Algorithms for graph visualization
Layouts for planar graphs. Realizer method.
Barycentric Representation

Let $A, B, C, P \in \mathbb{R}^2$. A triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ such that:

- $\alpha + \beta + \gamma = 1$
- $P = \alpha A + \beta B + \gamma C$

is called barycentric coordinates of P with respect to $\triangle ABC$.
Barycentric Representation

Barycentric Coordinates

Let $A, B, C, P \in \mathbb{R}^2$. A triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ such that:
- $\alpha + \beta + \gamma = 1$
- $P = \alpha A + \beta B + \gamma C$

is called barycentric coordinates of P with respect to $\triangle ABC$.

Barycentric Representation

A Barycentric Representation of a graph $G = (V, E)$ is an assignment of barycentric coordinates to the vertices of G, i.e. it is an injective function $v \in V \mapsto (v_a, v_b, v_c) \in \mathbb{R}^3$, such that:
- $v_a + v_b + v_c = 1$ for all $v \in V$
- for each $(x, y) \in E$ and each $z \in V \setminus \{x, y\}$, $\exists k \in \{a, b, c\}$ with $x_k < z_k$ and $y_k < z_k$.
Barycentric Coordinates

Let $A, B, C, P \in \mathbb{R}^2$. A triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ such that:

- $\alpha + \beta + \gamma = 1$
- $P = \alpha A + \beta B + \gamma C$

is called **barycentric coordinates** of P with respect to $\triangle ABC$.

Barycentric Representation

A **Barycentric Representation** of a graph $G = (V, E)$ is an assignment of barycentric coordinates to the vertices of G, i.e. it is an injective function $v \in V \mapsto (v_a, v_b, v_c) \in \mathbb{R}^3$, such that:

- $v_a + v_b + v_c = 1$ for all $v \in V$
- for each $(x, y) \in E$ and each $z \in V \setminus \{x, y\}$, $\exists k \in \{a, b, c\}$ with $x_k < z_k$ and $y_k < z_k$.

What does this condition mean?
Barycentric Representation

Lemma [Schnyder ’90]

Let \(v \in V \mapsto (v_a, v_b, v_c) \in \mathbb{R}^3 \) be a barycentric representation of a graph \(G = (V, E) \) and let \(A, B, C \in \mathbb{R}^2 \). The function

\[
f: v \in V \mapsto v_a A + v_b B + v_c C
\]

gives a planar drawing of \(G \) inside triangle \(\triangle ABC \).
Definition: Schnyder-Labeling

A Schnyder-Labeling of a planar triangulated graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:

- **Face**: Each internal face contains vertices with all three labels 1, 2, and 3, appearing in a counterclockwise order.
- **Vertex**: The counterclockwise ordering of the labels around each vertex consists of a nonempty interval of 1's followed by a nonempty interval of 2's followed by a nonempty interval of 3's.
Schnyder Labeling

Definition: Schnyder-Labeling

A **Schnyder-Labeling** of a planar triangulated graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Face Each internal face contain vertices with all three labels 1, 2 and 3, appearing in a counterclockwise order.
Definition: Schnyder-Labeling

A **Schnyder-Labeling** of a planar triangulated graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Face Each internal face contain vertices with all three labels 1, 2 and 3, appearing in a counterclockwise order.

Vertex The counterclockwise ordering of the labels around each vertex consists of a nonempty interval of 1’s followed by a nonempty interval of 2’s followed by a nonempty interval of 3’s.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

- Edge contraction. Contractible edge. Notation: \(G \setminus (u, v) \).
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

- Edge contraction. Contractible edge. Notation: $G \setminus (u, v)$.
- Separating triangle.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

- Edge contraction. Contractible edge. Notation: $G \setminus (u, v)$.
- Separating triangle.
- Edge is contractible iff it does not belong neither to a separating triangle nor to the outer face.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

- Edge contraction. Contractible edge. Notation: $G \setminus (u, v)$.
- Separating triangle.
- Edge is contractible iff it does not belong neither to a separating triangle nor to the outer face.

Lemma

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge (a, x) in G, $x \neq b, c$.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

- Edge contraction. Contractible edge. Notation: \(G \setminus (u, v) \).
- Separating triangle.
- Edge is contractible iff it does not belong neither to a separating triangle nor to the outer face.

Lemma

Let \(G \) be a triangulated plane graph with vertices \(a, b, c \) on the outer face. There exists a contractible edge \((a, x)\) in \(G \), \(x \neq b, c \).

Proof

- By induction on the number of vertices in a graph.
Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

Proof

- By induction on the number of vertices in a graph.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

Proof
- By induction on the number of vertices in a graph.
- The case \(n = 3 \) is trivial.
Theorem [Schnyder ’90]
Every triangulated plane graph has a Schnyder labeling.

