
A

Customizable Contraction Hierarchies

JULIAN DIBBELT, BEN STRASSER and DOROTHEA WAGNER, Karlsruhe Institute of
Technology

We consider the problem of quickly computing shortest paths in weighted graphs. Often, this is achieved in

two phases: 1) derive auxiliary data in an expensive preprocessing phase, 2) use this auxiliary data to speedup

the query phase. Instead, by adding a fast weight-customization phase, we extend Contraction Hierarchies
to support a three-phase workflow: The expensive preprocessing is split into a phase exploiting solely the

unweighted topology of the graph, as well as a lightweight phase that adapts the auxiliary data to a specific

weight. We achieve this by basing our Customizable Contraction Hierarchies on nested dissection orders.
We provide an in-depth experimental analysis on large road and game maps that shows that Customizable

Contraction Hierarchies are a very practicable solution in scenarios where edge weights often change.

Categories and Subject Descriptors: []

ACM Reference Format:
ACM J. Exp. Algor. V, N, Article A (January YYYY), 34 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Computing optimal routes in road networks has many applications such as navigation,
logistics, traffic simulation or web-based route planning. Road networks are commonly
formalized as weighted graphs and the optimal route is formalized as the shortest path
in this graph. Unfortunately, road graphs tend to be huge in practice with vertex counts
in the tens of millions, rendering Dijkstra’s algorithm [Dijkstra 1959] impracticable
for interactive use: It needs several seconds of running time for a single path query.
For practical performance on large road networks, preprocessing techniques that aug-
ment the network with auxiliary data in an (expensive) offline phase have proven
useful. See [Bast et al. 2014] for an overview. Among the most successful techniques
are Contraction Hierarchies (CH) by [Geisberger et al. 2012], which have been utilized
in many scenarios. However, their preprocessing is in general metric-dependent, e. g.,
edge weights (also called the graph metric) need to be known. Substantial changes to
the metric, e. g., due to user preferences, may require expensive recomputation. For
this reason a Customizable Route Planning (CRP) approach was proposed in [Delling
et al. 2011], extending the multi-level-overlay MLD techniques of [Schulz et al. 2000;
Holzer et al. 2008]. It works in three phases: In a first expensive phase, auxiliary data
is computed that solely exploits the topological structure of the network, disregarding
its metric. In a second much less expensive phase, this auxiliary data is customized to
the specific metric, enabling fast queries in the third phase. In this work we extend
CH to support such a three-phase approach.

Partial support by DFG grant WA654/16-2 and EU grant 288094 (eCOMPASS) and Google Focused Research
Award.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 1084-6654/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

Game Scenario. Most existing CH papers focus solely on road graphs (with [Storandt
2013] being a notable exception) but there are many other applications with differently
structured graphs in which fast shortest path computations are important. One of
such applications is games. Think of a real-time strategy game where units quickly
have to navigate across a large map with many choke points. The basic topology of the
map is fixed, however, since buildings are constructed or destroyed, fields are rendered
impassable or freed up. Furthermore, every player has his own knowledge of the map
because of features such as fog of war and thus has his own metric: A unit must not
route around a building that the player has not yet seen. Furthermore, units such as
hovercrafts may traverse water and land, while other units are bound to land. This
results in vastly different, evolving metrics for different unit types per player, making
metric-dependent preprocessing difficult to apply. Contrary to road graphs one-way
streets tend to be extremely rare, and thus being able to exploit the symmetry of the
underlying graph is a useful feature.

Nested Dissection Order. One of the central building blocks of this paper is to use
metric-independent nested dissection orders (ND-orders) for CH precomputation in-
stead of the metric-dependent order of [Geisberger et al. 2012]. This approach was
proposed by [Bauer et al. 2013], and a preliminary case study can be found in [Zeitz
2013]. A similar idea was followed by [Delling and Werneck 2013], where the authors
employ partial CHs to engineer subroutines of their customization phase (they also had
preliminary experiments on full CH). Worth mentioning are also the works of [Planken
et al. 2012]. They consider small graphs of low treewidth and leverage this property
to compute good orders and CHs (without explicitly using the term CH). Interestingly,
our experiments show that also large road networks have relatively low treewidth.
Real world road graphs with vertex counts in the 107 have treewidths in the 102.

1
2

3
4

5

(a) No shortcuts, maximum
search space is four arcs

1 2
3 4

5

(b) Two shortcuts, maximum
search space is two arcs

Fig. 1. Contraction Hierar-
chies for a path graph

Connection to Sparse Matrix solving. Customizable
speedup techniques for shortest path queries are a very
recent development but the idea to use ND-orders to com-
pute CH-like structures is far older and widely used in the
sparse matrix solving community. To the best of our knowl-
edge the idea first appeared in 1973 in [George 1973] and
was significantly refined in [Lipton et al. 1979]. Since then
there has been a plethora of papers on the topic. Among
them are papers showing that computing a CH (without
witness search) with a minimum amount of shortcuts is
NP-hard [Yannakakis 1981] but fixed parameter tractable
in the number of needed shortcuts [Kaplan et al. 1999].
However, note that minimizing the number of shortcuts is
not desirable in our situation: Consider for example a path
as depicted in Figure 1. Optimizing the CH search space
and the number of shortcuts can be competing criteria. The
hardness result is therefore not directly applicable to our
scenario. In another interesting result it has been shown
that for planar graphs the number of arcs in a CH with
ND-order is in O(n log n) [Gilbert and Tarjan 1986]. How-
ever, this does not imply a O(log n) search space bound in
terms of vertices.

Our Contribution. The main contribution of our work is to show that Customizable
Contraction Hierarchies (CCH) solely based on the ND-principle are feasible and prac-
tical. Compared to CRP [Delling et al. 2011] we achieve a similar preprocessing–query

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

tradeoff, albeit with slightly better query performance at slightly slower customiza-
tion speed (and somewhat more space). Interestingly, for less well-behaved metrics
such as travel distance, we achieve query times below the original metric-dependent
CH of [Geisberger et al. 2012]. Besides this main results there are number of side re-
sults. We show that given a fixed contraction order a metric-independent CH can be
constructed in time essentially linear in the Contraction Hierarchy with working space
memory linear in the input graph. Our specialized algorithm has better theoretic worst
case running times and performs significantly better in experiments than the dynamic
adjacency arrays used in [Geisberger et al. 2012]. Another contribution of our work are
perfect witness searches. We show that for ND-orders it is possible to construct CHs
with a minimum number of arcs in about a minute on continental road graphs. Our
construction algorithm has a running time performance completely independent of the
weights used. We further show that an order based on nested dissection results in a
constant factor approximation for metric-independent CHs on a class of graph with
very regular recursive vertex separators. Experimentally we show that road graphs
have such a recursive separator structure.

Outline. This work is organized as follows. Section 2 sets necessary notation, while
Section 3 discusses metric-dependent orders traditionally used in Contraction Hi-
erarchies (highlighting specifics of our implementation). Next, we discuss metric-
independent orders in Section 4, construction of the corresponding CH in Section 5,
and a preprocessing step for efficient enumeration of lower arc triangles in Section 6. In
terms of the three-phase model, these steps correspond to the first phase: They only de-
pend on the topology and can be preprocessed once–before considering metrics. Then,
Section 7 considers the second phase, i. e., the customization of the datastructures
w. r. t. to a given metric, while Section 8 describes the third phase: distance queries
and path unpacking. Section 9 discusses extensions of the approach for enabling turn
restrictions and costs. Finally, in Section 10 we present extensive experiments to eval-
uate our algorithms, while Section 11 concludes this work and mentions interesting
directions for future work.

2. BASICS
We denote by G = (V,E) an undirected n-vertex graph where V is the set of vertices
and E the set of edges. Furthermore, G = (V,A) denotes a directed graph where A
is the set of arcs. A graph is simple if it has no loops or multi-edges. Graphs in this
paper are always simple unless noted otherwise (e. g., in parts of Section 5). We denote
by N(v) the set of adjacent vertices of v in an undirected graph.

A vertex separator is a vertex subset S ⊆ V whose removal separates G into two
disconnected subgraphs induced by the vertex sets A and B. The sets S, A and B are
disjoint and their union forms V . Note that the subgraphs induced by A and B are not
necessarily connected and may be empty. A separator S is balanced if |A| , |B| ≤ 2n/3.

A vertex order π : {1 . . . n} → V is a bijection. Its inverse π−1 assigns each vertex a
rank. Every undirected graph can be transformed into a directed upward graph with
respect to a vertex order π, i. e., every edge {π(i), π(j)} with i < j is replace by an
arc (π(i), π(j)). Note that all upward directed graphs are acyclic. We denote by Nu(v)
the neighbors of v with a higher rank than v and by Nd(v) those with a lower rank
than v. We denote by du(v) = |Nu(v)| the upward degree and by dd(v) = |Nd(v)| the
downward degree of a vertex.

Undirected edge weights are denoted using w : E → R+. With respect to a vertex
order π we define an upward weightwu : E → R+ and a downward weightwd : E → R+.
One-way streets are modeled by setting wu or wd to∞.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

A path p is a sequence of adjacent vertices and incident edges. Its hop-length is the
number of edges in p. Its weight-length with respect to w is the sum over all edges’
weights. Unless noted otherwise length always refers to weight-length in this paper. A
shortest st-path is a path of minimum length between vertices s and t. The minimum
length in G between two vertices is denoted by distG(s, t). (We set distG(s, t) = ∞ if no
path exists.) An up-down path p with respect to π is a path that can be split into an
upward path pu and a downward path pd. The vertices in the upward path pu must
occur by increasing rank π−1 and the vertices in the downward path pd must occur by
decreasing rank π−1.

The vertices of every acyclic directed graph (DAG) can be partitioned into lev-
els ` : V → N such that for every arc (x, y) it holds that `(x) < `(y). We only consider
levels such that each vertex has the lowest possible level. Note that such levels can be
computed in linear time given a directed acyclic graph.

The (unweighted) vertex contraction of v in G consists of removing v and all incident
edges and inserting edges between all neighbors N(v) if not already present. The in-
serted edges are refereed to as shortcuts and the other edges are original edges. Given
an order π the core graph Gπ,i is obtained by contracting all vertices π(1) . . . π(i− 1) in
order of their rank. We call the original graph G augmented by the set of shortcuts a
contraction hierarchy G∗π =

⋃
iGπ,i. Furthermore, we denote by G∧π the corresponding

upward directed graph.
Given a fixed weight w one can exploit that in many applications it is sufficient

to (only) preserve all shortest path distances [Geisberger et al. 2012]. We define
the weighted vertex contraction of a vertex v in the graph G as the operation of
removing v and inserting the minimum number of shortcuts among the neighbors
of v to obtain a graph G′ such that distG(x, y) = dist′G(x, y) for all vertices x 6= v
and y 6= v. To compute G′, we iterate over all pairs of neighbors x, y of v increas-
ing by distG(x, y). For each pair we check whether a xy-path of length distG(x, y)
exists in G\{v}, i. e., we check whether removing v destroys the xy-shortest path.
This check is called witness search [Geisberger et al. 2012] and the xy-path is called
witness (if it exists). If a witness is found then we skip the pair and do nothing.

v

z

y

x
1

2

1
1

Fig. 2. Contraction of v. If
the pair x, y is considered
first then a shortcut {x, y}
with weight 3 is inserted. If
the pair x, z is considered
first then an edge {x, z}
with weight 2 is inserted.
This shortcut is part of a
witness x → y → z for
the pair x, y. The short-
cut {x, y} is not added.

Otherwise depending on whether an edge {x, y} already exists
we either decrease its weight to distG(x, y) or insert a shortcut
edge with that weight to G. This new shortcut edge is con-
sidered in witness searches for subsequent neighbor pairs as
part of G. It is important to iterate over the pairs increas-
ing by distG(x, y) because otherwise more edges than strictly
necessary can be inserted: Shorter shortcuts can make longer
shortcuts superfluous. However, if we insert the shorter short-
cut after the longer ones then the witness search will not con-
sider them. See Figure 2 for an example. Note that the wit-
ness searches are expensive and therefore usually the witness
search is aborted after a certain number of steps [Geisberger
et al. 2012]. If no witness was found until then, we assume
that none exists and add a shortcut. This does not affect the
correctness of the technique but might result in slightly more
shortcuts than necessary.

We call a witness search without such a one-sided er-
ror perfect. For an order π and a weight w the weighted
core graph Gw,π,i is obtained by contracting all ver-
tices π(1) . . . π(i − 1). The original graph G augmented by the

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

set of weighted shortcuts is called a weighted contraction hierarchy G∗w,π. The corre-
sponding upward directed graph is denoted by G∧w,π.

The search space SS(v) of a vertex v is the subgraph of G∧π (respectively G∧w,π) reach-
able from v. For every vertex pair s and t, it has been shown that a shortest up-down
path must exist. This up-down path can be found by running a bidirectional search
from s restricted to SS(s) and from t restricted to SS(t) [Geisberger et al. 2012]. A
graph is chordal if for every cycle of at least four vertices there exists a pair of vertices
that are non-adjacent in the cycle but are connected by an edge. An alternative char-
acterization is that a vertex order π exists such that for every i the neighbors of π(i)
in the Gπ,i form a clique [Fulkerson and Gross 1965]. Such an order is called a perfect
elimination order.

x

y

z

Fig. 3. A triangle in G∧
π .

The triple (y, z, x) is
a lower triangle of
the arc (y, z). The
triple (x, z, y) is an
intermediate triangle
of the arc (x, z). The
triple (x, y, z) is an upper
triangle of the arc (x, y).

The elimination tree TG,π is a tree directed towards its root
π(n). The parent of vertex π(i) is its upward neighbor v ∈
Nu(π(i)) of minimal rank π−1(v). Note that this definition al-
ready yields a straightforward algorithm for constructing the
elimination tree. As shown in [Bauer et al. 2013] the set of ver-
tices on the path from v to π(n) is the set of vertices in SS(v).
Computing a contraction hierarchy (without witness search)
of graph G consists of computing a chordal supergraph G∗π
with perfect elimination order π. The height of the elimina-
tion tree corresponds to the maximum number of vertices in
the search space. Note that the elimination tree is only defined
for undirected unweighted graphs.

