

Optimierung im Gebäude-Energiemanagement mittels gemischt-ganzzahliger linearer Programmierung

Sebastian Sigg Seminar Energieinformatik

INSTITUT FÜR ANGEWANDTE INFORMATIK UND FORMALE BESCHREIBUNGSVERFAHREN

https://www.ewe.de/~/media/ewe/internet/images/stages/stages-1280x415/gk-energie/gk-strom-online12-1280x415.jpg?h=415&la=de-DE&w=128

Motivation

25.10.2016

Inhalt

- Beschreibung der zur Optimierung nötigen Ausgangssituation
 - Optimierungspotential
 - Ausnutzung des von variablen Preisen und Emissionen
 - Realisierung
- Darstellung als gemischt-ganzzahliges Optimierungsproblem
 - Betrachtung der Kosten
 - Einbindung von Speichern
 - Betrachtung der CO₂ Emissionen

- Zwei Ziele nach denen optimiert werden kann:
 - Stromkosten
 - CO₂ Emissionen

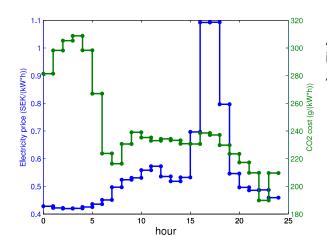


Abb. 1. Stromtarif und CO₂ Profil in Schweden am 05. 01. 2010. Abbildung entnommen aus [3].

- Betrachtet werden verschiedene Haushaltsgeräte
 - z. B. Waschmaschine, Trockner oder Spülmaschine (unterbrechbare Geräte)
- Ziel ist einen optimalen Zeitplan zu erzeugen, in dem alle Haushaltgeräte enthalten sind und die Kosten sowie Emissionen minimal sind.

- Einige Restriktionen müssen berücksichtigt werden:
 - Abhängigkeiten zwischen Geräten
 - Nutzerpräferenzen

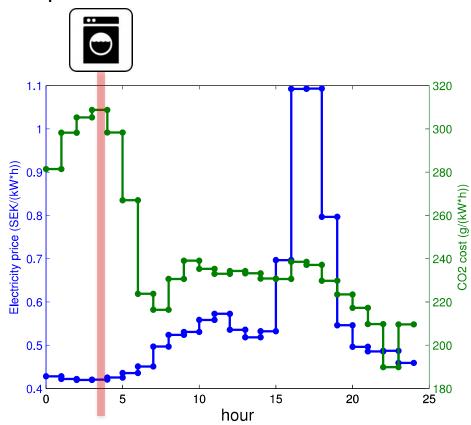


Abb. 1. Elektrizitätstarif und CO₂ Profil in Schweden am 05. 01. 2010. Abbildung entnommen aus [3].

- Einige Restriktionen müssen berücksichtigt werden:
 - Abhängigkeiten zwischen Geräten
 - Nutzerpräferenzen

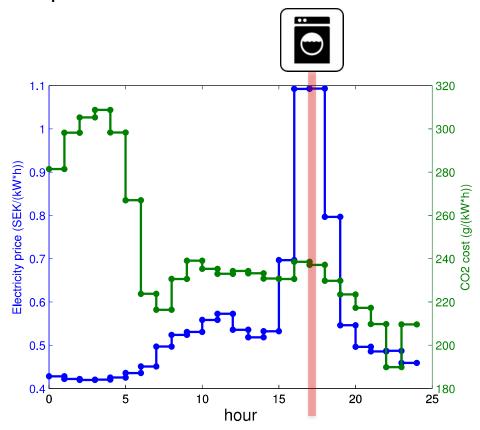


Abb. 1. Elektrizitätstarif und CO₂ Profil in Schweden am 05. 01. 2010. Abbildung entnommen aus [3].

- Einige Restriktionen müssen berücksichtigt werden:
 - Abhängigkeiten zwischen Geräten
 - Nutzerpräferenzen

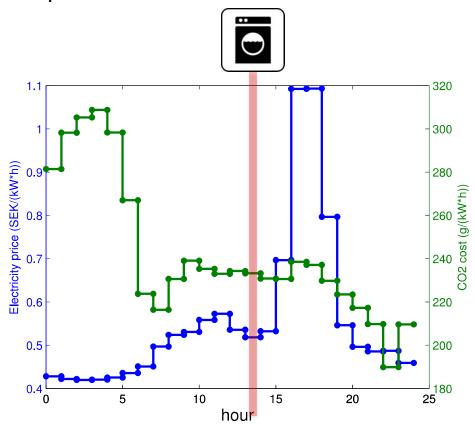


Abb. 1. Elektrizitätstarif und CO₂ Profil in Schweden am 05. 01. 2010. Abbildung entnommen aus [3].