Proof
- By induction on the number of vertices in a graph.
- The case \(n = 3 \) is trivial.
- Assume that every graph with less or equal than \(k - 1 \) vertices has a Schnyder labeling in which all labels at \(a \) are 1.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

Proof

- By induction on the number of vertices in a graph.
- The case $n = 3$ is trivial.
- Assume that every graph with less or equal than $k - 1$ vertices has a Schnyder labeling in which all labels at a are 1.
- Consider G with k vertices. It has a contractible edge (a, x).
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

Proof

- By induction on the number of vertices in a graph.
- The case $n = 3$ is trivial.
- Assume that every graph with less or equal than $k - 1$ vertices has a Schnyder labeling in which all labels at a are 1.
- Consider G with k vertices. It has a contractible edge (a, x).
- Graph $G \setminus (a, x)$ has a Schnyder labeling.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

Proof

- By induction on the number of vertices in a graph.
- The case $n = 3$ is trivial.
- Assume that every graph with less or equal than $k - 1$ vertices has a Schnyder labeling in which all labels at a are 1.
- Consider G with k vertices. It has a contractible edge (a, x).
- Graph $G \setminus (a, x)$ has a Schnyder labeling.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

Proof

- By induction on the number of vertices in a graph.
- The case $n = 3$ is trivial.
- Assume that every graph with less or equal than $k - 1$ vertices has a Schnyder labeling in which all labels at a are 1.
- Consider G with k vertices. It has a contractible edge (a, x).
- Graph $G \setminus (a, x)$ has a Schnyder labeling.
Schnyder Labeling

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

Proof

- By induction on the number of vertices in a graph.
- The case \(n = 3 \) is trivial.
- Assume that every graph with less or equal than \(k - 1 \) vertices has a Schnyder labeling in which all labels at \(a \) are 1.
- Consider \(G \) with \(k \) vertices. It has a contractible edge \((a, x)\).
- Graph \(G \setminus (a, x) \) has a Schnyder labeling.
Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.

Proof

- By induction on the number of vertices in a graph.
- The case $n = 3$ is trivial.
- Assume that every graph with less or equal than $k − 1$ vertices has a Schnyder labeling in which all labels at a are 1.
- Consider G with k vertices. It has a contractible edge (a, x).
- Graph $G \setminus (a, x)$ has a Schnyder labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schneyder Labeling & Forest

- Schneyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.
Schnyder Labeling & Forest

- Schnyder labeling induces an edge labeling.

Definition: Schnyder Forest

A Schnyder Forest or a Realizer of a planar triangulated graph $G = (V, E)$ is a partition of the inner edges of E into three sets of oriented edges T_1, T_2, T_3 such that for each inner vertex $v \in V$ hold:

- v has an outgoing edge in each of T_1, T_2, T_3
- The counterclockwise order of the edges around v is as follows: edges leaving in T_1, entering in T_3, leaving in T_2, entering in T_1, leaving in T_3, entering in T_2.
Schnyder Forest

Recall that:

Theorem [Schnyder ’90]

Every triangulated plane graph has a Schnyder labeling.
Schnyder Forest

Recall that:

Theorem [Schnyder ’90]
Every triangulated plane graph has a Schnyder labeling.

By this theorem and by previous construction:

Theorem [Schnyder ’90]
Every triangulated plane graph has a Schnyder realizer.
Schnyder Forest
Schnyder Forest
Schnyder Forest
Schnyder Forest

- For each v there exists a directed red, blue, green paths from v to a, b, c, respectively.
- No monochromatism cycle exists
Schnyder Forest

- For each v there exists a directed red, blue, green paths from v to a, b, c, respectively.
- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!
For each v there exists a directed red, blue, green paths from v to a, b, c, respectively.

- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!
- The sinks of red/blue/green trees are the vertices a, b, c.

Schnyder Forest
Face Regions

- Paths $P_a(v)$, $P_b(v)$, $P_c(v)$ cross only at vertex v.
- $R_a(v)$, $R_b(v)$, $R_c(v)$ are sets of faces.
Face Regions

- Paths $P_a(v), P_b(v), P_c(v)$ cross only at vertex v.
- $R_a(v), R_b(v), R_c(v)$ are sets of faces.
Face Regions

- Paths $P_a(v)$, $P_b(v)$, $P_c(v)$ cross only at vertex v.
- $R_a(v)$, $R_b(v)$, $R_c(v)$ are sets of faces.

Lemma [Schnyder ’90]

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
Face Regions

- Paths $P_a(v)$, $P_b(v)$, $P_c(v)$ cross only at vertex v.
- $R_a(v)$, $R_b(v)$, $R_c(v)$ are sets of faces.

Lemma [Schnyder ’90]

For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

Proof ...
Barycentric Representation

Let barycentric coordinates of $v \in G \setminus \{a, b, c\}$ be (v_a, v_b, v_c), where $v_a = |R_a(v)|/(2n - 5)$, $v_b = |R_b(v)|/(2n - 5)$ and $v_c = |R_c(v)|/(2n - 5)$.