A lower triangle of an arc (x, y) in G∧π is a triple (x, y, z) such
that arcs (z, x) and (z, y) exist. Similarly an intermediate tri-
angle is a triple such that (x, z) and (z, y) exist and an upper
triangle is a triple such that (x, z) and (y, z) exist. The situa-
tion is illustrated in Figure 3. Recall that arcs in G∧π are di-
rected according to rank and do not necessarily reflect travel
direction.

2.1. Metrics
In the following, we denote weights on G∧π as metrics. We say that a metric m respects
a weight w of G if distG(x, y) = distG∗

π
(x, y) for all vertices x and y. Every weight on G

can trivially be extended to a w-respecting metric by assigning the weights of w to the
original arcs and ∞ to all shortcuts. We refer to this metric as the w-initial metric. A
metric is called customized if for all lower triangles (x, y, z) the lower triangle inequal-
ity holds, i. e., m(x, y) ≤ m(z, x) +m(z, y). Note that the w-initial is w-respecting but it
is not customized.

LEMMA 2.1. Letm be a customized metric onG∧π respecting a weightw on a graphG.
For all pairs s and t with distG(s, t) 6=∞ a shortest up-down st-path exists in G∧π .

PROOF. As distG(s, t) 6=∞ a shortest st-path in G must exist. If on G∧π this is not an
up-down path, then it must contain a subpath x → y → z with π−1(x) > π−1(y) and
π−1(y) < π−1(z). As y is contracted before x and z an arc (x, y) must exist. As (x, y, z)
is a lower triangle and m is customized, we know that removing the vertex y from
the path cannot make the path longer. As the path has only finitely many vertices
iteratively replacing these lower triangles yields a shortest up-down path after finitely
many steps.

Denote by Mw the set of metrics that respect a weight w and are customized. A met-
ric m ∈ Mw is w-maximum if no other metric exists in Mw that has a higher weight

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

0 3 5 5

0 1 2 32 30 1 2

9A:

D:

(a) Adjacency array

0 1

2 3

(b) Represented graph

Fig. 4. The left figure depicts two arrays: The top is the index array I and the bottom the data array D.
The index array has |V |+1 entries. The data array has |A| entires. Each entry in I is an index into the data
array D. The neighbors of a vertex with ID x have the IDs D[I[x]], D[I[x] + 1], . . . , D[I[x+ 1]− 1].

on some arc. Analogously a w-minimum metric is one where no arc weight can be
decreased. Note that both of these metrics are unique. Furthermore, a w-minimum
metric can be characterized as one where every arc (x, y) has the weight of a short-
est xy-path.

2.2. Adjacency Array
An adjacency array is a data structure that is used to map IDs onto other objects. As
depicted in Figure 4, it consists of two arrays and can be used to store graphs by map-
ping a vertex ID onto the neighboring vertices’ IDs. Note that adjacency arrays also
have other applications: For example instead of mapping vertex IDs on the neighbor-
ing vertices’ IDs, it could map onto the incident arc IDs. Another example would be
to map the ID of an arc (x, y) onto vertex IDs zi such that each (x, y, zi) forms a lower
triangle of (x, y). Adjacency arrays are an omnipresent basic building block in efficient
graph algorithms and as such they have many different names. Other names include
compressed row and forward star.

3. METRIC-DEPENDENT ORDERS
Most papers using Contraction Hierarchies use greedy orders in the spirit of [Geis-
berger et al. 2012]. As the exact details vary from paper to paper, we describe our pre-
cise variant in this section. Our witness search aborts once it finds some path shorter
than the shortcut—or when both forward and backward search each have settled at
most p vertices. For most experiments we choose p = 50. The only exception is the dis-
tance metric on road graphs, where we set p = 1500. We found that a higher value of p
increases the time per witness-search but leads to sparser cores. For the distance met-
ric we needed a high value because otherwise our cores get too dense. This effect did
not occur for the other weights considered in the experiments. Our weighting heuristic
is similar to the one of [Abraham et al. 2012]. We denote by L(x) a value that approx-
imates the level of vertex x. Initially all L(x) are 0. If x is contracted then for every
incident edge {x, y} we perform `(y) ← max{`(y), `(x) + 1}. We further store for every
arc a a hop length h(a). This is the number of arcs that the shortcut represents if fully
unpacked. Denote by D(x) the set of arcs removed if x is contracted and by A(x) the
set of arcs that are inserted. Note that A(x) is not necessarily a full clique because of
the witness search and because some edges may already exist. We greedily contract a

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

vertex x that minimizes its importance I(x) defined by

I(x) = L(x) +
|A(x)|
|D(x)|

+

∑
a∈A(x) h(a)∑
a∈D(x) h(a)

We maintain a priority queue that contains all vertices weighted by I. Initially all
vertices are inserted with their exact importance. As long as the queue is not empty,
we remove a vertex x with minimum importance I(x) and contract it. This modifies the
importance of other vertices. However, our weighting function is chosen such that only
the importance of adjacent vertices is influenced (if the witness search was perfect).
We therefore only update the importance values of all vertices y in the queue that are
adjacent to x. In practice (with limited witness search), we sometimes choose a vertex x
with a sightly suboptimal I(x). However, preliminary experiments have shown that
this effect can be safely ignored. For the experiments presented in Section 10, we do
not use lazy updates or periodic queue rebuilding as proposed in [Geisberger et al.
2012] as our importance function does not need them.

4. METRIC-INDEPENDENT ORDER
The metric-dependent orders presented in the previous section lead to very good re-
sults on road graphs with travel time metric. However, the results for the distance
metric are not as good and the orders are completely impracticable to compute Con-
traction Hierarchies without witness search as our experiments in Section 10. To sup-
port metric-independence, we use nested dissection orders as suggested in [Bauer et al.
2013] (or ND-orders for short). An order π for G is computed recursively by determin-
ing a balanced separator S of minimum cardinality that splits G into two parts in-
duced by the vertex sets A and B. The vertices of S are assigned to π(n − |S|) . . . π(n)
in an arbitrary order. Orders πA and πB are computed recursively and assigned to
π(1) . . . π(|A|) and π(|A|+ 1) . . . π(|A|+ |B|), respectively. The base case of the recursion
is reached when the graphs are empty. Computing ND-orders requires good graph bi-
sectors, which in theory is NP -hard. However, recent years have seen heuristics that
solve the problem very well even for continental road graphs [Sanders and Schulz
2013; Delling et al. 2012; 2011]. This justifies assuming in our particular context that
an efficient bisection oracle exists. Note that graph bisectors usually compute edge
cuts and not vertex separators. On our instances, a vertex separator is derived by arbi-
trarily picking for every edge one of its incident vertices. We experimentally examine
the performance of nested dissection orders computed by NDMetis [Karypis and Ku-
mar 1999] and KaHIP [Sanders and Schulz 2013] in Section 10. After having obtained
the nested dissection order we reorder the in-memory vertex IDs of the input graph
accordingly, i. e., the contraction order of the reordered graph is the identity. This im-
proves cache locality and we have seen a resulting acceleration of a factor 2 to 3 in
query times. In the remainder of this section we prepare and provide a theoretical
approximation result.

For α ∈ (0, 1), let Kα, be a class of graphs that is closed under subgraph construction
and admits balanced separators S of cardinality O(nα).

LEMMA 4.1. For every G ∈ Kα a ND-order results in O(nα) vertices in the maximum
search space.

The proof of this lemma is a straightforward argument using a geometric series as de-
scribed in [Bauer et al. 2013]. As a direct consequence, the average number of vertices
is also in O(nα) and the number of arcs in O(n2α).

LEMMA 4.2. For every connected graph G with minimum balanced separator S and
every order π, the chordal supergraph G∗π contains a clique of |S| vertices. Furthermore,

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

there are at least n/3 vertices such that this clique is a subgraph of their search space
in G∧π .

This lemma is a minor adaptation and extension of [Lipton et al. 1979]. We provide the
full proof for self-containedness.

PROOF. Consider the subgraphs Gi of G∗π induced by the vertices π(1) . . . π(i) (not
to be confused with the core graphs Gπ,i). Choose the smallest i such that a connected
component A exists in Gi such that |A| ≥ n/3. As G is connected, such an A must exist.
We distinguish two cases:

(1) |A| ≤ 2n/3: Consider the set of vertices S′ adjacent to A inG∗π. Let B be the set of all
remaining vertices. S′ is by definition a separator. It is balanced because |A| ≤ 2n/3
and |B| = n − |A|︸︷︷︸

≥n/3

− |S′|︸︷︷︸
≥0

≤ 2n/3. As S is minimum we have that |S′| ≥ |S|. For

every pair of vertices u, v ∈ S′ there exists a path through A as A is connected. As
u and v have the highest ranks on this path (the vertices in A have rank 1 . . . i),
there must be and edge {u, v} in G∗. S′ is therefore a clique. Furthermore, from
every u ∈ A to every v ∈ S′ there exists a path such that v has the highest rank.
Hence, v is in the search space of u, i.e, there are at least|A| ≥ n/3 vertices whose
search space contains the full S′-clique.

(2) |A| > 2n/3: As i is minimum, we know that π(i) ∈ A and that removing it dis-
connects A into connected subgraphs C1 . . . Ck. We know that |Cj | < n/3 for all j
because i is minimum. We further know that |A| = 1+

∑
|Cj | > 2n/3. We can there-

fore select a subset of components Ck such that the number of their vertices is at
most 2n/3 but at least n/3. Denote by A′ their union. (Note that A′ does not con-
tain π(i).) Consider the vertices S′ adjacent to A′ in G∗π. (The set S′ contains π(i).)
Using an argument similar to Case 1, one can show that |S′| ≥ |S|. But since A′ is
not connected, we cannot directly use the same argument to show that S′ forms a
clique in G∗. Observe that A′ ∪ {π(i)} is connected and thus the argument can be
applied to S′\{π(i)} showing that it forms a clique. This clique can be enlarged by
adding π(i) as for every v ∈ S′\{π(i)} a path through one of the components Ck ex-
ists where v and π(i) have the highest ranks and thus an edge {v, π(i)} must exist.
The vertex set S′ therefore forms a clique of at least the required size. It remains
to show that enough vertices exist whose search space contains the S′ clique. As
π(i) has the lowest rank in the S′ clique the whole clique is contained within the
search space of π(i). It is thus sufficient to show that π(i) is contained in enough
search spaces. As π(i) is adjacent to each component Ck a path from each vertex
v ∈ A′ to π(i) exists such that π(i) has maximum rank showing that S′ is contained
in the search space of v. This completes the proof as |A′| ≥ n/3.

THEOREM 4.3. Let G be a graph from Kα with a minimum balanced separator with
Θ(nα) vertices then a ND-order gives an O(1)-approximation of the average and maxi-
mum search spaces of an optimal metric-independent contraction hierarchy in terms of
vertices and arcs.

PROOF. This key observation of this proof is that the top level separator solely dom-
inates the performance. Denote by π the ND-order and by πopt the optimal order. First
we show a lower bound on the performance of πopt and then show that π achieves this
lower bound showing that π is an O(1)-approximation. As the minimum balanced sep-
arator has cardinality Θ(nα) we know by Lemma 4.2 that at least n/3 vertices exist,
whose search space in G∧πopt contains a clique with Θ(nα) vertices. Thus the maximum

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

number of vertices in a search space is Ω(nα) as it must contain this clique and as
the clique is dense the maximum number of arcs is in Ω(n2α). The average number of
vertices is 2/3 ·Ω(0) + 1/3 ·Ω(n) = Ω(n) and as the clique is dense the average number
of arcs is in Ω(n2α). From Lemma 4.1 we know that the number of vertices in the max-
imum search space of G∧π is in O(nα). A direct consequence is that the average number
of vertices is also in O(nα). In the worst case the search space is dense resulting in
O(n2α) arcs in the average and the maximum search space. As the derived bounds are
tight this shows that π is an O(1)-approximation.

5. CONSTRUCTING THE CONTRACTION HIERARCHY
In this section, we describe how to efficiently compute the hierarchy G∧π for a given
graph G and order π. Weighted contraction hierarchies are commonly constructed us-
ing a dynamic adjacency array representation of the core graph. Our experiments show
that this approach also works for the unweighted case, however, requiring more com-
putational and memory resources because of the higher growth in shortcuts. It has
been proposed [Zeitz 2013] to use hash-tables on top of the dynamic graph structure to
improve speed but at the cost of significantly increased memory consumption. In this
section, we show that the contraction hierarchy construction can be done significantly
faster on unweighted and undirected graphs. (Note that graph weights and directed
arcs are handled during customization.)

Denote by n the number of vertices, m the number of edges in G, by m′ the number
of edges in G∧π , and by α(n) the inverse A(n, n) Ackermann function. For simplicity we
assume that G is connected. Our algorithm enumerates all arcs of G∧π in O(m′α(n))
running time and has a memory consumption in O(m) (to store the arcs of G∧π , addi-
tional space in O(m′) is needed). The approach is heavily based upon the method of
the quotient graph [George and Liu 1978]. To the best of our knowledge it has not yet
been applied in the context of route planning. We also were not able to find an com-
plexity analysis for the specific variant employed by us. Therefore, in the remainder
of this section, we both discuss the approach and present a running time analysis. As
a first step, we describe a complex datastructure that supports efficient edge contrac-
tion and neighborhood enumeration. Then, we show how this datastructure is used
to realize a datastructure that supports efficient vertex contraction and neighborhood
enumeration.

5.1. Technicalities
In the following, we identify vertices with an ID from the range 1 . . . n. For edges we
do not store any IDs. To avoid problems with ID-relabeling, we never remove vertices.
That is, contracting a vertex v consists of removing all incident edges and connect-
ing all adjacent vertices, but we do not remove v. After the vertex contraction v has
degree 0. Contracting an edge {u, v} consists of removing all edges {v, w} and adding
edges {u,w} if necessary. After edge contraction, again, v has degree 0. Note that this
makes edge contraction strictly speaking a non-symmetric operation. Enumerating the
neighborhood of a vertex v (given by its unique ID) consists of enumerating the IDs of
all adjacent vertices exactly once.

