: G_{k-1} is drawn such that
- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1
De Fraysseix Pach Pollack (Shift) Algorithm

algostrong

Algorithm invariants: G_{k-1} is drawn such that
- v_1 is on $(0, 0)$, v_2 is on $(2k - 6, 0)$
- Boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- Each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

even Manhattan distance
De Fraysseix Pach Pollack (Shift) Algorithm

![Graph Visualization Diagram](image)
De Fraysseix Pach Pollack (Shift) Algorithm
De Fraysseix Pach Pollack (Shift) Algorithm
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithmen zur Visualisierung von Graphen
Tamara Mchedlidze
De Fraysseix Pach Pollack (Shift) Algorithm

$L(10)$
De Fraysseix Pach Pollack (Shift) Algorithm

$\mathcal{L}(11)$
De Fraysseix Pach Pollack (Shift) Algorithm

$L(15)$
De Fraysseix Pach Pollack (Shift) Algorithm
De Fraysseix Pach Pollack (Shift) Algorithm
De Fraysseix Pach Pollack (Shift) Algorithm

G_{k-1}

U_k
De Fraysseix Pach Pollack (Shift) Algorithm

\[\mathcal{G}_{k-1} \]

\[\{u_k\} \]

Covered vertices

\[\mathcal{G}_{k-1} \]
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverence relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverage relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverage relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverence relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverence relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$
De Fraysseix Pach Pollack (Shift) Algorithm

- Each internal vertex is covered exactly once
- Coverence relation defines a tree in G
- But a forest in G_i, $1 \leq i \leq n-1$

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.
Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.
De Fraysseix Pach Pollack (Shift) Algorithm

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
De Fraysseix Pach Pollack (Shift) Algorithm

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
De Fraysseix Pach Pollack (Shift) Algorithm

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof
- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
- Let $\delta_1 \leq \cdots \leq \delta_p \leq \delta \leq \delta_q \leq \cdots \leq \delta_t$.

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
- Let $\delta_1 \leq \cdots \leq \delta_p \leq \delta \leq \delta_q \leq \cdots \leq \delta_t$.
- We set $\delta'_i = \delta_i$ for $1 \leq i \leq p$,
- $\delta'_i = \delta + 1$ for $p + 1 \leq i \leq q - 1$ (for the neighbors of v_k)
- $\delta'_i = \delta_i + 2$ for $q \leq i \leq t$.
De Fraysseix Pach Pollack (Shift) Algorithm

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
- Let $\delta_1 \leq \cdots \leq \delta_p \leq \delta \leq \delta_q \leq \cdots \leq \delta_t$.
- We set $\delta'_i = \delta_i$ for $1 \leq i \leq p$,
- $\delta'_i = \delta + 1$ for $p + 1 \leq i \leq q - 1$ (for the neighbors of v_k)
- $\delta'_i = \delta_i + 2$ for $q \leq i \leq t$.
- By induction hypothesis we can move w_1, \ldots, w_t by $\delta'_1 \cdots \delta'_t$, respectively.
De Fraysseix Pach Pollack (Shift) Algorithm

Lemma

Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight line drawing.

Proof

- The proof is by induction on i, i.e. we consider G_3, \ldots, G_n.
- Assume that this is true for G_{k-1}.
- Let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k.
- Let $\delta_1 \leq \cdots \leq \delta_p \leq \delta \leq \delta_q \leq \cdots \leq \delta_t$.
- We set $\delta'_i = \delta_i$ for $1 \leq i \leq p$.
- $\delta'_i = \delta + 1$ for $p + 1 \leq i \leq q - 1$ (for the neighbors of v_k).
- $\delta'_i = \delta_i + 2$ for $q \leq i \leq t$.
- By induction hypothesis we can move $w_1 \ldots, w_t$ by $\delta'_1 \ldots \delta'_t$, respectively.
- We can complete the drawing by placing v_k, v_k is moved with $L(w_{p+1}), \ldots, L(w_{q-1})$ by δ.
De Fraysseix Pach Pollack (Shift) Algorithm

Algorithm Shift

Let \(v_1, \ldots, v_n \) be a canonical ordering of \(G \)

\[\text{for } i = 1 \text{ to } n \text{ do} \]
\[L(v_i) \leftarrow \{v_i\}; \]
\[P(v_1) \leftarrow (0, 0); \]
\[P(v_2) \leftarrow (2, 0); \]
\[P(v_3) \leftarrow (1, 1); \]

\[\text{for } i = 4 \text{ to } n \text{ do} \]
\[\text{Let } w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 \text{ denote the boundary of } G_{i-1}; \]
\[\text{and let } w_p, \ldots, w_q \text{ be the neighbors } v_i; \]
\[\text{for } \forall v \in \bigcup_{j=p+1}^{q-1} L(w_j) \text{ do} \]
\[x(v) \leftarrow x(v) + 1; \]
\[\text{for } \forall v \in \bigcup_{j=q}^{t} L(w_j) \text{ do} \]
\[x(v) \leftarrow x(v) + 2; \]
\[P(v_i) \leftarrow \text{intersection of } +1 \text{ and } -1 \text{ edges from } P(w_p) \text{ and } P(w_q); \]
\[L(v_i) = \bigcup_{j=p+1}^{q-1} L(w_j) \cup \{v_i\}; \]
Relative x-distance tree

\begin{align*}
x(v_k) &= \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p)) \quad (1) \\
y(v_k) &= \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p)) \quad (2) \\
x(v_k) - x(w_p) &= \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p)) \quad (3)
\end{align*}
Linear Time Implementation of Shift Algorithm

relative x-distance tree

$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$ (1)