- Einige Restriktionen müssen berücksichtigt werden:
 - Abhängigkeiten zwischen Geräten
 - Nutzerpräferenzen

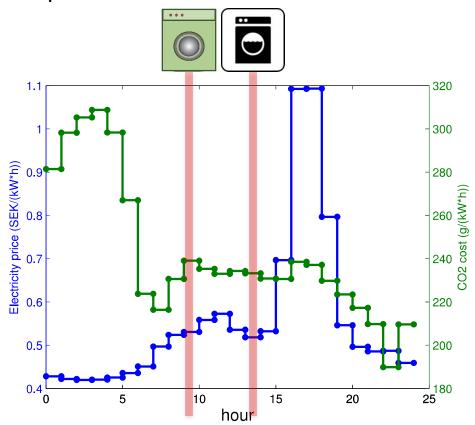


Abb. 1. Elektrizitätstarif und CO₂ Profil in Schweden am 05. 01. 2010. Abbildung entnommen aus [3].

- Einige Restriktionen müssen berücksichtigt werden:
 - Abhängigkeiten zwischen Geräten
 - Nutzerpräferenzen

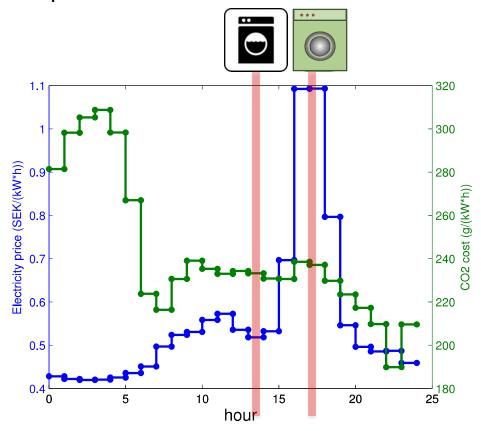


Abb. 1. Elektrizitätstarif und CO₂ Profil in Schweden am 05. 01. 2010. Abbildung entnommen aus [3].

- Einige Restriktionen müssen berücksichtigt werden:
 - Abhängigkeiten zwischen Geräten
 - Nutzerpräferenzen

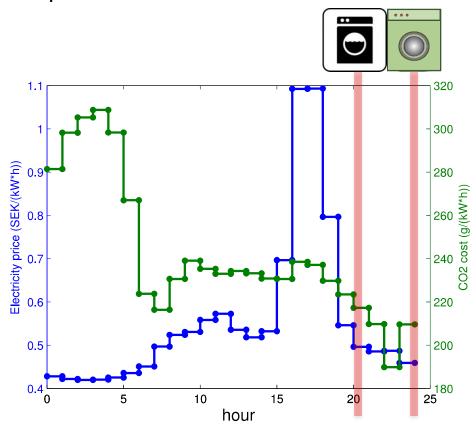


Abb. 1. Elektrizitätstarif und CO₂ Profil in Schweden am 05. 01. 2010. Abbildung entnommen aus [3].

- Problem: Unrealistisch, dass der Nutzer sich nach stündlich wechselndem Tarif und CO₂ Fußabdruck richtet.
- Lösung wären automatische Systeme die
 - dem Nutzer Informationen bereitstellen
 - komplett von selbst die Geräte der Nutzers steuern
- Einsatz von intelligenten Geräten die auf Tarif- und Emissionsdaten zugreifen können.
 - Stellen die Realisierbarkeit einer optimalen Lösung sicher

25.10.2016

Beispiel für optimalen Zeitplan

- Beispielsituation mit drei verschiedenen Geräten.
- Nutzerpräferenzen:
 - Geschirrspülmaschine zwischen 19:00 Uhr und 24:00 Uhr
 - Waschmaschine und Trockner zwischen 9:00 und 23:00 Uhr

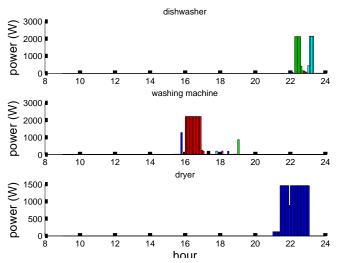


Abb. 2. Die Energieprofile der 3 Geräte mit minimalen Kosten nach MILP. Abbildung entnommen aus [1]

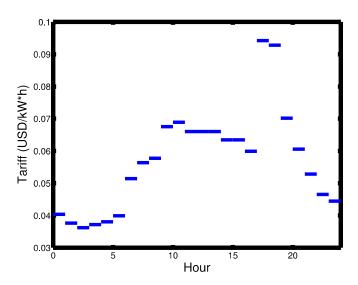


Abb. 3. Elektrizitätstarif für New York City am 15. Februar 2011. Abbildung entnommen aus [1]

Mathematische Formulierung des Problems

- Gemischt-ganzzahlige lineare Programmierung
 - Annahmen
 - Minimierung der Stromkosten
 - Einbindung einer Batterie
 - Betrachtung von Lösungskonzepten
 - Minimierung der Stromkosten und der CO₂ Emissionen

MILP Formulierung des Problems

- Annahmen:
 - Stückweise konstante Stromkosten
 - Unterteilung eines Betriebsprozesses in sequentielle Verbrauchsphasen
 - Verbrauchsphase kann nicht unterbrochen werden
 - Phasen haben vorgegebene Mengen benötigter elektrischer Energie
 - Die Verbrauchsphasen können in einem Energieprofil für jedes Gerät dargestellt werden:

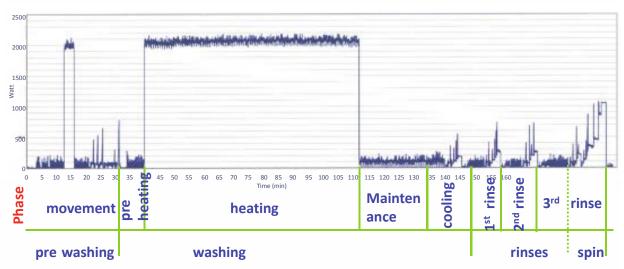


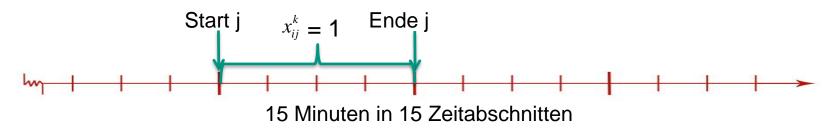
Abb. 4. Die 8 Energiephasen bilden das Energieprofil des Beispiels Waschmaschine. Abbildung entnommen aus [3].


Mathematische Formulierung des Problems

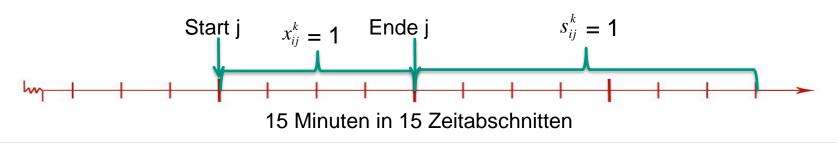
- Gemischt-ganzzahlige lineare Programmierung
 - Annahmen
 - Minimierung der Stromkosten
 - Einbindung einer Batterie
 - Betrachtung von Lösungskonzepten
 - Minimierung der Stromkosten und der CO₂ Emissionen

- Indizes und Variablen:
 - Die betrachtete Periode wird in m gleichgroße Zeitabschnitte aufgeteilt
 - Die Anzahl der im Zeitplan zu berücksichtigenden Geräte ist N
 - Die Anzahl der Verbrauchsphasen für jedes Gerät ist n_i für i = 1,2,....,N
 - Entscheidungsvariablen:
 - p_{ij}^k Zugeteilte Energie für Phase j in Gerät i in Zeitabschnitt k
 - \mathbf{x}_{ij}^k binär mit $x_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt wird
 - s_{ij}^k binär mit $s_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt ist
 - \mathbf{t}_{ij}^k binär mit $t_{ij}^k = 1$, wenn Phase j-1 beendet aber j noch nicht angefangen hat

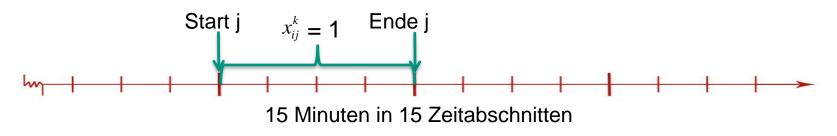
- Indizes und Variablen:
 - Die betrachtete Periode wird in m gleichgroße Zeitabschnitte aufgeteilt
 - Die Anzahl der im Zeitplan zu berücksichtigenden Geräte ist N
 - Die Anzahl der Verbrauchsphasen für jedes Gerät ist n_i für i = 1,2,....,N
 - Entscheidungsvariablen:
 - p_{ij}^k Zugeteilte Energie für Phase j in Gerät i in Zeitabschnitt k
 - \mathbf{x}_{ij}^k binär mit $x_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt wird
 - s_{ij}^k binär mit $s_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt ist
 - \mathbf{t}_{ij}^k binär mit $t_{ij}^k = 1$, wenn Phase j-1 beendet aber j noch nicht angefangen hat



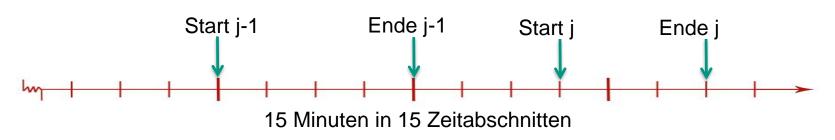
- Indizes und Variablen:
 - Die betrachtete Periode wird in m gleichgroße Zeitabschnitte aufgeteilt
 - Die Anzahl der im Zeitplan zu berücksichtigenden Geräte ist N
 - Die Anzahl der Verbrauchsphasen für jedes Gerät ist n_i für i = 1,2,....,N
 - Entscheidungsvariablen:
 - **P** p_{ij}^k Zugeteilte Energie für Phase j in Gerät i in Zeitabschnitt k
 - \mathbf{x}_{ij}^k binär mit $x_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt wird
 - s_{ij}^k binär mit $s_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt ist
 - \mathbf{t}_{ij}^k binär mit $t_{ij}^k = 1$, wenn Phase j-1 beendet aber j noch nicht angefangen hat