5.2. Efficient Edge Contraction
The core idea is to organize contracted vertices in a linked list. Even if G is simple,
edge contraction can create unwanted multi edges or loops. We remove these unwanted
edges during the enumeration. As an edge contraction does not create news edges we
can remove at most as many as there were in G. To efficiently rewire the edges we
further need a union find datastructure that introduces some α(n) terms. Our datas-
tructure has an edge contraction in O(1). The enumeration of the neighbors of v needs

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

O(d(v)α(n)) amortized running time. Finally there are global edge removal costs of at
most O(mα(n)) that do not depend on the operations applied to the datastructure.

We combine an adjacency array, a doubly linked list, a union-find datastructure and
a boolean array. The adjacency array initially stores for every vertex in v the IDs of the
adjacent vertices in G. The doubly linked list links together the vertices of G that have
been contracted. We say that two vertices that are linked together are on the same ring.
Initially no edges were contracted and therefore all rings only contain a single vertex.
The union find datastructure is used to efficiently determine a representative vertex
ID for every ring given a vertex of that ring. The boolean array is used to mark vertices
and is needed to assure that the neighborhood iteration outputs no vertex twice and
that v is not a neighbor of v. Initially all entries are false. After each neighborhood
enumeration the entries are reset to false. All vertices in a ring are regarded as having
degree 0 with the exception of the representative, which is regarded as incident to all
edges incident to the ring.

Contracting an edge is the easy operation. During the enumeration most of the work
occurs. To contract an edge {u, v} we first check whether u and v are the representa-
tives of their ring. If u or v is not then they have degree 0 and there is nothing to do.
We merge the rings of u and v and unite u and v in the union find datastructure and
choose either u or v as representative. To enumerate the neighbors of a vertex a we
first check whether it is its own representative in the union find datastructure. If it is
not then a has degree 0 as the edges have been contracted away. Otherwise we mark
a in the boolean array. Next we iterate over all vertex IDs b in the linked ring of a.
For every b we iterate over the vertex IDs c in the adjacency array for b. For every c
we lookup its representative d in the union find datastructure. If d is not marked in
the boolean array we found a new neighbor of a. We output it and mark it. Otherwise
we do not output d but remove c from b’s adjacency in the array. If this empties the
adjacency of b we remove b from a’s ring but keep b in the same union as a. After the
enumeration we iterate a second time over it to reset the boolean array.

5.3. Analysis
We first analyze the memory consumption. There is no memory allocation during the
algorithm and the sizes of the initial datastructure are dominated by the adjacency
array that needs O(m) space. The running time of an edge contraction is in O(1) as
all its operations are in O(1). (Note that we are only checking whether u is the rep-
resentative, we do not actually compute the representative if it is not u.) Analyzing
the neighborhood enumeration is more complex. Three key insights are needed: First
there are only m initial edges and therefore at most m entries can be deleted. The
costs are accounted for in the global O(mα(n)) term. The second insight is that as we
remove empty adjacencies from the rings a ring never contains more pointers than
vertices and therefore the time needed to follow the pointers is dominated by the time
spend visiting the vertices. The third insight is that a second enumeration of v cannot
find duplicates as they have been removed in the first iterations. Therefore reseting
the boolean array is in O(d(v)).

5.4. Efficient Vertex Contraction
Based on the efficient edge contraction datastructure described above we design an
efficient vertex contraction datastructure. The allowed operations are slightly more
restrictive. We require that each enumeration of the neighborhood of v is followed by
v’s vertex contraction.

Instead of storing the graphs Gπ,i explicitly we store a different graph G′π,i. We
do not replace a contracted vertex v by a clique among its neighbors. Instead we

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

replace it by a star with a virtual dummy vertex at its center. If a vertex is ad-
jacent to a star center then it is recognized as being adjacent to all vertices in
the star. If two star centers become adjacent we merge the stars by contracting
the edge between the centers. The complexity of the resulting star is the sum of
both original stars. This contrasts with explicitly representing the induced cliques
whose complexity would grow super linearly. The idea is illustrated in Figure 5.

Fig. 5. The dots represent vertices that have non-
zero degree in Gπ,i and in G′

π,i. The squares are
the additional super vertices in G′

π,i. The solid
edges are in G′

π,i and the dashed ones in Gπ,i. No-
tice how the neighbors of each super vertex inG′

π,i

forms a clique in Gπ,i. Furthermore, there are no
two adjacent super vertices in G′

π,i, i. e., they form
an independent set.

Formally the vertices that have non-zero
degree in both Gπ,i and G′π,i are called reg-
ular vertices. The additional dummy ver-
tices that have a non-zero degree in G′π,i
are called super vertices. We maintain the
invariant that G′π,i does not contain two ad-
jacent super vertices. Furthermore, for ev-
ery edge {x, y} in Gπ,i there exists an edge
{x, y} in G′π,i or a path x → z → y in G′π,i
where z is a super vertex and x and y regu-
lar vertices.

An alternative way to describe the datas-
tructure is to say that we maintain a graph
on which we only perform edge contractions
and we maintain an independent set of vir-
tually contracted super vertices.

The datastructure only needs to support
a single operation: Enumerating the neigh-
bors of an arbitrary vertex x in Gπ,i fol-
lowed by x’s contraction. We actually do it
in reversed order : We first contract v and
then enumerate the neighbors of the new
super vertex v. To contract x we first mark
it as super vertex. We then enumerate its
neighbor in G′π,i to determine all adjacent
super vertices yi. We then contract all edges {x, yi} to assure that x is no longer adja-
cent to any super vertex. Afterwards all neighbors of x inG′π,i are regular and therefore
they coincide with those in Gπ,i making the enumeration straightforward.

5.5. Analysis
In addition to the edge contraction datastructure we need a boolean array to mark
vertices as super nodes. The additional memory consumption is therefore in O(n) and
is negligible. The running time is shown using an amortized analysis. Denote by x
the contracted vertex. There are three cost factors: The enumeration of the neighbors
y1 . . . yp before the contraction, the enumeration of the neighbors z1 . . . zq after the con-
traction, and the contraction of the arcs. The enumeration of each yi and zi carries a
cost of α(n) resulting from the underlying edge contraction datastructure. Note that
while the yi contain super and regular vertices the zi contain only regular vertices. As
there are at most as many regular yi vertices as there are zi vertices we can account
for the regular yi vertices in the costs of the zi vertices. The remaining yi are super
vertices. Their enumeration is always followed by an edge contraction and therefore
we account for their cost in the edge contraction costs. The enumeration costs of the yi
are therefore accounted for. As at most m edges can be contracted their total costs re-
sult in a global O(mα(n)) term in the running time. As the number of zi coincides with

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

the out-degree of x in G∧π we can account the costs of the zi to the arcs of G∧π resulting
in O(m′α(n)) total costs.

5.6. Obtaining statistics for badly conditioned hierarchies
For every graph G and order π yielding a small m′ we efficiently construct and store
G∗π (and use it for route planning applications). However, even for orders yielding large
m′, we are interested in the characteristic numbers of G∗π(e. g., to exactly quantify
the quality (or badness) of an order). We obviously cannot store all arcs. But using
the contraction graph datastructure, given enough time, we can count them (recall
that our datastructure only requires O(m) space). Furthermore, we can construct the
elimination tree ofG∧π and compute the out-degree of all vertices. From these we derive
the size of G∧π (i. e., m′) as well as the average and maximum search space size in G∧π .

6. ENUMERATING TRIANGLES
Efficiently enumerating all lower triangles of an arc is an important base operation
of the customization and path unpacking algorithms (see Section 7 and Section 8). It
can be implemented using adjacency arrays or accelerated using extra preprocessing.
Note that in addition to the vertices of a triangle we are interested in the IDs of the
participating arcs.

6.1. Basic Triangle Enumeration
Construct an upward and a downward adjacency array for G∧π , where incident arcs are
ordered by their head vertex ID. Unlike common practice, we also assign and store arc
IDs. (By lexicographically assigning arc IDs we eliminate the need for arc IDs in the
upward adjacency array.) Denote by Nu(v) the upward neighborhood of v and by Nd(v)
the downward neighborhood. All lower triangles of an arc (x, y) are enumerated by
simultaneously scanning Nd(x) and Nd(y) by increasing vertex ID to determine their
intersection Nd(x) ∩ Nd(y) = {z1 . . . zk}. The lower triangles are all triples (x, y, zi).
The corresponding arc IDs are stored in the adjacency arrays. Similarly intersecting
Nu(x) and Nu(y) yields all upper triangles, and intersecting Nu(x) and Nd(y) yields
all intermediate triangles. This approach requires space proportional to the number of
arcs in G∧π .

6.2. Triangle Preprocessing
Instead of merging the neighborhoods on demand to find all lower triangles, we pro-
pose to create a triangle adjacency array structure that maps the arc ID of (x, y) onto
the pair of arc ids of (z, x) and (z, y) for every lower triangle (x, y, z). This requires
space proportional to the number of triangles t in G∧π but allows for a very fast access.
Analogous structures allow efficient access all upper triangles and all intermediate
triangles.

6.3. Hybrid Approach
For less well-behaved graphs the number of triangles t can significantly outgrow the
number of arcs in G∧π . In the worst case G is the complete graph and the number of
triangles t is in Θ(n3) whereas the number of arcs is in Θ(n2). It can therefore be
prohibitive to store a list of all triangles. We therefore propose a hybrid approach. We
only precompute the triangles for the arcs (u, v) where the level of u is below a certain
threshold. The threshold is a tuning parameter that trades space for time.

6.4. Comparison with CRP
Our triangle preprocessing has similarities with micro and macro code [Delling and
Werneck 2013]. The micro code approach is basically a huge array containing triples

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

of arc IDs that participate in a triangle. The macro code stores for each vertex v a
block that contains an array of incident arc IDs and a matrix of the arcs in the clique
that replaces v after its contraction. We compare the space consumption only against a
triangle adjacency array that enumerates only lower triangles as this is sufficient for
an efficient customization.

The authors of [Delling and Werneck 2013] operate on directed graphs graphs but
we operate on undirected graphs. Let t denote the number of undirected triangles and
m the number of arcs inG∧π . Furthermore, denote by t′ the number of directed triangles
and by m′ the number of arcs used in [Delling and Werneck 2013]. If one-way streets
are rare then m′ ≈ 2m and t′ ≈ 2t.

The micro code approach requires storing 3t′ ≈ 6t arc IDs. Our approach needs to
store 2t+m+1 arc IDs. Estimating the space requirement for the macro code approach
is more complex. A lower triangle (x, y, z) is stored in the block of z. Denote by d(z) the
degree of z. The block of z needs to store d2(z) + d(z) + O(1) arc ids (the O(1) data is
needed to mark the end of a block). As z participates in d2(z) many triangles as lowest
ranked vertex and every triangle has exactly one lowest ranked vertex we know that∑
z∈V d

2(z) = t. Summing over all vertices therefore yields a space requirement of
t′ +m′ +O(n) = 2t+ 2m+O(n).

Our approach always outperforms micro code. Furthermore, our approach is slightly
more compact than macro code under the assumption that one-way streets are rare.
If one-way streets are common then our approach needs at most twice as much data.
However, the main advantage of our approach over macro code is that it allows for
random access, which is crucial in the algorithms presented in the following sections.

7. CUSTOMIZATION
In this section, we describe how to transform a w-initial metric m0 into a w-maximum
metric m1. In a second step we transform m1 into a w-minimum metric m2. Based on
m2, it is possible to construct a weighted contraction hierarchy with perfect witness
search. We also discuss how to apply multi-threading and single instruction multiple
data (SIMD) instructions. Furthermore, we show how to update a metric if only the
weights of a few edges change.

7.1. Maximum Metric
We want to turn an initial metricm0 into a customized onem1. For this we first copym0

into m1 and then modify m1 as following: Our algorithm iterates over all vertex levels
`(x) in G∧π from the lowest level upward. On level i, it iterates (using multiple threads)
over all arcs (x, y) with `(x) = i. Between each level all threads must be synchronized.
For each such arc (x, y), the algorithm enumerates all lower triangles (x, y, z) and per-
forms m1(x, y) ← min{m1(x, y),m1(z, x) + m1(z, y)}, i. e., it makes sure that the lower
triangle inequality holds. The resulting metric still respects w as we only set weights
m1(x, y) to the distances of xy-paths. Note that this xy-path is not necessarily the
shortest and thus the resulting metric is not necessarily minimum. Furthermore, by
definition m1 is customized. The metric is w-maximum, because increasing the weight
of a shortcut (x, y) would violate the lower triangle equality of some lower triangle of
(x, y). As all threads only write to the arc they are assigned to and only read from arcs
processed in a strictly lower level we can guarantee that no read/write conflicts occurs.
Hence, no locks or atomic operations are needed.

7.2. Minimum Metric and Perfect Witness Search
Suppose m1 is already customized. We want to turn it into a w-minimum metric m2.
Recall that a w-minimum metric is a metric where every arc (x, y) has the weight of a

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

shortest xy-path. As a side-product our algorithm marks all arcs that a perfect witness-
search would remove. We first describe what our algorithm does and afterwards why
it is correct. We first copy m1 over into m2 and then modify m2. The algorithm iterates
over all levels downward starting at the top-most level. It then iterates over all arcs
(x, y) with `(x) = i. On most processor architectures the algorithm can iterate over the
arcs of a level in parallel as long as it synchronizes between levels. However, this de-
pends on the exact details of how write-conflicts are resolved. In some cases a different
strategy is needed to enable parallelization. We postpone the details to the end of this
subsection. For every arc (x, y) our algorithm enumerates all upper triangles (x, y, z)
and if m2(x, z) + m2(y, z) ≤ m2(x, y) it sets m2(x, y) ← m2(x, z) + m2(y, z) and marks
(x, y) for removal. Analogously it iterates over all intermediate triangles (x, y, z) and if
m2(x, z) +m2(z, y) ≤ m2(x, y) it sets m2(x, y)← m2(x, z) +m2(z, y) and marks (x, y) for
removal. Notice that we mark the arcs for removal even if both sides are equal. The or-
der in which the intermediate and upper triangles for one specific arc are enumerated
does not matter. The resulting metric is w-minimum. The arcs marked for removal are
exactly those that a perfect witness search would prune.

x

y2

y1

y3

y4

`

Fig. 6. The vertices y1 . . . y4
denote the upper neighborhood
Nu(x) of x. They form a clique
(the gray area) because x was con-
tracted first. As `(x) < `(yj) for
every j we know by the induction
hypothesis that the arcs in this
clique are weighted by shortest
path distances. We therefore have
an all-pair shortest path distance
table among all yj . We have to
show that using this information
we can compute shortest path
distances for all arcs outgoing of x.

