
DOI: 10.1007/s00224-004-1178-y

Theory Comput. Systems 38, 373–392 (2005) Theory of
Computing

Systems
© 2005 Springer Science+Business Media, Inc.

Graph-Modeled Data Clustering: Fixed-Parameter Algorithms
for Clique Generation∗

Jens Gramm,1 Jiong Guo,2 Falk Hüffner,2 and Rolf Niedermeier2

1Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Sand 13, D-72076 Tübingen, Germany
gramm@informatik.uni-tuebingen.de

2Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany,
{guo,hueffner,niedermr}@minet.uni-jena.de

Abstract. We present efficient fixed-parameter algorithms for the NP-complete
edge modification problems CLUSTER EDITING and CLUSTER DELETION. Here, the
goal is to make the fewest changes to the edge set of an input graph such that the
new graph is a vertex-disjoint union of cliques. Allowing up to k edge additions
and deletions (CLUSTER EDITING), we solve this problem in O(2.27k + |V |3) time;
allowing only up to k edge deletions (CLUSTER DELETION), we solve this problem
in O(1.77k + |V |3) time. The key ingredients of our algorithms are two easy to
implement bounded search tree algorithms and an efficient polynomial-time reduc-
tion to a problem kernel of size O(k3). This improves and complements previous
work. Finally, we discuss further improvements on search tree sizes using computer-
generated case distinctions.

1. Introduction

Motivation and problem definition. There is a huge variety of clustering algorithms with
applications in numerous fields (see, e.g., [15] and [17]). Here, we focus on problems
closely related to algorithms for clustering gene expression data (see [29] for a recent

∗ A preliminary version of this paper has appeared in the Proceedings of the 5th Italian Conference
on Algorithms and Complexity (CIAC 2003), held in Rome, May 28–30, 2003, pages 108–119, LNCS 2653,
Springer-Verlag, Berlin. The first author was supported by the Deutsche Forschungsgemeinschaft (DFG),
research project “OPAL” (optimal solutions for hard problems in computational biology), NI 369/2. The
other authors were supported by the Deutsche Forschungsgemeinschaft (DFG), junior research group “PIAF”
(fixed-parameter algorithms), NI 369/4.

374 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

survey) and so-called correlation clustering (with applications in document clustering
and “agnostic learning” [3]). In this context, Shamir et al. [27] recently studied two NP-
complete graph problems called CLUSTER EDITING and CLUSTER DELETION.1 These are
based on the notion of a similarity graph whose vertices correspond to data elements and
in which there is an edge between two vertices iff the similarity of their corresponding
elements exceeds a predefined threshold. The goal is to obtain a cluster graph by as few
edge modifications (i.e., edge deletions and additions) as possible; a cluster graph is a
graph in which each of the connected components is a clique. Thus, we arrive at the edge
modification problem CLUSTER EDITING which is central to our work:

Input: An undirected graph G = (V, E), and a non-negative integer k.
Question: Can we transform G, by deleting and adding at most k edges, into a
graph that consists of a disjoint union of cliques?

CLUSTER DELETION is the special case where edges can only be deleted. All these
problems belong to the class of edge modification problems, see [23] for a recent
survey.

Previous work. The most important reference point to our work is the paper of Shamir
et al. [27]. Among other things, they showed that CLUSTER EDITING is NP-complete and
that there exists some constant ε > 0 such that it is NP-hard to approximate CLUSTER

DELETION to within a factor of 1 + ε. The NP-completeness of CLUSTER EDITING,
however, can already be extracted from work of Křivánek and Morávek [20] who studied
more general problems in hierarchical tree clustering. In addition, Shamir et al. studied
cases where the number of clusters (i.e., cliques) is fixed. Before that, Ben-Dor et al. [4]
and Sharan and Shamir [28] investigated closely related clustering applications in the
computational biology context, where they deal with modified versions of the CLUSTER