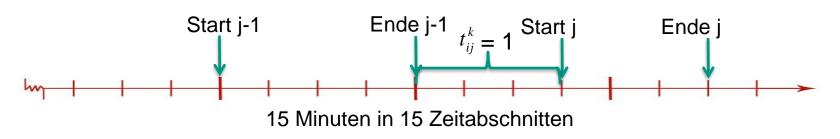
- Indizes und Variablen:
 - Die betrachtete Periode wird in m gleichgroße Zeitabschnitte aufgeteilt
 - Die Anzahl der im Zeitplan zu berücksichtigenden Geräte ist N
 - Die Anzahl der Verbrauchsphasen für jedes Gerät ist n_i für i = 1,2,....,N
 - Entscheidungsvariablen:
 - \mathbf{p}_{ij}^{k} Zugeteilte Energie für Phase j in Gerät i in Zeitabschnitt k
 - \mathbf{x}_{ij}^k binär mit $x_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt wird
 - s_{ij}^k binär mit $s_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt ist
 - \mathbf{t}_{ij}^k binär mit $t_{ij}^k = 1$, wenn Phase j-1 beendet aber j noch nicht angefangen hat



- Indizes und Variablen:
 - Die betrachtete Periode wird in m gleichgroße Zeitabschnitte aufgeteilt
 - Die Anzahl der im Zeitplan zu berücksichtigenden Geräte ist N
 - Die Anzahl der Verbrauchsphasen für jedes Gerät ist n_i für i = 1,2,....,N
 - Entscheidungsvariablen:
 - p_{ij}^k Zugeteilte Energie für Phase j in Gerät i in Zeitabschnitt k
 - \mathbf{x}_{ij}^k binär mit $x_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt wird
 - s_{ij}^k binär mit $s_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt ist
 - t_{ij}^k binär mit t_{ij}^k = 1, wenn Phase *j-1* beendet aber *j* noch nicht angefangen hat



- Indizes und Variablen:
 - Die betrachtete Periode wird in m gleichgroße Zeitabschnitte aufgeteilt
 - Die Anzahl der im Zeitplan zu berücksichtigenden Geräte ist N
 - Die Anzahl der Verbrauchsphasen für jedes Gerät ist n_i für i = 1, 2,, N
 - Entscheidungsvariablen:
 - **P** p_{ij}^k Zugeteilte Energie für Phase j in Gerät i in Zeitabschnitt k
 - \mathbf{x}_{ij}^k binär mit $x_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt wird
 - s_{ij}^k binär mit $s_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt ist
 - \mathbf{t}_{ij}^k binär mit $t_{ij}^k = 1$, wenn Phase j-1 beendet aber j noch nicht angefangen hat



- Indizes und Variablen:
 - Die betrachtete Periode wird in m gleichgroße Zeitabschnitte aufgeteilt
 - Die Anzahl der im Zeitplan zu berücksichtigenden Geräte ist N
 - Die Anzahl der Verbrauchsphasen für jedes Gerät ist n_i für i = 1,2,....,N
 - Entscheidungsvariablen:
 - p_{ij}^k Zugeteilte Energie für Phase j in Gerät i in Zeitabschnitt k
 - \mathbf{x}_{ij}^{k} binär mit $x_{ij}^{k} = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt wird
 - s_{ij}^k binär mit $s_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt ist
 - \mathbf{t}_{ij}^k binär mit $t_{ij}^k = 1$, wenn Phase j-1 beendet aber j noch nicht angefangen hat

- Indizes und Variablen:
 - Die betrachtete Periode wird in m gleichgroße Zeitabschnitte aufgeteilt
 - Die Anzahl der im Zeitplan zu berücksichtigenden Geräte ist N
 - Die Anzahl der Verbrauchsphasen für jedes Gerät ist n_i für i = 1,2,....,N
 - Entscheidungsvariablen:
 - **P** p_{ij}^k Zugeteilte Energie für Phase j in Gerät i in Zeitabschnitt k
 - \mathbf{x}_{ij}^{k} binär mit $x_{ij}^{k} = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt wird
 - s_{ij}^k binär mit $s_{ij}^k = 1$, wenn Phase j in Gerät i in Zeitabschnitt k ausgeführt ist
 - \mathbf{t}_{ij}^k binär mit $t_{ij}^k = 1$, wenn Phase j-1 beendet aber j noch nicht angefangen hat

- Zielfunktion:
 - Minimierung der Stromkosten
 - Sei c^k ein Vektor der Länge m der den Tarif für jedes k enthält.

$$\min_{p,x,s,t} \sum_{k=1}^{m} c^{k} \left(\sum_{i=1}^{N} \sum_{j=1}^{n_{i}} p_{ij}^{k} \right)$$