It remains to show that the algorithm is correct. We
have to show that after the algorithm has finished pro-
cessing a vertex x all of its outgoing arcs are weighted by
the shortest path distance. We prove this by induction of
the levels over the processed vertices. The top-most ver-
tex is the only vertex in the top level. It does not have
any outgoing arcs and thus the algorithm does not have
to do anything. This forms the base case of the induc-
tion. In the inductive step we assume that all vertices
with a strictly higher level have already been processed.
As detailed in Figure 6 we know that vertices in Nu(x)
form a clique weighted by shortest paths. Pick some ar-
bitrary outgoing arc (x, yj). Either it already has the
shortest path weight and there is nothing left to do or a
shortest path through some vertex yk in Nu(x) must ex-
ist. As we know that (yj , yk) is a shortest path we know
that x → yk → yj is also a shortest path. What our
algorithm does is enumerate the paths for every pos-
sible yk. The upper triangles correspond to paths with
`(yk) > `(yj) and the intermediate triangles to paths
with `(yk) < `(yj). Our algorithm marks an arc (x, y)
for removal if an xy-up-down-path exists that has the
same length or is shorter and does not use (x, y). As only
the existence of a shortest xy-up-down-path is needed
for correctness we can not remove additional arcs. Fur-
ther for all st-pairs a shortest up-down st-path exists
and thus the shortest path queries are correct. The the
witness search is thus perfect.

As already hinted it is less clear how to parallelize the operations within a level than
it is for a plain customization. Consider the following situation: Thread A processes arc
(x, yA) at the same time as thread B processes the arc (x, yB). Notice that (x, yA) and
(x, yB) are both outgoing arcs of the same vertex x. Suppose that thread A updates the
weight at (x, yA) at the same moment as thread B enumerates the (x, yB , yA) triangle.
In this situation it unclear what value thread B will see. However our algorithm is
correct as long it is guaranteed that thread B will either see the old value or the new
value. The new value must be smaller than the old one and therefore only an addi-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

tional shortest path can have been created by thread A. If thread B sees the new value
then it will see an additional shortest path. If it does not then it sees the old short-
est path that has the same length and goes through some different yj . Which shortest
path thread B sees does not matter as all of them have the same length and seeing
one is enough. Further seeing multiple shortest paths is not harmful. The algorithm
is non-deterministic but the results is always correct. On most processor architectures
(including x86) it is guaranteed that 32-bit-aligned 32-bit writes have the required
property. However, if the weights have 64-bits then this property might not be given
as the compiler might generate two consecutive 32-bit writes to memory. If the pro-
cessor used does not have the necessary write-conflict resolution then the algorithm
should iterate in parallel over all vertices in a level in parallel and each thread iter-
ates sequentially over all outgoing arcs. This approach guarantees that all operations
that might conflict are performed sequentially and does not need locks or atomic oper-
ations.

7.3. Directed Graphs and Single Instruction Multiple Data
A metric can be replaced by an interleaved set of k metrics by replacing every m(x, y)
by a vector of k elements. This allows us to customize all k metrics in one go, amortiz-
ing triangle enumeration time. A further advantage is that the customization can be
accelerated using single instruction multiple data (SIMD) operations to combine the
metric vectors. The processor needs to support component-wise minimum and satu-
rated addition (i.e. a+ b = intmax in case of overflow).

Up to now we have focused on customizing undirected graphs. If the graph is directed
then we use two metrics: an upward metricmu and a downward metricmd. It is natural
to store these two metrics interleaved. For correctness it is important to customize
both metrics simultaneously because the data they convey must be interweaved. For
every lower triangle (x, y, z) we set mu(x, y) ← min{mu(x, y),md(z, x) + mu(z, y)} and
md(x, y)← min{md(x, y),mu(z, x)+md(z, y)}. The perfect customization can be adapted
analogously. We can use single SIMD-operations to process the upward and downward
metrics in parallel given that the processor is capable of permuting vector components
efficiently.

A current SSE-enabled processor supports all the necessary operations for 16-bit
integer components. For 32-bit integer saturated addition is missing. There are two
possibilities to work around this limitation: The first is to emulate saturated-add using
a combination of regular addition, comparison and blend/if-then-else instruction. The
second consists of using 31-bit weights and use 231−1 as value for∞ instead of 232−1.
The algorithm only computes the saturated addition of two weights followed by taking
the minimum of the result and some other weight, i. e., if computing min(a + b, c) for
all weights a, b and c is unproblematic then the algorithms works correctly. We know
that a and b are at most 231 − 1 and thus their sum is at most 232 − 2 which fits into a
32-bit integer. In the next step we know that c is at most 231− 1 and thus the resulting
minimum is also at most 231 − 1. On many game graphs with uniform weights the
graph diameter often fits into 16-bits and thus the 16-bit-saturated-add instruction
provided by SSE is useful there.

7.4. Partial Updates
Until now we have only considered computing metrics from scratch. However, in many
scenarios this is overkill, as we know that only a few edge weights of the input graph
were changed. It is unnecessary to redo all computations in this case. The ideas em-
ployed by our algorithm are somewhat similar to those presented in [Geisberger et al.
2012] but our situation differs as we know that we do not have to insert or remove arcs.
Denote by U = {((xi, yi), ni)} the set of arcs whose weights should be updated where

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

(xi, yi) is the arc ID and ni the new weight. Note that modifying the weight of one
arc can trigger new changes. However, these new changes have to be at higher levels.
We therefore organize U as a priority queue ordered by the level of xi. We iteratively
remove arcs from the queue and apply the change. If new changes are triggered we
insert these into the queue. The algorithm terminates once the queue is empty.

Denote by (x, y) the arc that was removed from the queue and by n its new weight
and by o its old weight. We first have to check whether n can be bypassed using a lower
triangle. For this reason we iterate over all lower triangles (x, y, z) a perform n ←
min{n,m(z, x) + m(z, y)}. Furthermore, if {x, y} was an edge in the original graph G
we have to make sure that n is not larger than the original weight. If after both checks
n = m(x, y) holds then no change is necessary and no further changes are triggered. If
o and n differ we iterate over all upper triangles (x, y, z) and test whether m(x, z)+o =
m(y, z) holds and if so the weight of the arc (y, z) must be set to m(x, z)+n. We add this
change to the queue. Analogously we iterate over all intermediate triangles (x, y, z) and
queue up a change to (z, y) if m(x, z) + o = m(z, y) holds.

How many subsequent changes a single change triggers heavily depends on the met-
ric and can significantly vary. Slightly changing the weight of a dirt road has near to no
impact whereas changing a heavily used highway segment will trigger many changes.
In the game setting such largely varying running times are undesirable as they lead to
lag-peaks. We propose to maintain a queue into which all changes are inserted. Every
round a fixed amount of time is spent processing elements from this queue. If time runs
out before the queue is emptied the remaining arcs are processed in the next round.
This way costs are amortized resulting in a constant workload per turn. The downside
is that as long the queue is not empty some distance queries will use outdated data.
How much time is spent each turn updating the metric determines how long an update
needs to be propagated along the whole graph.

8. DISTANCE QUERY
In this section we describe how to compute a shortest up-down path in G∧π between
two vertices s and t given a customized metric and how to unpack into a shortest path
edge sequence in G.

8.1. Basic
The basic query runs two instances of Dijkstra’s algorithm on G∧π from s and from t. If
G is undirected then both searches use the same metric. Otherwise if G is directed the
search from s uses the upward metric mu and the search from t the downward metric
md. In either case in contrast to [Geisberger et al. 2012] they operate on the same
upward search graph G∧π . In [Geisberger et al. 2012] different search graphs are used
for the upward and downward search. Once the radius of one of the two searches is
larger than the shortest path found so far we stop the search because we know that no
shorter path can exist. We alternate between processing vertices in the forward search
and processing vertices in the backward search.

8.2. Stalling
We implemented a basic version of an optimization presented in [Geisberger et al.
2012] called stall-on-demand. The optimization exploits that the shortest strictly up-
ward sv-path in G∧π can be bigger than the shortest sv-path (which can also go down).
The search from s only finds upward paths and if we observe that a shorter up-down
path exists then we can prune the search. Denote by x the vertex removed from the
queue. We iterate over all outgoing arcs (x, y) and test whether d(x) ≥ m(x, y) + d(y)
holds. If it holds for some arc then an up-down path s y → x exists that is no longer

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

than the shortest strictly upward sx path. This allows us to prune x by not relaxing its
outgoing arcs.

8.3. Elimination Tree
We precompute for every vertex its parent’s vertex ID in the elimination tree in a
preprocessing step. This allows us to efficiently enumerate all vertices in SS(s) and
SS(t) at query time. The vertices are enumerated increasing by rank.

We store two tentative distance arrays df (v) and db(v). Initially these are all set
to ∞. In a first step we compute the lowest common ancestor (LCA) x of s and t
in the elimination tree. We do this by simultaneously enumerating all ancestors
of s and t by increasing rank until a common ancestor is found. In a second step
we iterate over all vertices y on the tree-path from s to x and relax all forward
arcs of such y. In a third step we do the same for all vertices y from t to x in
the backward search. In a final fourth step we iterate over all vertices y from x to
the root r and relax all forward and backward arcs. Further in the fourth step we
also determine the vertex z that minimizes df (z) + db(z). A shortest up-down path
must exist that goes through z. Knowing z is necessary to determine the shortest
path distance and to compute the sequence of arcs that compose the shortest path.

s t

x

`

Fig. 7. The union of the darkgray
and lightgray areas is the search
space of s. Analogously the union
of the darkgray and middlegray ar-
eas is the search space of t. The
darkgray area is the intersection
of both search spaces. The dotted
arcs start in the search space of s
but not in the search space of t.
Analogously the dashed arcs start
in the search space of t but not in
the search space of s. The solid arcs
start in the intersection of the two
search spaces. The vertex x is the
LCA of s and t.

In a fifth cleanup step we iterate over all vertices from s
and t to the root r to reset all df and db to ∞. This fifth
step avoids having to spendO(n) running time to initial-
ize all tentative distances to∞ for each query. Consider
the situation depicted in Figure 7. In the first step the
algorithm determines x. In the second step it relaxes all
dotted arcs and the tree arcs departing in the lightgray
area. In the third step all dashed arcs and the tree arcs
departing in the middlegray area and in the fourth step
the solid arcs and the remaining tree arcs follow.

Contrary to the approaches based upon Dijkstra’s al-
gorithm the elimination tree query approach does not
need a priority queue. This leads to significantly less
work per processed vertex. Unfortunately the query
must always process all vertices in the search space.
Luckily, our experiments show that that for random
queries with s and t sampled uniformly at random the
query time ends up being lower for the elimination tree
query. If s and t are close in the original graph (i.e. not
sampled uniformly at random), then Dijkstra-based ap-
proaches win.

8.4. Path Unpacking
All shortest path queries presented only compute short-
est up-down paths. This in enough to determine the dis-
tance of a shortest path in the original graph. However,
if the sequence of edges that form a shortest path should
be computed then the up-down path must be unpacked.
The original CH of [Geisberger et al. 2012] unpacks an
up-down path by storing for every arc (x, y) the vertex
z of the lower triangle (x, y, z) that caused the weight
at m(x, y). This information depends on the metric and
we want to avoid storing additional metric-dependent
information. We therefore resort to a different strategy:

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

(a) undirected, no turn costs (b) undirected, with turn costs

(c) directed, no turn costs (d) directed, with turn costs

Fig. 8. Expanded turn models for combinations of directed and undirected, with and without turn costs.
The dashed line represents the edge cut found by the bisector. The red dots represent the vertices in the
derived vertex separator. The gray rectangle marks the boundaries of the turn gadgets.

Denote by p1 . . . pk the up-down path found by the query. As long as a lower triangle
(pi, pi+1, x) exists with m(pi, pi+1) = m(x, pi) + m(x, pi+1) insert the vertex x between
pi and pi+1. For minimum metrics also intermediate and upper triangles have to be
considered.

9. A WORD ABOUT TURN COSTS
In practical road route planners (but not in the game scenario) it is important to be
able to penalize or forbid turns.

Since our benchmark instances lack realistic turn cost data (while synthetic data
tends to be very simplistic), we deemed it improper to experimentally evaluate CCH
performance on turn costs. However, in this section using a theoretical argument we
predict that turn costs have no major impact: They can be incorporated by adding turn
cliques to the graph. Small edge cuts in the original graph correspond to small cuts in
the turn-aware graph. Analyzing the exact growth of cuts (in the extended version),
we conclude that the impact on search space size is at most a factor of 2 to 4. Practical
performance might be better.

A straightforward implementation expands the graph by inserting turn clique gad-
gets as depicted in Figure 8. Note that many of these cliques will have the same
weights and therefore a more compact representation that shares this information
between cliques might be preferable in practice as described in [Delling and Werneck
2013; Geisberger and Vetter 2011]. However, the form in which these cliques are rep-
resented is only constant-tuning with respect to query times. In a real-world imple-
mentation constant-tuning is certainly important but it does not make the difference
between being practicable and infeasible. In this section we solely want to establish
that our approach is feasible and thus ignore these constants.

