Computational Geometry – Exercise Point Location

LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Benjamin Niedermann 10.02.2016

Given a position $p = (p_x, p_y)$ in a map, determine in which country p lies.

Given a position $p = (p_x, p_y)$ in a map, determine in which country p lies.

Given a position $p = (p_x, p_y)$ in a map, determine in which country p lies.

more precisely:

Find a data structure for efficiently answering such point location queries.

Given a position $p = (p_x, p_y)$ in a map, determine in which country p lies.

more precisely:

Find a data structure for efficiently answering such point location queries.

The map is modeled as a subdivision of the plane into disjoint polygons.

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Think for 2 minutes!

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs. Query:

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

Query: • find correct slab

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

Query: • find correct slab

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

- Query: find correct slab
 - search this slab

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

- Query: find correct slab
 - search this slab

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

Query: • find correct slab

search this slab

2 binary
searches

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

- Query: find correct slab
 - search this slab

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

- Query: find correct slab
 - search this slab

But:

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

 $O(\log n)$

time

2 binary searches

Solution: Partition S at points into vertical slabs.

- Query: find correct slab
 - search this slab

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

- Query: find correct slab
 - search this slab

 $O(\log n)$ time 2 binary searches

Space? $\Theta(n^2)$ **But**:

Goal: Given subdivision S of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition S at points into vertical slabs.

- Query: find correct slab
 - search this slab

 $O(\log n)$ time 2 binary searches

Space? $\Theta(n^2)$ **But**:

Reducing the Complexity

Observation: Slab partition is a refinement S' of S into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of S with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Assumption: S is in *general position*, i.e., no two segment endpoints have the same *x*-coordinate

Search Structure

Goal: Compute the trapzoidal map $\mathcal{T}(\mathcal{S})$ and simultaneously a data structure $\mathcal{D}(\mathcal{S})$ for point location in $\mathcal{T}(\mathcal{S})$.

 $\mathcal{D}(\mathcal{S})$ is a DAG with:

Analysis

Thm 1: The algorithm computes the trapezoidal map $\mathcal{T}(S)$ and the search structure \mathcal{D} for a set S of n segments in *expected* $O(n \log n)$ time. The *expected* size of \mathcal{D} is O(n) and the *expected* query time is $O(\log n)$. Analysis

Thm 1: The algorithm computes the trapezoidal map $\mathcal{T}(S)$ and the search structure \mathcal{D} for a set S of n segments in *expected* $O(n \log n)$ time. The *expected* size of \mathcal{D} is O(n) and the *expected* query time is $O(\log n)$.

Observations:

- worst case: size of \mathcal{D} is quadratic and query time is linear
- hope: that happens rarely!
- consider expected time and size over all n! permutations of ${\mathcal S}$
- the theorem holds independently of the input set ${\mathcal S}$

Analysis

Thm 1: The algorithm computes the trapezoidal map $\mathcal{T}(S)$ and the search structure \mathcal{D} for a set S of n segments in *expected* $O(n \log n)$ time. The *expected* size of \mathcal{D} is O(n) and the *expected* query time is $O(\log n)$.

Observations:

- worst case: size of \mathcal{D} is quadratic and query time is linear
- hope: that happens rarely!
- consider expected time and size over all n! permutations of ${\mathcal S}$
- the theorem holds independently of the input set ${\mathcal S}$

Given: Point $q \in \mathbb{R}^2$ and polygon P **Question:** Is q contained in P?

- 1. Start in q a horizontal half-line ϱ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given: Point $q \in \mathbb{R}^2$ and polygon P**Question:** Is q contained in P?

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given: Point $q \in \mathbb{R}^2$ and polygon P**Question:** Is q contained in P?

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given:Point $q \in \mathbb{R}^2$ and polygon PQuestion:Is q contained in P?

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given:Point $q \in \mathbb{R}^2$ and polygon PQuestion:Is q contained in P?

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given:Point $q \in \mathbb{R}^2$ and polygon PQuestion:Is q contained in P?

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given:Point $q \in \mathbb{R}^2$ and polygon PQuestion:Is q contained in P?

Algorithm:

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given:Point $q \in \mathbb{R}^2$ and polygon PQuestion:Is q contained in P?

Algorithm:

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given:Point $q \in \mathbb{R}^2$ and polygon PQuestion:Is q contained in P?

Algorithm:

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

a) Correctness

Given:Point $q \in \mathbb{R}^2$ and polygon PQuestion:Is q contained in P?