Stromverbrauch je Zeitabschnitte wird mit Kosten multipliziert und aufsummiert

- Nebenbedingungen:
 - (1) Um sicherzustellen, dass jeder Verbrauchsphase die Energie zugeteilt wird, die sie benötigt:

$$\sum_{k=1}^{m} p_{ij}^k = E_{ij}$$

- Wobei E_{ii} der benötigte Strom für Phase j des Gerätes i ist.
- (2) Sicherstellung, dass $p_{ij}^k = 0$, falls $x_{ij}^k = 0$ und dass die obere und untere Grenze für die Phase eingehalten wird:

$$\underline{P_{ij}^k x_{ij}^k} \le p_{ij}^k \le \overline{P_{ij}^k x_{ij}^k}$$

- Obere und untere Grenze sind gerätespezifisch.
 - z. B. Überspannungsschutz

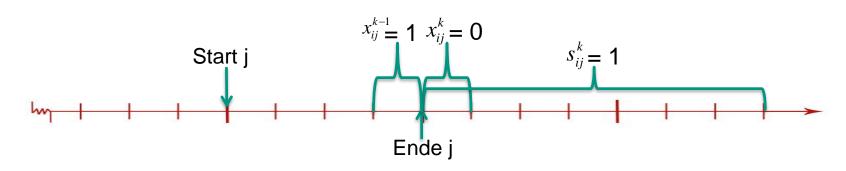
- Nebenbedingungen:
 - (3) Setzen eines Maximalwertes für die Menge an Strom, der pro Zeitabschnitt zugewiesen werden darf:

$$\sum_{i=1}^{N} \sum_{j=1}^{n_i} p_{ij}^k \le PEAK^k$$

- z. B. um Überbelastung der Stromversorgung des Gebäudes zu vermeiden
- (4) Grenze der Zeit, die eine Phase erhalten muss:

$$\underline{T}_{ij} \le \sum_{k=1}^{m} x_{ij}^{k} \le \overline{T}_{ij}$$

- Wobei die Grenzen eine Anzahl an Zeitabschnitten beziffern (ganzzahlig)
- Grenzen sind technisch bedingt



- Nebenbedingungen:
 - (5) Eine Verbrauchsphase darf nicht unterbrochen werden:

$$x_{ij}^{k} \le 1 - s_{ij}^{k}$$

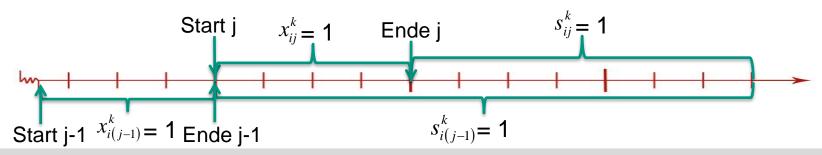
$$x_{ij}^{k-1} - x_{ij}^{k} \le s_{ij}^{k}$$

$$s_{ij}^{k-1} \le s_{ij}^{k}$$

- Nebenbedingungen:
 - (5) Eine Verbrauchsphase darf nicht unterbrochen werden:

$$x_{ij}^{k} \le 1 - s_{ij}^{k}$$

$$x_{ij}^{k-1} - x_{ij}^{k} \le s_{ij}^{k}$$

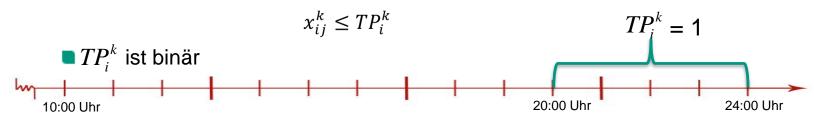

$$s_{ij}^{k-1} \le s_{ij}^{k}$$

(6) Verbrauchsphasen dürfen nur sequentiell ablaufen:

$$x_{ij}^k \le s_{i(j-1)}^k$$

(7) Einige Geräte dürfen nur nacheinander ablaufen:

$$x_{i1}^k \leq s_{in_i}^k$$


- Nebenbedingungen:
 - Es ist nicht zwingend notwendig, dass auf Verbrauchsphase j direkt j+1 folgt
 - Begrenzung der Zeit, die zwischen zwei speziellen Zeitabschnitten vergehen darf
 - 1. Definition von t_{ij}^k (8):

$$t_{ij}^{k} = s_{i(j-1)}^{k} - (x_{ij}^{k} + s_{ij}^{k})$$

2. Bindung von t_{ij}^k an eine obere und eine untere Grenze (9):

$$\underline{D}_{ij} \leq \sum_{k=1}^{m} t_{ij}^{k} \leq \overline{D}_{ij}$$

- (10) Möglichkeit zur Einbinden von Zeitpräferenzen des Nutzers:
 - Zeitintervalle in denen die Geräte laufen sollen

Komplette Formulierung:

$$\min_{p,x,s,t} \sum_{k=1}^{m} c^{k} \left(\sum_{i=1}^{N} \sum_{j=1}^{n_{i}} p_{ij}^{k} \right)$$

so dass Nebenbedingungen (1) – (10)