If the graph is undirected then turn costs can be added by replacing each vertex of
degree dwith a complete graphKd as depicted in the Figures 8(a) and 8(b). If the graph
is directed then the situation is slightly more complex as depicted in the difference
between the Figures 8(c) and 8(d). A vertex of degree d is replaced by a directed Kd,d

complete bipartite graph. We refer to the vertices that only have incoming arcs inside
the gadget as exit vertices and to the other vertices are entry vertices.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Recall that we determine our ordered by first computing an edge cut and then de-
riving a vertex separator from it. The first important observation is that a balanced
edge cut in the unexpanded graph induces a balanced edge cut in the expanded graph.
The second central observation needed is the same as the one used in the proof of The-
orem 4.3: The performance is dominated by the size of the top level vertex separator.
Suppose that the dashed cut represented in Figure 8 is the cut from which the top
level vertex separator is derived. Denote by n the size of the vertex separator in the
graph without turn costs. In the undirected case the size of this vertex separator does
not increase as can be seen by comparing 8(a) to 8(b). We therefore expect the query
running time performance of the CH to be mostly independent of whether turn costs
are used or not. In the directed case the size of the derived top level vertex separator
is doubled as can be seen by comparing 8(c) to 8(d). The top level clique in the CH is
thus a K2n. The number of arcs in the search spaces therefore increases by a factor of

|K2n|
|Kn|

=
1/2(2n− 1)2n
1/2(n− 1)n

→ 4

for n tending towards∞. If you implement Customizable Contraction Hierarchies pre-
cisely as described so far then the search space sizes will indeed increase by this factor
4 in terms of arcs. However, one can do better. As can be seen in Figure 8(d) it is pos-
sible to assure that half of the separator vertices in the turn clique are entry vertices
while the other vertices are exit vertices. Arcs between two entry vertices or two exit
vertices are guaranteed to have a weight of ∞ in both directions for any metric (that
respects the direction of the directed input graph). These arcs may therefore be re-
moved from the CH. Instead of a top level K2n complete clique, a complete bipartite
clique Kn,n is thus sufficient. The number of arcs is therefore only expected to increase
by a factor of

|Kn,n|
|Kn|

=
n2

1/2(n− 1)n
→ 2

for n tending towards ∞. To exploit this observation, we propose the following ap-
proach: First construct the CH without removing any arcs. Then, still during the
metric-independent phase, “customize” it with a metric where all arcs going the wrong
way through a one-way street have weight∞ (and all others have finite weight, e. g., 0).
Finally, remove from the CH all arcs that have both an upward and a downward weight
of∞ in the CH. The customization works without modifications. If the elimination-tree
query should be used then it is important to construct the elimination tree before re-
moving the arcs.

We conclude that while turn costs do not come for free, they most likely do not rep-
resent a major obstacle.

10. EXPERIMENTS
In this section we present our careful and extensive experimental evaluation of the
algorithms introduced and described before.

Compiler and Machine. We implemented our algorithms in C++, using g++ 4.7.1
with -O3 for compilation. The customization and query experiments were run on a
dual-CPU 8-core Intel Xeon E5-2670 processor (Sandy Bridge architecture) clocked at
2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache. The
order computation experiments (see Table II) were run on a single core of an Intel Core
i7-2600K CPU processor.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Table I. Instances. We report the number of vertices and of directed arcs of the
benchmark graphs. We further present the number of edges in the induced
undirected graph.

Instance # Vertices # Arcs # Edges Symmetric?

Karlsruhe 120 412 302 605 154 869 no
TheFrozenSea 754 195 5 815 688 2 907 844 yes
Europe 18 010 173 42 188 664 22 211 721 no

Table II. Orders. Duration of order computation in
seconds. No parallelization was used.

Instance Greedy Metis KaHIP

Karlsruhe 4.1 0.5 1 532
TheFrozenSea 1 280.4 4.7 22 828
Europe 813.5 131.3 249 082

Fig. 9. All vertices in the PTV-
Europe graph.

Instances. We consider three large instances of practi-
cal relevance (see Table I): The Europe graph was made
available by PTV1 for the DIMACS challenge [Deme-
trescu et al. 2009]. The vertex positions are depicted in
Figure It is the standard benchmarking instance used
by road routing papers over the past few years. Note
that besides roads it also contains a few ferries to con-
nect Great Britain and some other islands with the con-
tinent. The Europe graph analyzed here is its largest
strongly connected component (a common method to re-
move bogus vertices). It is directed, and we consider two
different weights. The first weight is the travel time and
the second weight is the straight line distance between
two vertices on a perfect Earth sphere. Note that in the

input data highways are often modeled using only a small number of vertices com-
pared to the streets going through the cities. This differs from other data sources (such
as OpenStreetMap2) that sometimes have a high number of vertices on highways to
model road bends. It is clear that degree 2 vertices do not hamper the performance
of CHs but for some of our side-experiments this difference might be relevant. The
Karlsruhe graph is a subgraph of the PTV graph for a larger region around Karl-
sruhe. We consider the largest connected component of the graph induced by all ver-
tices with a latitude between 48.3° and 49.2°, and a longitude between 8° and 9°. The
TheFrozenSea graph is based on the largest Star Craft map presented in [Sturtevant
2012]. The map is composed of square tiles having at most eight neighbors and dis-
tinguishes between walkable and non-walkable tiles. These are not distributed uni-
formly but rather form differently-sized pockets of freely walkable space alternating
with choke points of very limited walkable space. The corresponding graph contains for
every walkable tile a vertex and for every pair of adjacent walkable tiles an edge. Diag-
onal edges are weighted by

√
2, while horizontal and vertical edges have weight 1. The

graph is symmetric (i. e., for each forward arc there is a backward arc) and contains
large grid subgraphs. Table I reports the instance sizes.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●
●
●●●
●●

●●

●
●

●
●●

●

●

●

●●

●
●●●●

●●●
●

●●
●
●
●
●●●●
●
●●●

●

●●●
●

●

●●●

●●●

●
●
●
●
●

●

●

●●●
●

●

●

●
●
●
●
●
●
●

●●
●
●
●
●●
●

●
●
●

●●
●

●
●●

●

●

●●

●
●

●

●
●

●●

●●●●

●

●
●
●
●
●
●●●●●●
●

●

●●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●
●

●
●

●

●
●
●

●

●
●
●●

●

●
●
●
●
●

●
●

●

●
●
●●
●●
●
●
●

●

●●
●
●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●
●
●●●
●
●

●
●
●

●

●●

●
●●
●

●●
●
●
●●

●

●

●

●●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●
●●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●●
●●
●
●
●
●
●

●

●

●

●
●

●

●

●
●●
●●
●●
●
●●●
●●

●

●

●●●

●

●
●

●

●
●

●

●●
●

●

●
●

●●

●

●
●
●
●
●

●●●●

●
●
●●
●

●●
●
●

●

●
●
●
●
●●

●●
●

●
●
●
●

●
●

●
●

●

●

●
●●

●

●
●
●

●

●●

●●

●

●

●
●
●●
●●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●
●●
●
●

●
●

●

●

●
●
●

●●

●●
●
●

●

●
●

●●

●

●

●●
●
●
●●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●●

●

●●●
●

●●

●
●
●
●●
●
●
●
●
●
●
●
●●●
●

●

●●
●
●
●●
●
●

●

●

●
●

●
●
●

●

●
●

●
●
●
●
●

●

●

●●

●
●

●

●●
●

●

●●

●

●
●

●
●
●●●●

●
●

●

●
●●●

●
●
●

●
●●
●●

●

●

●

●

●●
●
●
●

●●
●

●
●

●

●

●●
●

●●

●●

●

●

●
●●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●
●●

●
●

●

●
●
●
●

●

●
●

●●
●

●
●
●●
●●

●

●
●●
●

●
●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●
●
●

●

●
●

●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●
●
●
●
●●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●●
●

●●
●

●

●

●

●

●
●

●●

●●●●●

●

●

●

●
●
●
●●
●
●●
●●

●
●

●
●

●

●
●●
●●●
●
●
●

●
●

●
●
●
●●

●

●

●
●

●

●
●●
●
●●●

●●

●
●

●
●

●

●

●

●

●

●

●
●●●●

●

●
●

●
●
●

●
●
●
●

●

●

●
●

●
●

●●●

●

●●
●
●

●
●

●●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●
●●
●
●

●

●●●●

●

●
●
●●
●
●
●●
●

●●
●

●●

●

●
●●
●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●●

●
●
●
●●
●●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●●●●

●

●

●●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●
●●

●
●

●

●

●
●●
●

●

●●●

●

●
●

●
●●

●

●
●

●

●
●●

●

●●●
●
●

●

●●●●

●
●

●●

●
●

●
●
●
●●

●●

●
●
●

●

●
●

●●

●
●●
●
●●●●●
●

●

●

●
●
●
●
●●●●●●●
●
●●

●

●
●
●●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●●

●
●

●

●●●
●

●
●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●
●
●
●
●

●

●

●
●
●
●

●●

●
●

●

●●
●
●
●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●
●

●●
●
●●
●
●
●
●
●
●●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●●
●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●
●

