Algorithmische Graphentheorie
Übung 3

Übung 3 · 27. November 2014
Thomas Bläsius
Partitionierbare Graphen – C^2_{13}
Partitionierbare Graphen – C_{13}^2

wähle maximale Clique $\{0, 1, 2\}$
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique $\{0, 1, 2\}$
- wähle minimales Clique-Cover ohne Knoten 0
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
Partitionierbare Graphen – C^2_{13}

- wähle maximale Clique $\{0, 1, 2\}$
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2

\[A = \begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array} \]
Partitionierbare Graphen – C^2_{13}

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten ν aus Clique K_i
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \{0, 1, 2\}
- Wähle minimales Clique-Cover ohne Knoten 0
- Wähle minimales Clique-Cover ohne Knoten 1
- Wähle minimales Clique-Cover ohne Knoten 2
- Lösche einen Knoten v aus Clique K_i
- Wähle minimale Färbung ohne Knoten v
Partitionierbare Graphen – C_{13}^2

$\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\end{array}$

- wähle maximale Clique $\{0, 1, 2\}$
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten v aus Clique K_i
- wähle minimale Färbung ohne Knoten v
- wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten v aus Clique K_i
- wähle minimale Färbung ohne Knoten v
- wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C^2_{13}

$A = \begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}$

- wähle maximale Clique \{0, 1, 2\}
- Wähle minimales Clique-Cover ohne Knoten 0
- Wähle minimales Clique-Cover ohne Knoten 1
- Wähle minimales Clique-Cover ohne Knoten 2
- Lösche einen Knoten v aus Clique K_i
- Wähle minimale Färbung ohne Knoten v
- Wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique $\{0, 1, 2\}$
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2

lösche einen Knoten v aus Clique K_i
- wähle minimale Färbung ohne Knoten v
- wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C^2_{13}

- Wähle maximale Clique $\{0, 1, 2\}$
- Wähle minimales Clique-Cover ohne Knoten 0
- Wähle minimales Clique-Cover ohne Knoten 1
- Wähle minimales Clique-Cover ohne Knoten 2
- Lösche einen Knoten v aus Clique K_i
- Wähle minimale Färbung ohne Knoten v
- Wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten v aus Clique K_i
- wähle minimale Färzung ohne Knoten v
- wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C_{13}^2

\[A = \]

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- löse einen Knoten \(v \) aus Clique \(K_i \)
- wähle minimale Färbung ohne Knoten \(v \)
- Wähle unabhängige Menge die keinen Knoten aus \(K_i \) enthält
Partitionierbare Graphen – C^2_{13}

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- Wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten v aus Clique K_i
- Wähle minimale Färbung ohne Knoten v
- Wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C_{13}^2

1. Wähle maximale Clique $\{0, 1, 2\}$
2. Wähle minimales Clique-Cover ohne Knoten 0
3. Wähle minimales Clique-Cover ohne Knoten 1
4. Wähle minimales Clique-Cover ohne Knoten 2
5. Lösche einen Knoten v aus Clique K_i
6. Wähle minimale Färbung ohne Knoten v
7. Wähle unabhängige Menge die keinen Knoten aus K_i enthält

\[A = \]

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- Wähle minimales Clique-Cover ohne Knoten 2
- Lösche einen Knoten v aus Clique K_i
- Wähle minimale Färbung ohne Knoten v
- Wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- Wähle minimales Clique-Cover ohne Knoten 2
- Lösche einen Knoten \(v\) aus Clique \(K_i\)
- Wähle minimale Färbung ohne Knoten \(v\)
- Wähle unabhängige Menge die keinen Knoten aus \(K_i\) enthält
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten v aus Clique K_i
- wähle minimale Färbung ohne Knoten v
- wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C^2_{13}

\[A = \]

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten \(v\) aus Clique \(K_i\)
- wähle minimale Färbung ohne Knoten \(v\)
- wähle unabhängige Menge die keinen Knoten aus \(K_i\) enthält
Partitionierbare Graphen – C^2_{13}

- wähle maximale Clique $\{0, 1, 2\}$
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten v aus Clique K_i
- wähle minimale Färbung ohne Knoten v
- wähle unabhängige Menge die keinen Knoten aus K_i enthält
Partitionierbare Graphen – C_{13}^2

- wähle maximale Clique \(\{0, 1, 2\} \)
- Wähle minimales Clique-Cover ohne Knoten 0
- Wähle minimales Clique-Cover ohne Knoten 1
- Wähle minimales Clique-Cover ohne Knoten 2
- Löse einen Knoten \(v \) aus Clique \(K_i \)
- Wähle minimale Färbung ohne Knoten \(v \)
- Wähle unabhängige Menge die keinen Knoten aus \(K_i \) enthält

Eigenschaften von \(A \) und \(B \)

- Zeilen- und Spaltensumme von \(A \) ist \(\omega = 3 \)
- Zeilen- und Spaltensumme von \(B \) ist \(\alpha = 4 \)
- \(AB^T = J - I = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)
Partitionierbare Graphen – C_{13}^2

A =

```
0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 0 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 0
```

B =

```
0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 1 0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1 0
```

- wähle maximale Clique \{0, 1, 2\}
- wähle minimales Clique-Cover ohne Knoten 0
- wähle minimales Clique-Cover ohne Knoten 1
- wähle minimales Clique-Cover ohne Knoten 2
- lösche einen Knoten ν aus Clique K_i
- wähle minimale Färbung ohne Knoten ν
- wähle unabhängige Menge die keinen Knoten aus K_i enthält

Eigenschaften von A und B

- Zeilen-/Spaltensumme von A ist ω (= 3)
- Zeilen-/Spaltensumme von B ist α (= 4)
- $AB^T = J - I = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$