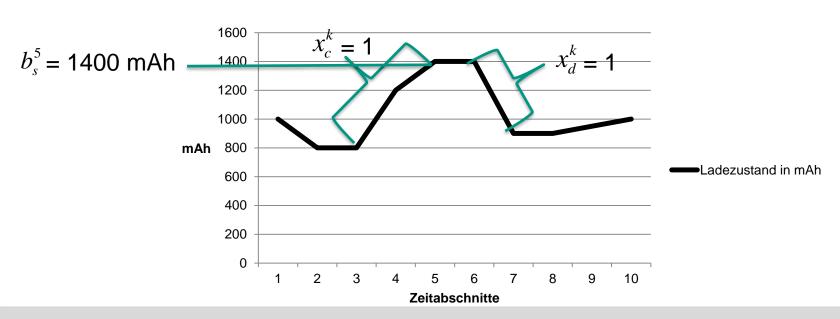
$$p_{ij}^{k} \in \mathbb{R}^{+}, \quad \forall i, j, k$$

$$x_{ij}^{k} \in \{0, 1\}, \quad \forall i, j, k$$

$$s_{ij}^{k} \in \{0, 1\}, \quad \forall i, j, k$$

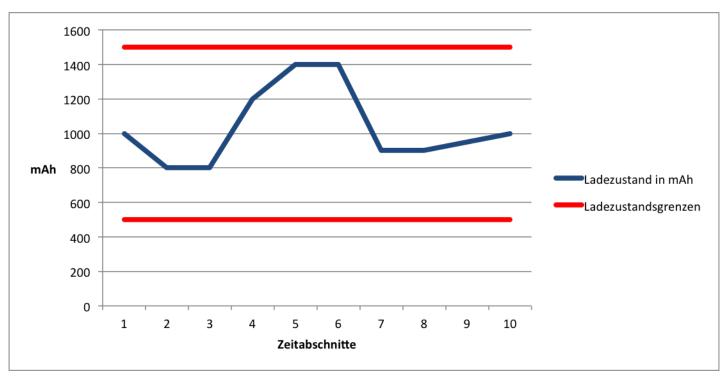
$$t_{ij}^{k} \in \{0, 1\}, \quad \forall i, k \quad \forall j = 2, ..., n_{i}$$

Mathematische Formulierung des Problems


- Gemischt-ganzzahlige lineare Programmierung
 - Annahmen
 - Minimierung der Stromkosten
 - Einbindung einer Batterie
 - Betrachtung von Lösungskonzepten
 - Minimierung der Stromkosten und der CO₂ Emissionen

- Zentrale Batterie mit Verbindung zu allen Geräten, die geladen und entladen werden kann
- Bei optimalem Einsatz können die Kosten weiter reduziert werden
- Konzept:
 - Zu Zeitpunkten, in denen der Strompreis oder der CO₂ Fußabdruck gering ist Strom, speichern
 - Zu Zeitpunkten, in denen der Strompreis oder CO₂ Fußabdruck hoch ist, gespeicherte Energie verbrauchen
- Gespeicherte Energie kann wieder verkauft werden

- Modellierung einer Batterie:
 - Zusätzliche Entscheidungsvariablen:
 - lacktriangle b_s^k bezeichnet den Ladezustand der Batterie in Zeitabschnitt k
 - $\mathbf{x}_{c}^{k} / x_{d}^{k}$ gibt an ob die Batterie in Zeitabschnitt k geladen / entladen wird
 - lacksquare b_c^k / b_d^k geben die Menge an Energie an die geladen / entladen wird
 - $lacktriangleq p_G^k$ gibt die gesamte, mit dem Netz ausgetauschte Energie an



25.10.2016

Obere und untere Grenze für den Ladezustand der Batterie:

$$\underline{b}_s \le b_s^k \le \overline{b}_s$$

Grenzen können dazu dienen die Batterie zu schonen

- Modellierung einer Batterie
 - Obere und Untere Grenze für den Energieaustausch beim Laden und Entladen: $0 \le b_d^k \le \overline{b}_d^k x_d^k$

$$0 \le b_c^k \le \overline{b}_c^k x_c^k$$

Eine Batterie kann nicht gleichzeitig geladen und entladen werden:

$$x_c^k + x_d^k \le 1$$

Begrenzung der Anzahl an Lade- und Entladevorgänge auf die Zahl N_c , um die Batterielebensdauer zu verlängern:

$$x_c^k - x_c^{k-1} \le c_t^k$$

$$x_d^k - x_d^{k-1} \le d_t^k$$

$$\sum_{i=1}^k c_t^k + d_t^k \le N_c$$

Beschreibung von Verlusten durch Abbau der gespeicherten Energie (α) oder Verlusten beim Laden und Entladen (η_c und η_d):

$$b_s^k = \alpha b_s^{k-1} + \eta_c b_c^{k-1} - \eta_d b_d^{k-1}$$

- Modellierung einer Batterie
 - **Einführung einer Energiebilanz und Definition von** p_G^k :

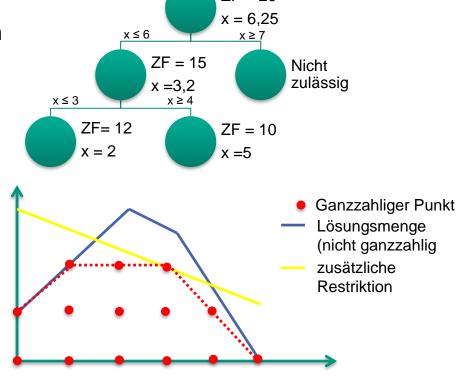
$$\sum_{i=1}^{N} \sum_{j=1}^{n_i} p_{ij}^k + b_c^k - b_d^k = p_G^k$$