●●
●
●
●

●
●●

●

●

●
●
●

●
●●●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●●

●

●
●●●
●

●
●
●
●

●

●●

●
●●●

●
●●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●
●

●●●●

●●

●

●
●
●

●

●
●

●

●
●
●●

●

●●
●

●●

●
●
●
●

●

●
●
●

●
●
●●

●

●

●
●
●●
●

●

●

●

●
●
●
●
●

●●●
●●
●●

●
●
●

●
●
●●

●
●

●●
●

●●

●

●

●●

●●

●
●●

●
●

●
●●●

●

●

●
●
●
●●●

●

●
●
●

●

●

●
●
●●
●

●

●
●

●

●
●●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●●

●

●
●
●

●

●
●●

●

●●

●●
●
●
●
●
●●●
●
●●

●●●

●●

●

●

●

●

●●

0

10

20

30

40

0 25,000 50,000 75,000 100,000 125,000

(a) Karlsruhe

●

●
●

●

●●
●

●
●
●●●
●
●●●
●

●●
●
●
●●
●
●●

●

●●
●●
●●●
●

●●
●●
●
●●●

●
●
●

●●●
●

●
●●●●

●●
●
●
●●
●
●●
●
●●
●

●

●
●
●●
●
●●
●●●
●●
●●
●●●●
●
●●
●●●●
●●

●●

●
●●●●●●●

●●
●●
●
●●
●●●●

●●●●●●

●

●
●
●●
●●
●●
●●

●

●

●

●●●
●●
●●●●●
●
●●
●●
●●●
●●

●
●
●●
●
●●●
●●●
●
●
●●
●
●

●
●

●
●
●●
●
●●●●●●●●
●●●
●●●

●
●
●●

●

●
●
●
●

●●●●

●●
●
●●
●
●●

●
●●●●

●

●
●
●●
●●●●●
●
●●

●
●●●●
●

●
●

●
●

●●
●
●
●●●

●
●●
●
●

●
●
●
●●●●●

●
●
●
●

●●●
●●
●●●●●
●●●●●●●●
●●●●●●
●●●●●
●
●●●●
●●●

●●●

●●

●
●
●●●●●●

●
●●●●
●
●
●
●●

●●●

●●●●
●●●
●●●
●●●●●
●

●
●●

●

●
●

●

●

●
●●●●●
●

●●

●
●

●●●
●●
●●
●
●
●

●●
●

●
●
●

●●●
●●
●●●●

●●

●●

●

●●●

●

●
●●

●

●

●●

●●●●
●
●●●
●
●●●●

●●
●
●●

●
●●●●

●●

●●
●

●●

●
●●●

●

●●●
●
●
●●
●●●●●

●

●

●●●
●●●●
●●●
●●
●
●●

●●
●●

●

●●

●

●

●●
●
●
●

●

●

●●

●●●
●●●

●

●●●
●
●●●
●●

●
●
●●
●
●
●●●●●●●
●
●●

●
●
●●●
●
●
●●
●●

●
●●●●●
●
●●●●●●
●
●

●
●
●
●●●●

●

●●
●
●
●●●●●
●●
●●●●
●
●
●

●

●●●●

●
●
●●
●
●
●

●●●●
●
●●●
●
●
●
●
●●●
●
●

●

●

●●
●
●

●●

●
●

●

●●●
●

●

●●●●
●
●

●●
●
●

●

●
●

●

●

●
●

●●●

●
●●●

●
●

●

●●●●●●

●

●
●●●●

●●

●
●●●●
●

●
●

●●●
●
●
●●●●●●
●

●
●
●
●●●●

●

●
●●●

●
●●

●

●

●

●

●

●●
●●●●●●●
●
●●

●
●●

●●
●●●●●●

●
●●●●●●●
●
●●
●●●●●●●●●●●●
●●
●●
●●●●●

●●

●
●

●●
●
●●
●
●●●
●
●

●
●●●
●
●
●
●●●

●

●
●●●●●
●●●●
●●●
●●
●
●●●●●
●●●●●●

●

●

●●
●●

●●
●
●●●
●●●

●
●●
●

●
●●
●●
●
●
●
●
●●
●●
●●
●
●
●
●●●●●
●●●●

●
●●●
●
●●●
●
●●

●

●

●●
●●●●●
●●●
●●●
●●●●

●
●
●●●●●
●●

●

●●●●
●

●

●●●●●●
●●
●
●●●● ●

●

●
●●●
●●●
●●●●●
●
●

●●●●
●●●●
●

●
●
●
●●
●
●●●
●

●
●●

●●
●
●

●●●

●
●●●
●●●●●●●●

●●
●●●
●

●

●●●●

●
●
●

●
●●●●●●
●●●●●
●●●●●●
●●●
●
●●●●●
●
●
●
●
●●●
●
●●●●

●●●●●●●●
●●●●
●●●
●
●●●●
●●
●●
●●●●
●●
●●●●
●●

●

●●

●

●
●●●●●
●
●●

●
●●
●
●●
●
●●●

●
●●●●●●●●●●●●

●
●
●●
●
●●
●●
●●●●●●

●

●●
●●
●
●●
●
●●●●●

●

●●●●●●●●
●
●●
●
●●

●
●●
●●●
●
●●

●

●●●●●
●●
●●

●
●●

●
●
●
●●●
●
●
●
●

●
●●●●
●●
●●
●
●●●
●●
●
●
●●●●●
●●●●●●
●
●
●
●●●●●●●●●●

●
●
●●●●
●

●●
●
●●●●●●●●●
●●
●●●●●●●●
●
●●
●●●

●
●

●

●●●
●●●
●
●●
●●●
●●●●●
●

●
●
●●●●
●●
●

●
●●

●

●●
●●
●●●●
●●●●●●●

●●●

●●●●
●●●
●●●●●
●
●●

●●●
●

●
●●●
●
●
●●●
●●●●●
●
●●●●●●

●●●

●●
●●
●●●●●
●

●●
●●●
●
●
●
●

●
●●●●
●●●
●●●●●
●
●●●
●
●●●●

●
●
●●

●●●●●
●
●

●
●
●●●●●

●●●●
●●●●●
●●●●
●●●●
●●
●●●●●● ●

●

●●●
●

●●
●●
●●
●●
●

●●
●●

●
●●●
●
●●●●

●

●●●
●
●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●
●
●●
●
●●
●
●

●
●
●

●●●●●●
●
●●●●

●

●
●●●●●●
●●
●

●●●●●●●●●●●●●●
●●●●●●●

●

●
●
●●●
●●●●●●

●●
●●●●
●
●

●●
●●●●

●
●
●
●●●●●●●●
●●●●●●●●
●●

●
●

●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●
●●
●
●
●
●
●●
●

●

●
●●●●●●●
●●●
●●●●●
●
●●●●●●
●●●●
●
●
● ●

●●
●
●●●●
●
●
●●●
●●●●●●
●
●●●

●
●●●●●
●●●●

●
●●
●●
●
●●●●●
●●●●●●●●●●
●
●
●
●●●●●●●●●
●●●●●●●●
●●
●

●
●●●

●

●
●

●
●

●●●●●●●●●

●●●

●

●
●
●●●
●
●●

●
●●
●
●●●
●●
●●●●
●●
●●●

●●

●●
●●
●
●●
●●●●

●
●
●●
●
●●●●●●●●●●●●
●

●
●

●
●●●●
●●

●

●
●

●●●●
●
●●●●●●
●●

●●
●
●●●●
●

●●●●●
●
●●
●●
●●●
●
●●●

●
●

●

●●

●
●●●
●
●●
●●●●●
●●
●
●
●●●●●●●●●●

●
●
●
●
●
●
●●
●●●●●

●

●●
●●

●●

●●●●●
●●●

●●
●●●●●●
●

●
●●●●●●

●●●●●●●●

●
●●●
●

●●
●

●●● ●

●
●

●

●
●
●

●
●●
●●●
●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●
●
●●●
●

●●●●●●●

●●●

●●●
●
●●
●
●
●●●●●●●●●●
●
●●●●
●
●●
●

●

●●
●
●
●●●●●●●
●
●●●●●●●●●●●

●

●●●
●●●●●●●●
●
●
●●
●
●●●●
●

●

●
●●●●
●●
●

●
●

●
●●●●●
●●●●
●●●●●●●

●●●●●
●●●

●

●●●
●
●●
●●
●●
●●●●●

●

●
●
●
●●●●
●●
●
●
●●
●●●
●
●●●
●●
●●●●

●
●●●●
●
●●●●●●●●
●●
●
●●
●●●●●
●●
●●●●
●
●●
●●
●●●●

●

●
●
●
●●●
●
●●●
●
●●●●●
●●●●●●
●●
●●●●
●
●
●
●●●

●●●
●
●
●
●●
●●
●●
●
●

●●
●●
●
●●
●
●●●
●
●

●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●

●●●●●
●●
●
●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●

●

●
●
●●●●
●●●
●●●●●
●
●●●
●●
●
●●●●●
●●●
●●
●●●●●●●

●
●
●
●●●●●●
●

●●
●●●●●●●●
●●●●●●●●●●●●

●
●
●●●●●●●●●●●
●
●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●
●●●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●0

100

200

300

400

500

0 5,000,000 10,000,000 15,000,000

(b) Europe

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

0

50

100

150

0 200,000 400,000 600,000

(c) TheFrozenSea

Fig. 10. The amount of vertices in the separator (vertical) vs the number of vertices in the subgraph being
bisected (horizontal). We only plot the separators for (sub)graphs of at least 1000 vertices. The red hollow
circles is KaHIP and the blue filled triangles is Metis.

10.1. Orders
We analyze three different vertex orders: 1) The greedy order is an order in the spirit
of [Geisberger et al. 2012]. 2) The Metis graph partitioning package contains a tool
called ndmetis to create ND-orders. 3) KaHIP provides just graph partitioning tools.
As far as we know tools to directly compute ND-orders are planned by the authors
but not yet finished. We therefore implemented a very basic program on top of it. For
every graph we compute 10 bisections with different random seeds using the “strong”
configuration. We recursively bisect the graph until the parts are too small for KaHIP
to handle and assign the order arbitrarily in these small parts. We set the imbalance

1http://www.ptvgroup.com
2http://www.openstreetmap.org

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Table III. Construction of the Contraction Hierarchy. We re-
port the time in seconds required to compute the arcs in G∧

π
given a KaHIP ND-order π. No witness search is performed.
No weights are assigned (yet).

Instance Dyn. Adj. Array Contraction Graph

Karlsruhe 0.6 <0.1
TheFrozenSea 490.6 3.8
Europe 305.8 15.5

for KaHIP to 20%. Note that our program is purely tuned for quality. It is certainly
possible to trade much speed for a negligible (or even no) decrease in quality. Table II
reports the times needed to compute the orders. Interestingly, Metis outperforms even
the greedy strategy. Figure 10 shows the sizes of the computed separators. As expected
KaHIP results in better quality. The road graphs seem to have separators following a
Θ(3
√
n)-law. On Karlsruhe the separator sizes steadily decrease (from the top level to

the bottom level) making Theorem 4.3 directly applicable (under the assumption that
no significantly better separators exist). The KaHIP separators on the Europe graph
have a different structure on the top level. The separators first increase before they
get smaller. This is because of the special structure of the European continent. For
example the cut separating Great Britain and Spain from France is far smaller than
one would expect for a graph of that size. In the next step KaHIP cuts Great Britain
from Spain which results in one of the extremely thin cuts observed in the plot. Inter-
estingly Metis is not able to find these cuts that exploit the continental topology. The
game map has a structure that differs from road graphs as the plots have two peaks.
This effect results from the large grid subgraphs. The grids have Θ(

√
n) separators,

whereas at the higher levels the choke points results in separators that approximately
follow a Θ(3

√
n)-law. At some point the bisector has cut all choke points and has to start

cutting through the grids. The second peak is at the point where this switch happens.

10.2. CH Construction
Table III compares the performance of our specialized Contraction Graph datastruc-
ture (see Section 5) to the dynamic adjacency structure (see [Geisberger et al. 2012])
to compute undirected and unweighted CHs. We do not report numbers for the hash-
based approach (see [Zeitz 2013]) as it is fully dominated. Our datastructure dramat-
ically improves performance (recall from Section 5 that it also requires less mem-
ory). However to be fair, our approach cannot immediately be extended to directed
or weighted graphs (i. e., without employing customization).

10.3. CH Size
In Table IV we report the resulting CH sizes for various approaches. Computing a
CH on Europe without witness search with the greedy order is infeasible even using
the Contraction Graph datastructure. This is even true if we only want to count the
number of arcs: We aborted calculations after several days. We can however say with
certainty that there are at least 1.3 × 1012 arcs in the CH and the maximum upward
vertex degree is at least 1.4×106. As the original graph has only 4.2×107 arcs, it is safe
to assume that using this order it is impossible to achieve a speedup compared to Dijk-
stra’s algorithm on the input graph. However, on the Karlsruhe graph we can actually
compute the CH without witness search and perform a perfect witness search. The
numbers show that the heuristic witness search employed by [Geisberger et al. 2012]
is nearly optimal. Furthermore, the numbers clearly show that using greedy orders
in a metric-independent setting (i. e., without witness search) results in unpractical
CH sizes. However they also show that a greedy order exploiting the weight struc-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

Table IV. Size of the Contraction Hierarchies for different instances and orders. We report the number of undi-
rected as well as upward directed arcs of the CH, as well as the number of supporting lower triangles. As an
indication for query performance, we report the average search space size in vertices and arcs (both metric-
independent undirected and upward weighted), by sampling the search space of 1000 random vertices. Metis
and KaHIP orders are metric-independent. Greedy orders are metric-dependent. We report resulting figures
after applying different variants of witness search. A heuristic witness search is one that exploits the metric in
the preprocessing phase. A perfect witness search is described in Section 7.

Average search space size

Witness
search

Arcs [·103] # Triangles undirected upward

Order undir. upward [·103] # Vertices # Arcs # Vertices # Arcs

K
ar

ls
ru

he

Greedy
none 21 926 17 661 37 439 858 5 870 15 786 622 5 246 11 281 564
heuristic — 244 — — — 108 503
perfect — 239 — — — 107 498

Metis none 478 463 2 590 164 6 579 163 6 411
perfect — 340 — — — 152 2 903

KaHIP none 528 511 2 207 143 4 723 142 4 544
perfect — 400 — — — 136 2 218

T
he

F
ro

ze
nS

ea Greedy heuristic — 6 400 — — — 1 281 13 330

Metis none 21 067 21 067 601 846 676 92 144 676 92 144
perfect — 10 296 — — — 644 32 106

KaHIP none 25 100 25 100 864 041 674 89 567 674 89 567
perfect — 10 162 — — — 645 24 782

E
ur

op
e

Greedy heuristic — 33 912 — — — 709 4 808

Metis none 70 070 65 546 1 409 250 1 291 464 956 1 289 453 366
perfect — 47 783 — — — 1 182 127 588

KaHIP none 73 920 69 040 578 248 652 117 406 651 108 121
perfect — 55 657 — — — 616 44 677

Table V. Elimination tree characteristics. Note that unlike in Table IV, these values
are exact and not sampled over a random subset of vertices. We also report upper
bounds on the treewidth of the (undirected) input graphs.

Children Height Treewidth
(upper bound)Instance Order avg. max. avg. max.

Karlsruhe Metis 1 5 163.48 211 92
KaHIP 1 5 142.19 201 72

TheFrozenSea Metis 1 3 675.61 858 282
KaHIP 1 3 676.71 949 287

Europe Metis 1 8 1283.45 2017 876
KaHIP 1 7 654.07 1232 479

ture dominates ND-orders (for a more detailed discussion see below). In Figure 11 we
plot the number of arcs in the search space vs the number of vertices. The plots show
that the KaHIP order significantly outperforms the Metis order on the road graphs
whereas the situation is a lot less clear on the game map where the plots suggest a
tie. Table V examines the elimination tree. Note that the height of the elimination tree
corresponds3 to the number of vertices in the (undirected) search space. As the ratio
between the maximum and the average height is only about 2 we know that no spe-

3The numbers in Table IV and Table V deviate a little because the search spaces in the former table are
sampled while in the latter we compute precise values.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●●
●

●

● ●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●● ●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●

●

●
●

●

●●

●
●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●
●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

0

2,500

5,000

7,500

10,000

0 50 100 150 200

(a) Karlsruhe

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

● ●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●●
●

●

●

●

●●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
● ●

●

● ●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

50,000

100,000

200 400 600 800

(b) TheFrozenSea

●

●

●

● ●

●

●

●●●●

●

●

●

●

●

●●●

●
●

●
●

●

●
●●

●

●

●
●●

●

●

●

●

●●●

●

●

●
●● ●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

● ●●

●

●
●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●
● ●

●

●

●

●

●

●

●●●
●

● ●
●●●●

●

●

●

● ●

●●

●

●

●

●●
●

●

●●

●

●

●

● ●●

●
●●

●
●

●

●
●●

●
●

●

●

●
●

●●

● ●

● ●
●

●
●

●

●●
●

●

●

●●

●
●●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●●
● ●

●● ●●

●

●

●
●

●

●
●

●● ●●●●

●●

●

●

●

●●

●

●●●

●●
●

●

●

●
● ●

●

●

●

●
●

●
●

●●
●● ●●

●
●

●●

●

●

●

●

●

●

●
●

●●●

●●● ●

●

●

●

●●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●●●● ●●●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●● ●

●

●

●

●

●
●●

●●●

●

●
●

●● ●

●

●

●
●

●●

●
●

●

● ●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

● ●●

●

● ●●

●

●

●

●

●● ● ●

●

●
●●

●

● ●

●

●

●

●●

●
●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●
●
● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●●

●

●

●

●

● ●●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●●

●

●

●●

●

●
●

●

●

●●

●● ●

●●
● ●● ●●●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●
●

● ●

●

●

●

● ●
●

●

●●

●
●

●● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●●●

●
● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●●

●

●●

●

● ●

●●

● ●●

●

●
●

●

●

●●
● ●

●
●

●●●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●
●

●●

●
●●

●●

●●

●

●

●

●

● ●● ●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●●
●

●

●

●
●

● ● ●
●●

●
●

●●●

●●●
●

●

●

●●
●●●

●

● ●

●
●

●
●

● ●

●●

●
●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●
●

●●

●

●

●●●

●

●●●● ●

●

●

●●

●●

●●

●●

●
●● ●

●

●

●

●

●

●

●

●●

●

●

● ●●●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●
●

●

●
●

●

●

●
● ●

●
●

●●
●

● ●

●

●

●●● ●●

●

●

●
●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

0

250,000

500,000

750,000

1,000,000

0 500 1,000 1,500 2,000

(c) Europe

Fig. 11. The number of vertices (horizontal) vs the number of arcs (vertical) in the search space of 1000
random vertices. The red hollow circles is KaHIP and the blue filled triangles is Metis.

cial vertex exists that has a search space significantly differing from the the numbers
shown in Table V. The elimination tree has a relatively small height compared to the
number of vertices in G (in particular, it is not just a path).