$y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$ (2)

$x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$ (3)
Linear Time Implementation of Shift Algorithm

relative x-distance tree

$$x(v_k) = \frac{1}{2} (x(w_q) + x(w_p) + y(w_q) - y(w_p)) \quad (1)$$

$$y(v_k) = \frac{1}{2} (x(w_q) - x(w_p) + y(w_q) + y(w_p)) \quad (2)$$

$$x(v_k) - x(w_p) = \frac{1}{2} (x(w_q) - x(w_p) + y(w_q) - y(w_p)) \quad (3)$$
Linear Time Implementation of Shift Algorithm
Linear Time Implementation of Shift Algorithm

relative x-distance tree
In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate
In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.
In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.

If we know the y-coordinates of w_1 and w_2 and the difference $x(w_1) - x(w_2)$, we can compute the difference $x(v_{16}) - x(w_1)$.

Linear Time Implementation of Shift Algorithm
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.
- $\Delta x(w_p, w_q) = \Delta x(w_{p+1}) + \cdots + \Delta x(w_q)$, here $\Delta x(w_q)$ is x-distance from the parent, $\Delta x(w_p, w_q)$ is x-distance of w_p and w_q.
- Calculate $\Delta x(v_k)$ by eq. (3).
- Calculate $y(v_k)$ by eq. (2).
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative \(x \)-distance from its parent and its \(y \)-coordinate.
- If we know the \(y \)-coordinates of \(w_p \) and \(w_q \) and the difference \(x(w_p) - x(w_q) \), we can compute the difference \(x(v_k) - x(w_p) \).
- \(\Delta x(w_p, w_q) = \Delta x(w_{p+1}) + \cdots + \Delta x(w_q) \), here \(\Delta x(w_q) \) is \(x \)-distance from the parent, \(\Delta x(w_p, w_q) \) is \(x \)-distance of \(w_p \) and \(w_q \).
- Calculate \(\Delta x(v_k) \) by eq. (3).
- Calculate \(y(v_k) \) by eq. (2).
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.
- $\Delta x(w_p, w_q) = \Delta x(w_p+1) + \cdots + \Delta x(w_q)$, here $\Delta x(w_q)$ is x-distance from the parent, $\Delta x(w_p, w_q)$ is x-distance of w_p and w_q.
- Calculate $\Delta x(v_k)$ by eq. (3).
- Calculate $y(v_k)$ by eq. (2).
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.

- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.

- $\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)$, here $\Delta_x(w_q)$ is x-distance from the parent, $\Delta_x(w_p, w_q)$ is x-distance of w_p and w_q.

- Calculate $\Delta_x(v_k)$ by eq. (3).

- Calculate $y(v_k)$ by eq. (2).
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.
- $\Delta x(w_p, w_q) = \Delta x(w_{p+1}) + \cdots + \Delta x(w_q)$, here $\Delta x(w_q)$ is x-distance from the parent, $\Delta x(w_p, w_q)$ is x-distance of w_p and w_q.
- Calculate $\Delta x(v_k)$ by eq. (3).
- Calculate $y(v_k)$ by eq. (2).
In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.

If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.

$\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)$, here $\Delta_x(w_q)$ is x-distance from the parent, $\Delta_x(w_p, w_q)$ is x-distance of w_p and w_q.

Calculate $\Delta_x(v_k)$ by eq. (3).

Calculate $y(v_k)$ by eq. (2).
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.
- $\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)$, here $\Delta_x(w_q)$ is x-distance from the parent, $\Delta_x(w_p, w_q)$ is x-distance of w_p and w_q.
- Calculate $\Delta_x(v_k)$ by eq. (3).
- Calculate $y(v_k)$ by eq. (2).

\[
\Delta_x(w_q) = \Delta_x(w_p, w_q) - \Delta_x(v_k),
\]
\[
\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) - \Delta_x(v_k).
\]
Linear Time Implementation of Shift Algorithm

- In the binary tree at each vertex we keep its relative x-distance from its parent and its y-coordinate.
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) - x(w_q)$, we can compute the difference $x(v_k) - x(w_p)$.
- $\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \cdots + \Delta_x(w_q)$, here $\Delta_x(w_q)$ is x-distance from the parent, $\Delta_x(w_p, w_q)$ is x-distance of w_p and w_q.
- Calculate $\Delta_x(v_k)$ by eq. (3).
- Calculate $y(v_k)$ by eq. (2).
- When the tree is ready, compute x-coordinates by a pre-order traversal of it.