We set: $A = (2n - 5, 0)$, $B = (0, 2n - 5)$, $C = (0, 0)$.
Barycentric Representation

- Let barycentric coordinates of $v \in G \setminus \{a, b, c\}$ be (v_a, v_b, v_c), where $v_a = \frac{|R_a(v)|}{2n - 5}$, $v_b = \frac{|R_b(v)|}{2n - 5}$ and $v_c = \frac{|R_c(v)|}{2n - 5}$.
- We set: $A = (2n - 5, 0), B = (0, 2n - 5), C = (0, 0)$.

Satz [Schnyder ’90]

The function

$$f : v \mapsto (v_a, v_b, v_c) = \frac{1}{2n - 5}(|R_a(v)|, |R_b(v)|, |R_c(v)|)$$

is a barycentric representation of G.
Barycentric Representation

- Let barycentric coordinates of \(v \in G \setminus a, b, c \) be \((v_a, v_b, v_c)\), where \(v_a = |R_a(v)|/(2n - 5)\), \(v_b = |R_b(v)|/(2n - 5) \) and \(v_c = |R_c(v)|/(2n - 5) \).
- We set: \(A = (2n - 5, 0), B = (0, 2n - 5), C = (0, 0) \).

Satz [Schnyder ’90]

The function

\[
f: v \mapsto (v_a, v_b, v_c) = \frac{1}{2n - 5} (|R_a(v)|, |R_b(v)|, |R_c(v)|)
\]

is a barycentric representation of \(G \).

Proof

- Condition1: \(v_a + v_b + v_c = 1 \).
Barycentric Representation

Let barycentric coordinates of \(v \in G \setminus \{a, b, c\} \) be \((v_a, v_b, v_c)\), where \(v_a = |R_a(v)|/(2n - 5)\), \(v_b = |R_b(v)|/(2n - 5)\) and \(v_c = |R_c(v)|/(2n - 5)\).

We set: \(A = (2n - 5, 0)\), \(B = (0, 2n - 5)\), \(C = (0, 0)\).

Satz [Schnyder ’90]

The function

\[
f : v \mapsto (v_a, v_b, v_c) = \frac{1}{2n - 5}(|R_a(v)|, |R_b(v)|, |R_c(v)|)
\]

is a barycentric representation of \(G \).

Proof

- **Condition 1**: \(v_a + v_b + v_c = 1 \).

- **Condition 2**: For each edge \((u, v)\) and vertex \(w \neq u, v\) at least one of three is true: \(w_a > u_a, v_a\), \(w_b > u_b, v_b\), \(w_c > u_c, v_c\).
Final Remarks

- The resulting drawing is a grid drawing.
- It is bounded by the triangle $\triangle ABC$ with $A = (2n - 5, 0)$, $B = (0, 2n - 5)$, $C = (0, 0)$.
- It has area $2n - 5 \times 2n - 5$.
Final Remarks

- The resulting drawing is a grid drawing.
- It is bounded by the triangle $\triangle ABC$ with $A = (2n - 5, 0)$, $B = (0, 2n - 5)$, $C = (0, 0)$.
- It has area $2n - 5 \times 2n - 5$.

How to obtain area $n - 2 \times n - 2$?

- Use weak barycentric coordinates $\frac{1}{n-1}(n_1(v), n_2(v), n_3(v))$, $n_i(v) = |\text{vertices in } R_i(v)| - |P_{i-1}(v)|$ with respect to $A = (n - 1, 0)$, $B = (0, n - 1)$, $C = (0, 0)$.
Final Remarks

- The resulting drawing is a grid drawing.
- It is bounded by the triangle $\triangle ABC$ with $A = (2n - 5, 0)$, $B = (0, 2n - 5)$, $C = (0, 0)$.
- It has area $2n - 5 \times 2n - 5$.

How to obtain area $n - 2 \times n - 2$?

- Use weak barycentric coordinates $\frac{1}{n-1}(n_1(v), n_2(v), n_3(v))$, $n_i(v) = |\text{vertices in } R_i(v)| - |P_{i-1}(v)|$ with respect to $A = (n - 1, 0)$, $B = (0, n - 1)$, $C = (0, 0)$.

Weak barycentric coordinates: Triple (v_a, v_b, v_c) such that

- $v_a + v_b + v_c = 1$
- For each edge (u, v) and vertex $w \neq u, v$, $\exists k \in \{a, b, c\}$, such that $(u_k, u_{k+1}) <_{\text{lex}} (w_k, w_{k+1})$, and $(v_k, v_{k+1}) <_{\text{lex}} (w_k, w_{k+1})$.
- Here we say that $(a, b) <_{\text{lex}} (c, d)$ iff $a < c$ or $a = c$ and $b < d$.