The treewidth of a graph is a measure widely used in theoretical computer science.
Many NP -hard problems have been shown to be solvable in polynomial time on graphs
of bounded treewidth. The notion of treewidth is deeply coupled with the notion of
chordal super graphs and vertex separators. See [Bodlaender and Koster 2010] for de-
tails. The authors show in their Theorem 6 that the maximum upward degree du(v)
over all vertices v in G∧π is an upper bound to the treewidth of a graph G. This theo-
rem yields a straightforward algorithm that gives us the upper bounds presented in
Table V.

Interestingly these numbers correlate with our other findings: The difference be-
tween the bounds on the road graphs reflect that the KaHIP orders are better than
Metis orders. On the game map there is nearly no difference between Metis and KaHIP
(in accordance with all other performance indicators). The fact that the treewidth
grows with the graph size reflects that the running times are not independent of
the graph size. These numbers strongly suggest that road graphs are not part of a
graph class of constant treewidth. However, fortunately, the treewidth grows sub-
linearly. Our findings from Figure 10 suggest that assuming a O(3

√
n) treewidth for

road graphs of n vertices might come close to reality. Further investigation into algo-
rithms explicitly exploiting treewidth might be promising. The works of [Chaudhuri

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

Table VI. Detailed analysis of the size of CHs. We evaluate uniform, random and distance weights on
the Karlsruhe input graph. Random weights are sampled from [0, 10000]. The distance weight is the
straight distance along a perfect Earth sphere’s surface. All weights respect one-way streets of the
input graph.

Witness
search

Avg. upward search space

Instance Metric Order # Upward arcs # Vertices # Arcs

Karlsruhe

Distance
Greedy

none 8 000 880 3 276 4 797 224
heuristic 295 759 283 2 881
perfect 295 684 281 2 873

Metis perfect 382 905 159 3 641
KaHIP perfect 441 998 141 2 983

Uniform
Greedy

none 5 705 168 2 887 3 602 407
heuristic 272 711 151 808
perfect 272 711 151 808

Metis perfect 363 310 153 2 638
KaHIP perfect 426 145 136 2 041

Random
Greedy

none 6 417 960 3 169 4 257 212
heuristic 280 024 160 949
perfect 276 742 160 948

Metis perfect 361 964 154 2 800
KaHIP perfect 424 999 138 2 093

Europe Distance
Greedy heuristic 39 886 688 4 661 133 151
Metis perfect 53 505 231 1 257 178 848
KaHIP perfect 60 692 639 644 62 014

and Zaroliagis 2000; Planken et al. 2012] seem like a good start. Also, determining
the precise treewidth could prove useful. However note, that an order inducing a mini-
mum treewidth is not necessarily an optimal CH order as the path example of Figure 1
shows.

In Table VI we evaluate the witness search performances for different metrics. It
turns out that the distance metric is the most difficult one of the tested metrics. That
the distance metric is more difficult than the travel time metric is well known. How-
ever it surprised us, that uniform and random metrics are easier than the distance
metric. We suppose that the random metric contains a few very long arcs that are
nearly never used. These could just as well be removed from the graph resulting in
a thinner graph with nearly the same shortest path structure. The CH of a thinner
graph with a similar shortest path structure naturally has a smaller size. To explain
why the uniform metric behaves more similar to the travel time metric than to the
distance metric we have to realize that highways do not have many degree 2 vertices
in the input graph. (Note that for different data sources this assumption might not
hold.) Highways are therefore also preferred by the uniform metric. We expect a more
an instance with more degree 2 nodes on highways to behave differently. Interestingly
the heuristic witness search is perfect for a uniform metric. We expect this effect to
disappear on larger graphs.

Recall that a CH is a DAG, and in DAGs each vertex can be assigned a level. If a
vertex can be placed in several levels we put it in the lowest level. Figure 12 illus-
trates the amount of vertices and arcs in each level of a CH. The many highly ranked
extremely thin levels are a result of the top level separator clique: Inside a clique every
vertex must be on its own level. A few big separators therefore significantly increase
the level count.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

0

25,000

50,000

75,000

100,000

4 32 256

(a) Karlsruhe/KaHIP

0

25,000

50,000

75,000

100,000

4 32 256

(b) Karlsruhe/Metis

0

1,000,000

2,000,000

3,000,000

4 32 256

(c) TheFrozenSea/KaHIP

0

1,000,000

2,000,000

3,000,000

4 32 256

(d) TheFrozenSea/Metis

0

5,000,000

10,000,000

15,000,000

4 32 256

(e) Europe/KaHIP

0

5,000,000

10,000,000

15,000,000

4 32 256 2,048

(f) Europe/Metis

Fig. 12. The number of vertices per level (blue dotted line), arcs departing in each level (red solid line) and
lower triangles in each level (green dashed line). Warning: In contrast to Figure 13 these figures have a
logarithmic x-scale.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

0

20,000

40,000

0 50 100 150 200

(a) Karlsruhe/KaHIP

0

10,000

20,000

30,000

40,000

0 50 100 150 200

(b) Karlsruhe/Metis

0

1,000,000

2,000,000

3,000,000

0 250 500 750

(c) TheFrozenSea/KaHIP

0

1,000,000

2,000,000

3,000,000

0 250 500 750

(d) TheFrozenSea/Metis

0

2,000,000

4,000,000

6,000,000

8,000,000

0 250 500 750 1,000 1,250

(e) Europe/KaHIP

0

1,000,000

2,000,000

3,000,000

4,000,000

0 500 1,000 1,500 2,000

(f) Europe/Metis

Fig. 13. The number of lower triangles per level (blue dashed line) and the time needed to enumerate all
of them per level (red solid line). The time unit is 100 nanoseconds. If the time curve thus rises to 1 000 000
on the plot the algorithm needs 0.1 seconds. Warning: In contrast to Figure 12 these figures do not have a
logarithmic x-scale.

10.4. Triangle Enumeration
We first evaluate the running time of the adjacency-array-based triangle enumeration
algorithm. Figure 13 clearly shows that most time is spent enumerating the triangles
of the lower levels. This justifies our suggestion to only precompute the triangles for
the lower levels as these are the levels were the optimization is most effective. How-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

Table VII. Precomputed triangles. As show in Section 6 the memory needed is proportional to
2t+m+ 1, where t is the triangle count and m the number of arcs in the CH. We use 4 byte
integers. We report t and m for precomputing all levels (full) and all levels below a reasonable
threshold level (partial). We further indicate how much percent of the total unaccelerated enu-
meration time is spent below the given threshold level. We chose the threshold level such that
this factor is about 33 %.

Karlsruhe TheFrozenSea Europe

Metis KaHIP Metis KaHIP Metis KaHIP

fu
ll

Triangles [10³] 2 590 2 207 601 846 864 041 1 409 250 578 247
CH arcs [10³] 478 528 21 067 25 100 70 070 73 920
Memory [MB] 22 19 4 672 6 688 11 019 4 694

pa
rt

ia
l

Threshold level 16 11 51 54 42 17
Triangles [10³] 507 512 126 750 172 240 147 620 92 144
CH arcs [10³] 367 393 13 954 15 996 58 259 59 282
Memory [MB] 5 5 1 020 1 375 1 348 929
Enum. time [%] 33 32 33 33 32 33

Table VIII. Customization performance. We report the time needed to compute a maximum customized metric
given an initial pair of upward and downward metrics. We show the impact of enabling SSE, precomputing
triangles (Pre. trian.), multi-threading (# Thr.), and customizing several metric pairs at once.

Karlsruhe TheFrozenSea Europe

Pre. # Metrics Metis KaHIP Metis KaHIP Metis KaHIP
SSE trian. # Thr. Pairs time [s] time [s] time [s] time [s] time [s] time [s]

no none 1 1 0.0567 0.0468 7.88 10.08 21.90 10.88
yes none 1 1 0.0513 0.0427 7.33 9.34 19.91 9.55
yes all 1 1 0.0094 0.0091 3.74 3.75 7.32 3.22
yes all 16 1 0.0034 0.0035 0.45 0.61 1.03 0.74
yes all 16 2 0.0035 0.0033 0.66 0.76 1.34 1.05
yes all 16 4 0.0040 0.0048 1.19 1.50 2.80 1.66

ever, precomputing more levels does not hurt if enough memory is available. We pro-
pose to determine the threshold level up to which triangles are precomputed based on
the size of the available unoccupied memory. On modern server machines such as our
benchmarking machine there is enough memory to precompute all levels. The memory
consumption is summarized in Table VII. However, note that precomputing all trian-
gles is prohibitive in the game scenario as less available memory should be expected.

10.5. Customization
In Table VIII we report the times needed to compute a maximum metric given an ini-
tial one. A first observation is that on the road graphs the KaHIP order leads to a faster
customization whereas on the game map Metis dominates. Using all optimizations pre-
sented we customize Europe in below one second. When amortized4, we even achieve
415 ms which is only slightly above the (non-amortized) 347 ms reported in [Delling
and Werneck 2013] for CRP. (Note that their experiments were run on a different ma-
chine with a faster clock but 2 × 6 instead of 2 × 8 cores and use a turn-aware data
structure making an exact comparison difficult.)

Unfortunately, the optimizations illustrated in Table VIII are pretty far from what is
possible with the hardware normally available in a game scenario. Regular PCs do not
have 16 cores and one cannot clutter up the whole RAM with several GB of precom-
puted triangles. We therefore ran additionally experiments with different parameters

4We refer to a server scenario of multiple active users that require simultaneous customization, e. g., due to
traffic updates.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

Table IX. Detailed customization performance on TheFrozenSea. We report the time needed to compute a max-
imum customized metric from an initial metric. We show the impact of exploiting undirectedness, customizing
several metrics at once, reducing the bitwidth of the metric, enabling SSE, multi-threading (# Thr.), and pre-
computing triangles (Pre. trian.). Note that the order in which improvements are investigated is different from
Table VIII. Also note that results are based on the Metis order as Table VIII shows that KaHIP is outperformed.

Metric Precomputed Customization Amortized
Undirected # Metrics bits SSE # Threads triangles time [s] time [s]

no 2 (up & down) 32 no 1 none 7.88 7.88
yes 1 32 no 1 none 6.65 6.65
yes 4 32 no 1 none 9.36 2.34
yes 4 32 yes 1 none 8.51 2.13
yes 8 16 yes 1 none 8.52 1.06
yes 8 16 yes 2 none 5.00 0.63
yes 8 16 yes 2 all 2.16 0.27
yes 8 16 yes 16 all 0.63 0.08

Table X. Partial update performance. We report time required in milliseconds and number
of arcs changed for partial metric updates. We report median, average and maximum
over 10000 runs. In each run we change the upward and the downward weight of a single
random arc in G∧

π (the arc is not necessarily in G) to random values in [0, 105]. The metric
is reset to initial state between runs. Timings are sequential without SSE. No triangles
were precomputed.

Arcs removed from queue Partial update time [ms]

med. avg. max. med. avg. max.

Karlsruhe Metis 1 4.1 442 0.001 0.004 0.9
KaHIP 1 3.7 354 0.001 0.003 1.0

TheFrozenSea Metis 8 395.7 15023 0.021 2.2 91.4
KaHIP 8 382.4 12035 0.017 2.0 99.2

Europe Metis 1 89.3 16997 0.003 1.0 219.3
KaHIP 1 38.8 10666 0.003 0.2 87.2

and report the results in Table IX. The experiments show that it is possible to fully
customize TheFrozenSea in an amortized5 time of 1.06s without precomputing trian-
gles or using multiple cores. However a whole second is still too slow to be usable (with
graphics, network and game logic also requiring resources). We therefore evaluated the
time needed by partial updates as described in Section 7.4. We report our results in
Table X. The median, average and maximum running times significantly differ. There
are a few arcs that trigger a lot of subsequent changes whereas for most arcs a weight
change has nearly no effect. The explanation is that highway arcs and choke point arcs
are part of many shortest paths and thus updating such an arc triggers significantly
more changes. Interestingly in the worst observed case, using the KaHIP order trig-
gers less changes on TheFrozenSea graph than using the Metis order but an update
needs more time. The reason for this is that the KaHIP order results in significantly
more triangles and thus the work per arc is higher than what is needed with the Metis
order.

For completeness we report the running times of the perfect customizations in Ta-
ble XI. Note that a perfect customization is not a necessary step of our proposed tool
chain. Hence, optimizing this code path had a low priority.

5We refer to a multiplayer scenario, where, e. g., fog of war requires player-specific simultaneous customiza-
tion.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

Table XI. Perfect Customization. We report the time required to turn an
initial metric into a perfect metric. Runtime is given in seconds, without
use of SSE or triangle precomputation.

Karlsruhe TheFrozenSea Europe

Thr. Metis KaHIP Metis KaHIP Metis KaHIP

1 0.15 0.13 30.54 33.76 67.01 32.96
16 0.03 0.02 3.26 4.37 14.41 5.47

10.6. Distance Query
We experimentally evaluated the running times of the queries algorithms. For this
we ran 106 shortest path distance queries with the source and target vertices picked
uniformly at random. (For Europe + Distance we only ran 104 queries.) The presented
times are averaged running times on a single core without any SSE.

In Table XII we compare the query running times of weighted CHs with Customiz-
able CHs (CCHs). To construct the weighted CHs we used a (non-perfect) witness
search whereas no witness search was used for the metric-independent CHs. We fur-
ther reordered the vertices in the metric-independent CHs by ND-order. Preliminary
experiments showed that this reordering results in better cache behavior and a speed-
up of about 2 to 3 because much query time is spent on the topmost clique. We evalu-
ate the basic query, the stall-on-demand optimization, and the elimination-tree based
query. Note that the latter only works for metric-independent CHs (as the metric-
independent search spaces of weighted CHs get huge).

In comparison to the numbers reported in the original CH paper [Geisberger et al.
2012] our running times for weighted CHs tend to be slightly faster. However, our ma-
chine is faster which should explain most differences. The only exception is the Europe
graph with the distance metric. Here, our measured running time of only 0.540 ms is
disproportionately faster. We suppose that the reason is that our order is better as
we do not use lazy update and thus have a higher preprocessing time. As already
observed by the original authors we confirm that the stall-on-demand heuristic im-
proves running times by a factor 2 to 5 compared to the basic algorithm on weighted
CHs. When using ND-order the stalling query is however slower: The search spaces of
weighted CHs are spare whereas in the metric-independent case they are dense. This
significantly increases the number of arcs that must be tested in the stalling test and
explains why stalling is not useful.