Obere und untere Grenze für die gesamte ausgetauschte Energie:

$$\underline{p}_G^k \le p_G^k \le \overline{p}_G^k$$

- z. B. Grenzen für Nutzung der Batterie
- Beachte: \underline{p}_{G}^{k} kann auch negativ sein
- Der Anfangsladezustand der Batterie sollte gleich dem Endladezustand sein: $b_s^0 = b_s^T$

Mathematische Formulierung des Problems



- Gemischt-ganzzahlige lineare Programmierung
 - Annahmen
 - Minimierung der Stromkosten
 - Einbindung einer Batterie
 - Betrachtung von Lösungskonzepten
 - Minimierung der Stromkosten und der CO₂ Emissionen

Allgemeine Lösungsverfahren

- Lösungskonzepte von ganzzahligen linearen Problemen
 - Das Branch and bound Verfahren
 - Entscheidungsbaum
 - Verzweigung des Problems
 - Schnittebenenverfahren
 - "Abschneiden" der unzulässigen Lösungen

ZF = 20

 Beispiele für kommerzielle Solver die mit unter diese Lösungsverfahren verwenden sind <u>CPLEX</u> oder <u>Gurobi</u>

Mathematische Formulierung des Problems

- Gemischt-ganzzahlige lineare Programmierung
 - Annahmen
 - Minimierung der Stromkosten
 - Einbindung einer Batterie
 - Betrachtung von Lösungskonzepten
 - Minimierung der Stromkosten und der CO₂ Emissionen

Multikriterieller Lösungsansatz

- Multikriterielle Optimierung
 - Betrachtung von CO₂ Emissionen und Stromkosten
- In MILP: multikriterielle Optimierung mittels gewichteter Summe
- Ziel ist, möglichst viele Pareto optimale Punkte zu finden

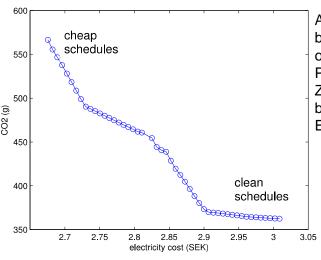


Abb. 5 Alle blauen Punkte bezeichnen einen Pareto optimalen Punkt. Jeder dieser Punkte stellt einen optimalen Zeitplan für die berücksichtigten Geräte dar. Entnommen aus [3].

MILP mit Berücksichtigung der CO₂ Emissionen [K. Paridari, 2014]

Lösung mittels einer gewichteten Summe:

$$\sum_{k=1}^{m} \left((1-\lambda)E^k + \lambda C^k \right) \left(\sum_{i=1}^{N} \sum_{j=1}^{n_i} p_{ij}^k \right), \lambda \in [0,1]$$

- Wobei $E^k = \frac{e^k}{\max(e^1, e^2, \dots e^m)}$ und $C^k = \frac{c^k}{\max(c^1, c^2, \dots c^m)}$ die normalisierten Werte des Kosten und Emissionsvektors sind
- Nutzer entscheidet sich für einen der Pareto optimalen Punkte

Zusammenfassung

 Stromkosten und CO₂ Emissionen k\u00f6nnen mit einem geeigneten Laufplan minimiert werden

- Es wurde eine MILP Formulierung vorgestellt mit den Erweiterungsmöglichkeiten um:
 - Einbindung eines Batteriespeicherung
 - Eine Betrachtung mit CO₂ Emissionen

Lösungsverfahren für ganzzahlige Probleme wurden vorgestellt

Literaturverzeichnis

- [1] K. C. Sou, J. Weimer, H. Sandberg, and K. Johansson, "Scheduling smart home appliances using mixed integer linear programming," in Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, dec. 2011, pp. 5144 –5149.
- [2] K. Paridari, A. Parisio, H. Sandberg and K. H. Johansson. Energy and CO2 Eddicient Scheduleing of smart Home Appliances Equipped with Batteries. In IEEE International Conference on Automation Science and Engineering, pp. 632-639, IEEE, August, 2014
- [3] K. C. Sou, M. Kordel, J. Wu, H. Sandberg, and K. H. Johansson, "Energy and CO2 efficient scheduling of smart home appliances," in Control Conference (ECC), European, 2013, pp. 4051–4058.

Backup

Die Problemstellung

- Stromnetzauslastung schwankt bezüglich
 - Tagen / Wochen / Monaten
- Stärker werdende Unvorhersehbarkeit des Energieverbrauchs durch:
 - Erneuerbare Energien (insb. Windkraft)
 - plug-in electrical vehicles
- Zwang zu umweltschädlichen Erzeugungsmethoden durch Spitzenauslastungen
- Lösung: Bessere Lastenverteilung über die Zeit durch scheduling der Haushaltsgeräte
 - → Aber wie kann man das Nutzungsverhalten der Verbraucher beeinflussen?