Algorithm:

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

b) Degenerated cases?

Given:Point $q \in \mathbb{R}^2$ and polygon PQuestion:Is q contained in P?

Algorithm:

- 1. Start in q a horizontal half-line ρ .
- 2. Count the number of intersections of ρ and edges of P.
 - Number is even: q is not contained in P
 - Number is odd: q is contained in P

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- convexes polygon P of n points.

Given:

- Point q
- y-monotone polygon P of n points.
- b) Can the procedure be adapted?

Given:

- Point q
- y-monotone polygon P of n points.
- b) Can the procedure be adapted?

Given:

- Point q
- y-monotone polygon P of n points.
- b) Can the procedure be adapted?

Given:

- $\bullet \ {\sf Point} \ q$
- star-shaped polygon P consisting of n points.

a) q is contained in P in $\mathcal{O}(\log n)$?

P is *star-shaped*, if $\exists p \in P$ s.t. $\forall q \in P : \overline{pq} \in P$

Given:

- $\bullet \ {\sf Point} \ q$
- star-shaped polygon P consisting of n points.

a) q is contained in P in $\mathcal{O}(\log n)$?

P is *star-shaped*, if $\exists p \in P$ s.t. $\forall q \in P : \overline{pq} \in P$

Given:

- $\bullet \ {\sf Point} \ q$
- star-shaped polygon P consisting of n points.

a) q is contained in P in $\mathcal{O}(\log n)$?

P is *star-shaped*, if $\exists p \in P \text{ s.t. } \forall q \in P : \overline{pq} \in P$

Given:

- $\bullet \ {\sf Point} \ q$
- star-shaped polygon P consisting of n points.

a) q is contained in P in $\mathcal{O}(\log n)$?

P is *star-shaped*, if $\exists p \in P$ s.t. $\forall q \in P$: $\overline{pq} \in P$

Given:

- $\bullet \ {\sf Point} \ q$
- star-shaped polygon P consisting of n points.

a) q is contained in P in $\mathcal{O}(\log n)$?

P is *star-shaped*, if $\exists p \in P$ s.t. $\forall q \in P : \overline{pq} \in P$

Given:

- Point q
- star-shaped polygon P consisting of n points.

a) q is contained in P in $\mathcal{O}(\log n)$?

P is *star-shaped*, if $\exists p \in P \text{ s.t. } \forall q \in P : \overline{pq} \in P$

Given:

- Point q
- star-shaped polygon P consisting of n points.

a) q is contained in P in $\mathcal{O}(\log n)$?

P is *star-shaped*, if $\exists p \in P \text{ s.t. } \forall q \in P : \overline{pq} \in P$

Given:

- Point q
- star-shaped polygon P consisting of n points.
- b) What, if p is not known?

P is *star-shaped*, if $\exists p \in P \text{ s.t. } \forall q \in P : \overline{pq} \in P$

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n intersecting-free segments are given. Let ϱ be a vertical half-line that *shoots* upwards from q.

Find 'first' segment that intersects ϱ .

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n intersecting-free segments are given. Let ϱ be a vertical half-line that *shoots* upwards from q.

Find 'first' segment that intersects ϱ .

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n intersecting-free segments are given. Let ϱ be a vertical half-line that *shoots* upwards from q.

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n intersecting-free segments are given. Let ϱ be a vertical half-line that *shoots* upwards from q.

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n intersecting-free segments are given. Let ϱ be a vertical half-line that *shoots* upwards from q.

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n intersecting-free segments are given. Let ϱ be a vertical half-line that *shoots* upwards from q.

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n **possibly intersecting** segments are given. Let ϱ be a vertical half-line that *shoots* upwards from q.

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n possibly intersecting segments are given. Let ρ be a vertical half-line that *shoots* upwards from q.

```
Find 'first' segment that intersects \varrho .
```

- 1. Determine intersections of segments.
- 2. Introduce for each intersection a pseudo-vertex.
- 3. Use trapezoidal map.

Ray-Shooting Problem Here: Simplified.

Point $q \in \mathbb{R}^2$ and n **possibly intersecting** segments are given. Let ϱ be a vertical half-line that *shoots* upwards from q.

```
Find 'first' segment that intersects \varrho .
```

- 1. Determine intersections of segments.
- 2. Introduce for each intersection a pseudo-vertex.
- 3. Use trapezoidal map.

```
Expected Query-Time: O(\log(n + k))
Expected time for construction: O((n + k) \log(n + k))
Space consumption: O(n + k)
```