For the metric-independent CHs the basic query algorithm (i. e., bidirectional search
with stopping criterion) visits large portions of the search space, as can be seen by com-
paring the search space sizes from Table IV with the numbers reported in Table XII.
For this reason, it pays off to use the elimination tree based query algorithm. It al-
ways visits the whole search space but as we see these are only slightly more vertices.
However, it does not need a priority queue and therefore spends less time per vertex.
Another advantage of the elimination tree based algorithm is that the code paths do
not depend on the metric. This means that query times are completely independent of
the metric as can be seen by comparing the running times of the travel time metric to
the distance metric. For the basic query algorithms the metric has a slight influence on
the performance. A stalling query on the weighted CH with travel time is on Europe
about a factor of 5 faster than the elimination tree based algorithm. However for the
distance metric this is no longer the case. Here, the metric-independent elimination
tree based approach is even faster by about 20% because of the lack of priority queue.

In Table XIII, we give a more in-depth experimental analysis of the elimination tree
query algorithm. We break the running times up into the time needed to compute the
least common ancestor (LCA), the time needed to reset the tentative distances and the

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

Table XII. Contraction Hierarchies query performance. We report the query time in microseconds as well as
the search space visited (we use visited to differentiate from the maximum reachable search space given in
Table IV). For query algorithms that use stalling, we additionally report the number of vertices stalled after
queue removal, as well as the number of arcs touched during the stalling test. Note that the search space
figures do not contain such stalled vertices. All reported vertex and arc counts only refer to the forward search.
We evaluate several algorithmic variants. Each variant is composed of an input graph, a contraction order,
and whether a witness search is used. “+w” means that a (non-perfect) witness search is used, whereas “-w”
means that no witness search is used. “greedy+w” corresponds to the original CHs. The metrics used for the
non-greedy CHs are directed and maximum.

Visited search space Stalling Time

Instance Metric Variant Algorithm # Vertices # Arcs # Vertices # Arcs [µs]

K
ar

ls
ru

he T
ra

ve
l-

T
im

e Greedy+w Basic 81 370 — — 17
Stalling 43 182 167 227 16

Metis-w
Basic 138 5 594 — — 62
Stalling 104 4 027 32 4 278 67
Tree 164 6 579 — — 33

KaHIP-w
Basic 120 4 024 — — 48
Stalling 93 3 051 26 3 244 55
Tree 143 4 723 — — 25

D
is

ta
nc

e

Greedy+w Basic 208 1978 — — 57
Stalling 69.5 559 46 759 35

Metis-w
Basic 142 5 725 — — 65
Stalling 115 4 594 26 4 804 75
Tree 164 6 579 — — 33

KaHIP-w
Basic 123 4 117 — — 50
Stalling 106 3 480 17 3 564 59
Tree 143 4 723 — — 26

T
he

F
ro

ze
nS

ea

M
ap

-D
is

ta
nc

e Greedy+w Basic 1 199 12 692 — — 539
Stalling 319 3 459.3 197 4 345 286

Metis-w
Basic 610 81 909 — — 608
Stalling 578 78 655 24 79 166 837
Tree 676 92 144 — — 317

KaHIP-w
Basic 603 82 824 — — 644
Stalling 560 74 244 50 74 895 774
Tree 674 89 567 — — 316

E
ur

op
e T

ra
ve

l-
T

im
e Greedy+w Basic 546 3 623 — — 283

Stalling 113 668 75 911 107

Metis-w
Basic 1 126 405 367 — — 2 838
Stalling 719 241 820 398 268 499 2 602
Tree 1 291 464 956 — — 1 496

KaHIP-w
Basic 581 107 297 — — 810
Stalling 418 75 694 152 77 871 857
Tree 652 117 406 — — 413

D
is

ta
nc

e

Greedy+w Basic 3 653 104 548 — — 2 662
Stalling 286 7 124 426 11 500 540

Metis-w
Basic 1 128 410 985 — — 3 087
Stalling 831 291 545 293 308 632 3 128
Tree 1 291 464 956 — — 1 520

KaHIP-w
Basic 584 108 039 — — 867
Stalling 468 85 422 113 87 315 1 000
Tree 652 117 406 — — 426

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

Table XIII. Detailed elimination tree performance. We report running time in microseconds for the elimination-
tree-based query algorithms. We report the time needed to compute the LCA, the time needed to reset the
tentative distances, the time needed to relax the arcs, the total time of a distance query, and the time needed for
full path unpacking as well as the average number of vertices on such a path (which is metric-dependent).

Distance query Path

LCA Reset Arc relax Total Unpack Length
[µs] [µs] [µs] [µs] [µs] [vert.]

Karlsruhe
Travel-Time Metis 0.6 0.8 31.3 33.0 20.5 189.6KaHIP 0.6 1.4 23.1 25.2 18.6

Distance Metis 0.6 0.8 31.5 33.2 27.4 249.4KaHIP 0.6 1.4 23.5 25.7 24.7

TheFrozenSea Map-Distance Metis 2.7 3.1 310.1 316.5 220.0 596.3KaHIP 3.0 3.2 308.7 315.5 270.8

Europe
Travel-Time Metis 4.6 19.0 1471.2 1496.3 323.9 1390.6KaHIP 3.4 9.9 399.4 413.3 252.7

Distance Metis 4.7 19.0 1494.5 1519.9 608.8 3111.0KaHIP 3.6 10.0 411.6 425.8 524.1

time needed to relax all arcs. We further report the total distance query time (which
is in essence the sum of the former three) and the time needed to unpack the full
path. Our experiments show that the arc-relaxation phase clearly dominates the run-
ning times. It is therefore not useful to further optimize the LCA computation or to
accelerate tentative distance resetting using, e. g., timestamps. We only report path
unpacking performance without precomputed lower triangles. Using them would re-
sult in a further speedup with a similar speed-memory trade-off as already discussed
for customization.

Fair query time comparisons with CRP [Delling et al. 2014] are difficult because they
nearly only report turn-aware query running times, whereas the graphs we tested do
not use turns. As far as we are aware, non-turn-aware query performance was only
published in [Delling et al. 2011], but here queries were parallelized using two cores:
The forward and backward searches are run in parallel. The authors report queries
in 0.72 ms for travel time and 0.79 ms for distance metric on Europe. This is slower
than our sequential query times of 0.41 ms and 0.43 ms, respectively. (Note that these
experiments were run on a slightly different machine than ours.)

We have shown in Table VIII that ND-orders can be combined with perfect witness
search to get CHs of smaller search spaces. This could be exploited to achieve (even)
faster query times as the number of arcs decrease by a factor ≈2 on road and ≈4 on
game maps. As the elimination-tree query spends nearly all of its time visiting arcs we
expect its running time to go down by about the same factor. However, a perfect cus-
tomization is slower by a factor of ≈3 (c. f. Table XI). In total, combining ND-orders and
perfect witness search yields another Pareto-optimal trade-off between customization
time and query time, but one that is less comparable to CRP.

11. CONCLUSIONS
We have extended Contraction Hierarchies to a three phase customization approach
and demonstrated that the approach is practicable and efficient not only on real world
road graphs but also on game maps. Furthermore, we have performed an extensive ex-
perimental analysis of its performance that hopefully sheds some light onto the inner
workings of Contraction Hierarchies.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

11.1. Future Work
While a graph topology with small cuts is one of the main driving force behind the
running time performance of Contraction Hierarchies, it is clear from Table IV that
better metric-dependent orders can be constructed by exploiting additional travel time
metric specific properties. While the works of [Abraham et al. 2010] explain this effect
to some extend we believe that it is worthwhile to further investigate this gap between
metric-dependent and metric-independent orders.

Better nested dissection orders directly increase the performance of the introduced
Customizable Contraction Hierarchies. Research aiming at providing better vertex or-
ders or proving that the existing orders are close to optimal seems useful. Revisiting all
of the existing Contraction Hierarchy extensions to see which can profit form a metric-
independent vertex order or can be made customizable seems worthwhile. An obvious
candidate are Time-Dependent Contraction Hierarchies [Batz et al. 2013] where com-
puting a good metric-dependent order has proven relatively expensive.

We would like to thank Ignaz Rutter and Tim Zeitz for very inspiring con-
versations.

REFERENCES
Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. 2012. Hierarchical Hub Label-

ings for Shortest Paths. In Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12)
(Lecture Notes in Computer Science), Vol. 7501. Springer, 24–35.

Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. 2010. Highway Dimension, Shortest
Paths, and Provably Efficient Algorithms. In Proceedings of the 21st Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA’10). SIAM, 782–793.

Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas Pajor, Peter
Sanders, Dorothea Wagner, and Renato F. Werneck. 2014. Route Planning in Transportation Net-
works. Technical Report MSR-TR-2014-4. Microsoft Research. http://research.microsoft.com/apps/pubs/
?id=207102

Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. 2013. Minimum Time-Dependent
Travel Times with Contraction Hierarchies. ACM Journal of Experimental Algorithmics 18, 1.4 (April
2013), 1–43.

Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. 2013. Search-Space Size in Con-
traction Hierarchies. In Proceedings of the 40th International Colloquium on Automata, Languages,
and Programming (ICALP’13) (Lecture Notes in Computer Science), Vol. 7965. Springer, 93–104.

Hans L. Bodlaender and Arie M.C.A. Koster. 2010. Treewidth computations I. Upper bounds. Information
and Computation 208, 3 (2010), 259–275.

Soma Chaudhuri and Christos Zaroliagis. 2000. Shortest Paths in Digraphs of Small Treewidth. Part I:
Sequential Algorithms. Algorithmica (2000).

Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. 2011. Customizable Route
Planning. In Proceedings of the 10th International Symposium on Experimental Algorithms (SEA’11)
(Lecture Notes in Computer Science), Vol. 6630. Springer, 376–387.

Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. 2014. Customizable Route
Planning in Road Networks. Transportation Science (2014). http://research.microsoft.com/apps/pubs/
?id=198358 accepted for publication.

Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. 2011. Graph Partitioning
with Natural Cuts. In 25th International Parallel and Distributed Processing Symposium (IPDPS’11).
IEEE Computer Society, 1135–1146.

Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. 2012. Exact Combinatorial
Branch-and-Bound for Graph Bisection. In Proceedings of the 14th Meeting on Algorithm Engineering
and Experiments (ALENEX’12). SIAM, 30–44.

Daniel Delling and Renato F. Werneck. 2013. Faster Customization of Road Networks. In Proceedings of
the 12th International Symposium on Experimental Algorithms (SEA’13) (Lecture Notes in Computer
Science), Vol. 7933. Springer, 30–42.

Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson (Eds.). 2009. The Shortest Path Problem:
Ninth DIMACS Implementation Challenge. DIMACS Book, Vol. 74. American Mathematical Society.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

Edsger W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1 (1959),
269–271.

Delbert R. Fulkerson and O. A. Gross. 1965. Incidence Matrices and Interval Graphs. Pacific J. Math. 15, 3
(1965), 835–855.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. 2012. Exact Routing in Large
Road Networks Using Contraction Hierarchies. Transportation Science 46, 3 (August 2012), 388–404.

Robert Geisberger and Christian Vetter. 2011. Efficient Routing in Road Networks with Turn Costs. In
Proceedings of the 10th International Symposium on Experimental Algorithms (SEA’11) (Lecture Notes
in Computer Science), Vol. 6630. Springer, 100–111.

Alan George. 1973. Nested Dissection of a Regular Finite Element Mesh. SIAM J. Numer. Anal. (1973).
Alan George and Joseph W. Liu. 1978. A Quotient Graph Model for Symmetric Factorization. In Sparse

Matrix Proceedings. SIAM.
John R. Gilbert and Robert Tarjan. 1986. The analysis of a nested dissection algorithm. Numer. Math. (1986).
Martin Holzer, Frank Schulz, and Dorothea Wagner. 2008. Engineering Multilevel Overlay Graphs for

Shortest-Path Queries. ACM Journal of Experimental Algorithmics 13, 2.5 (December 2008), 1–26.
Haim Kaplan, Ron Shamir, and Robert Tarjan. 1999. Tractability of Parameterized Completion Problems

on Chordal, Strongly Chordal, and Proper Interval Graphs. SIAM J. Comput. (1999).
George Karypis and Vipin Kumar. 1999. A Fast and High Quality Multilevel Scheme for Partitioning Ir-

regular Graphs. SIAM Journal on Scientific Computing 20, 1 (1999), 359–392. http://dx.doi.org/10.1137/
S1064827595287997

Richard J. Lipton, Donald J. Rose, and Robert Tarjan. 1979. Generalized Nested Dissection. SIAM J. Numer.
Anal. 16, 2 (April 1979), 346–358.

Léon Planken, Mathijs de Weerdt, and Roman van Krogt. 2012. Computing All-pairs Shortest Paths by
Leveraging Low Treewidth. Journal of Artificial Intelligence Research (2012).

Peter Sanders and Christian Schulz. 2013. Think Locally, Act Globally: Highly Balanced Graph Partition-
ing. In Proceedings of the 12th International Symposium on Experimental Algorithms (SEA’13) (Lecture
Notes in Computer Science), Vol. 7933. Springer, 164–175.

Frank Schulz, Dorothea Wagner, and Karsten Weihe. 2000. Dijkstra’s Algorithm On-Line: An Empirical
Case Study from Public Railroad Transport. ACM Journal of Experimental Algorithmics 5, 12 (2000),
1–23.

Sabine Storandt. 2013. Contraction Hierarchies on Grid Graphs. In Proceedings of the 36rd Annual German
Conference on Advances in Artificial Intelligence (Lecture Notes in Computer Science). Springer.

Nathan Sturtevant. 2012. Benchmarks for Grid-Based Pathfinding. Transactions on Computational Intelli-
gence and AI in Games (2012).

Mihalis Yannakakis. 1981. Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Meth-
ods (1981).

Tim Zeitz. 2013. Weak Contraction Hierarchies Work! Bachelor Thesis. Karlsruhe Institute of Technology.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

