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Motivation

Given a position p = (pxapy)

In a map, determine in which
%j country p lies.
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Given a position p = (psz, Dy )
In a map, determine in which
country p lies.

more precisely:

Find a data structure for
efficiently answering such
point location queries.
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Given a position p = (psz, Dy )
In a map, determine in which
country p lies.

more precisely:

Find a data structure for
efficiently answering such
point location queries.

The map is modeled as a
subdivision of the plane into
disjoint polygons.



Problem Setting
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Problem Setting

Goal: Given subdivision § of the plane with n segments,
construct data structure for fast point location queries.
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Problem Setting

Goal: Given subdivision § of the plane with n segments,
construct data structure for fast point location queries.

Think for 2 minutes!
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Reducing the Complexity

Observation: Slab partition is a refinement S’ of S into
(possibly degenerate) trapezoids.

Goal: Find a suitable refinement of S with lower
complexity!

Solution: Trapezoidal map T (S)

Assumption: S is in general position, i.e., no two segment
endpoints have the same x-coordinate

4 Benjamin Niedermann - Ubung Algorithmische Geometrie



Search Structure

Goal: Compute the trapzoidal map 7(S) and simultaneously a
data structure D(S) for point location in T(S).

B P1 D(S)
218 _S1 3¢ A q1
DI|E
A p2< 82 G 81 QZ
C \ B
> P
F q2 2 S9 G
T(S) 4 A
D(S) is a DAG with: L F

@ x-node for point p tests left/right of p
@ y-node for segment s tests above/below s

A| leaf node for trapezoid A
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Analysis

Thm 1: The algorithm computes the trapezoidal map 7(S) and
the search structure D for a set S of n segments in
expected O(nlogn) time. The expected size of D is
O(n) and the expected query time is O(logn).
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Observations:

m worst case: size of D is quadratic and query time is linear
» hope: that happens rarely!

= consider expected time and size over all n! permutations of S
= the theorem holds independently of the input set S
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Exercise 1

Given: Point ¢ € R? and polygon P
Question: Is g contained in P?

Algorithm:

1. Start in ¢ a horizontal half-line p.
2. Count the number of intersections of o and edges of P.
= Number is even: q is not contained in P

o Number is odd: ¢ is contained in P
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Exercise 1

Given: Point ¢ € R? and polygon P
Question: Is g contained in P?

Algorithm:

1. Start in ¢ a horizontal half-line p.
2. Count the number of intersections of o and edges of P.
= Number is even: q is not contained in P

o Number is odd: ¢ is contained in P

a) Correctness
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Exercise 1

Given: Point ¢ € R? and polygon P
Question: Is g contained in P?

Algorithm:

1. Start in ¢ a horizontal half-line p.
2. Count the number of intersections of o and edges of P.
= Number is even: q is not contained in P

o Number is odd: ¢ is contained in P

b) Degenerated cases?
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Exercise 1

Given: Point ¢ € R? and polygon P
Question: Is g contained in P?

Algorithm:

1. Start in ¢ a horizontal half-line p.
2. Count the number of intersections of o and edges of P.
= Number is even: q is not contained in P

o Number is odd: ¢ is contained in P

c) Running time?
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Exercise 2

Given:
= Point ¢

a convexes polygon P of n points.

a) Is q contained in P? O(logn)

/
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Exercise 2

Given:
= Point ¢

= [y-monotone polygon P of n points.

b) Can the procedure be adapted?
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Exercise 3

Given:
= Point ¢
= star-shaped polygon P consisting of n points.

a) q is contained in P in O(logn)?

P is star-shaped, if
dpe Pst.Vgqe P.pge P

Assumption: p is given.
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Exercise 3

Given:
= Point ¢
= star-shaped polygon P consisting of n points.

b) What, if p is not known?

P is star-shaped, if
dpe Pst.Vgqe P.pge P

Assumption: p is given.
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Exercise 4

Ray-Shooting Problem  Here: Simplified.

Point ¢ € R? and n intersecting-free segments are given. Let o be a
vertical half-line that shoots upwards from q.

Find 'first’ segment that intersects o .
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Point ¢ € R? and n possibly intersecting segments are given. Let o be a
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Find 'first’ segment that intersects o .

1. Determine intersections of segments.
2. Introduce for each intersection a pseudo-vertex.

3. Use trapezoidal map.
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Point ¢ € R? and n possibly intersecting segments are given. Let o be a
vertical half-line that shoots upwards from q.

Find 'first’ segment that intersects o .

1. Determine intersections of segments.
2. Introduce for each intersection a pseudo-vertex.

3. Use trapezoidal map.

Expected Query-Time: O(log(n + k))

Expected time for construction: O((n + k) log(n + k))
Space consumption: O(n + k)
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