Auswirkung verschiedener Gewichte sowie der Batterie auf das Problem in MILP Formulierung

[K. Paridari, 2014]

λ	0	0.25	0.5	0.75	1				
Ersparnis Tohne Batterie									
CO₂ ҈ (%)	-2,88	-0,23	1,05	1,79	1,98				
Stromrechnung 1/2%)	2,41	2,16	1,56	0,68	-0,22				
Ersparnis@mit@Batterie									
CO21(%)	-5,01	0,37	5,56	7,66	8,02				
Stromrechnung 1 (%)	4,94	4,10	2,46	0,70	-1,10				

Tabelle 1

Geld und CO₂ Ersparnis in einem Beispielszenario. Als

Referenz gilt ein Haushalt ohne jegliche Optimierung.

Daten entnommen aus [2]

- Szenario: drei Geräte in einem Betrachtungszeitraum von 24 Stunden
- Batterie bewirkt eine Spreizung der Ergebnisse Effekt
 - → bei starker Gewichtung eines Zielfaktors wird der negative Einfluss auf den jeweils anderen verstärkt.

- Szenario: Planungsperiode von 15 Stunden, 3 einzuplanende Geräte, ohne Batterie
- Alle Berechnungen wurden mit CPLEX durchgeführt
- Untersuchung des Verhaltens der Rechenzeit bei Variation der Größe der Zeitabschnitte:

Länge der Zeitabschnitte	Kosten	Rechenzeit
3⊡min	\$0,3257	860 ß ec
5⊡min	\$0,3256	83,6 ß ec
10⊡min	\$0,3251	15,4 ß ec

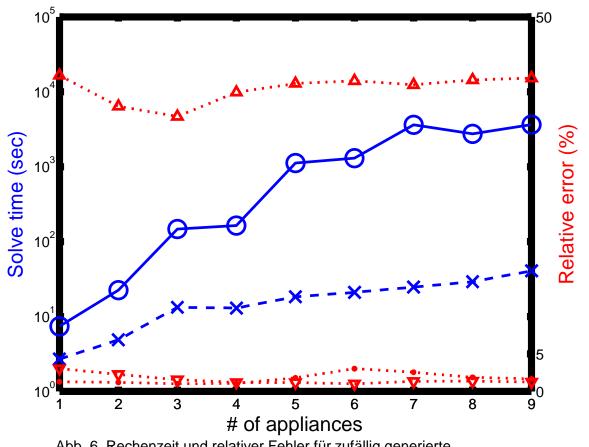
Tabelle 2: Lösung eines Beispielszenarios mit verschiedenen Größen der Zeitabschnitten bei einer betrachteten Periode von 15 Stunden. Daten entnommen aus [1].

 Durch Verfeinerung der Zeitachse kann nicht zwangsläufig eine bessere Lösung entstehen

- CPLEX bietet die Möglichkeit der Terminierung bevor die optimale Lösung gefunden wurde
 - z. B. stoppen sobald eine zulässige Lösung gefunden wurde
 - Festlegung einer Obergrenze für die Rechenzeit
- Szenario: Planungsperiode von 15 Stunden, Zeitabschnitte sind 5 min lang, 3 einzuplanende Geräte, ohne Batterie

Rechenzeit (s)	6,94	12,2	17,2	27,2	67,2	87,2
rel.Œehler�(%)	0,34	0,34	0,34	0,2	0,2	0

Tabelle 3: relativer Fehler (Abweichung vom Optimalwert in %) vs. gegebene Rechenzeit. Daten entnommen aus [1].


Schon nach kurzer Zeit kann eine Lösung nahe dem Optimum erzielt werden

- Szenario: Planungsperiode von 15 Stunden, Zeitabschnitte sind 10 min lang, 3 einzuplanende Geräte, ohne Batterie
- Die Rechenzeit nahm bei steigender Gerätezahl zu
 - Bei 10 Geräten war der Arbeitsspeicher (4 GB) überlastet
- Betrachtet werden 4 Lösungsverfahren für das Beispielszenario:
 - CPLEX mit Ausführung bis zur optimalen Lösung
 - CPLEX mit Ausführung bis eine zulässige Lösung gefunden wurde

 - ASAP: Geräte so früh wie möglich laufen lassen ALAP: Geräte so spät wie möglich laufen lassen

- O CPLEX optimal (Rechenzeit)
- × CPLEX zulässig (Rechenzeit)
- CPLEX zulässig (rel. Fehler)
- ▼ ASAP (rel. Fehler)
- △ ALAP (rel. Fehler)

Abb. 6. Rechenzeit und relativer Fehler für zufällig generierte Szenarien mit variierender Anzahl an Geräten. Entnommen aus [1]

Die Rechenzeit bis zum Optimum steigt schnell, während sich die Rechenzeit bis zu einer zulässigen Lösung nur langsam erhöht.

Zusammenfassung

 Energiekosten und CO₂ Emissionen können mit einem geeigneten Laufplan minimiert werden

- Es wurde eine MILP Formulierung vorgestellt mit den Erweiterungsmöglichkeiten um:
 - Einbindung eines Batteriespeicherung
 - Eine Betrachtung mit CO₂ Emissionen
 - Lösungsverfahren

 Die Feinheit der Zeitachse sowie die Anzahl der zu berücksichtigenden Geräte haben einen Einfluss auf die Rechenzeit