EDITING problem together with heuristic polynomial-time solutions. Independently of
Shamir et al.’s work, Bansal et al. [3] initiated the research on “correlation clustering”
which is motivated by document clustering problems from machine learning. It can be
easily seen that an important special case of the general problem—also studied by Bansal
et al.—is identical to CLUSTER EDITING. Bansal et al. mainly provide approximation
results which partially have been improved by very recent work [6], [8], [11]. Notably,
the best known approximation factor for CLUSTER EDITING is 4 [6]; moreover, it is
shown to be APX-hard (meaning that a polynomial-time approximation scheme (PTAS)
is unlikely) [6]. Thus, there is a strong motivation to search for efficient fixed-parameter
algorithms to solve CLUSTER EDITING. From the more abstract view of graph modification
problems, Leizhen Cai [5] (also see [10]) considered the more general problem (allowing
edge deletions, edge additions, and vertex deletions) where the “goal graphs” have
a “forbidden set characterization” with respect to “hereditary graph properties” and
he showed that this problem is fixed-parameter tractable (refer to [2], [9], [10], [12],
and [13] for surveys on parameterized complexity and algorithms). In particular, Cai’s
result implies O(3k · |G|4) time algorithms for both CLUSTER EDITING and CLUSTER

DELETION where the forbidden set consists of a P3 (i.e., a vertex-induced path consisting

1 The third problem CLUSTER COMPLETION (only edge additions allowed) is easily seen to be polynomial-
time solvable.

Graph-Modeled Data Clustering 375

of three vertices).2 Natanzon et al. [23] give a general constant-factor approximation for
deletion and editing problems on bounded-degree graphs with respect to properties (such
as being a cluster graph) that can be characterized by a finite set of forbidden induced
subgraphs. Kaplan et al. [18] and Mahajan and Raman [22] considered other special cases
of edge modification problems with particular emphasis on fixed-parameter tractability
results. Khot and Raman [19] recently investigated the parameterized complexity of
vertex deletion problems for finding subgraphs with hereditary properties.

New results. Following a suggestion of Natanzon et al. [23] (who note that, regarding
their NP-hardness results for some edge modification problems, “. . . studying the param-
eterized complexity of the NP-hard problems is also of interest”), we present significantly
improved fixed-parameter tractability results for CLUSTER EDITING and CLUSTER DELE-
TION. More precisely, we show that CLUSTER EDITING is solvable in O(2.27k + |V |3)
worst-case time and that CLUSTER DELETION is solvable in O(1.77k + |V |3) worst-case
time. This gives simple and efficient exact algorithms for these NP-complete problems
in case of reasonably small parameter values k (number of deletions and additions or
number of deletions only). In particular, we present an efficient data reduction by pre-
processing, providing a problem kernel of size O(k3).

Structure of the paper. After providing some basics in Section 2, in Section 3 we
describe a set of efficient data reduction rules that transform a given CLUSTER EDITING

instance into a “reduced graph” with O(k2) vertices and O(k3) edges. Then, in Sections 4
and 5, we provide two depth-bounded search trees for CLUSTER EDITING and CLUSTER

DELETION. In the concluding section we summarize our findings, indicate opportunities
for future work, and point out how the achieved search tree sizes can further be lowered
using computer-generated case distinctions.

2. Preliminaries and Basic Notation

One of the latest approaches to attack computational intractability is to study parame-
terized complexity. For many hard problems, the seemingly unavoidable combinatorial
explosion can be restricted to a “small part” of the input, the parameter, so that the prob-
lems can be solved in polynomial time when the parameter is fixed. For instance, the
NP-complete VERTEX COVER problem can be solved by an algorithm with O(1.3k+kn)
running time [7], [24], [26], where the parameter k is a bound on the maximum size of
the vertex cover set we are looking for and where n is the number of vertices in the given
graph. The parameterized problems that have algorithms of f (k) ·nO(1) time complexity
are called fixed-parameter tractable, where f can be an arbitrary function depending
only on k, and n denotes the overall input size, see [2], [9], [10], [12], and [13] for details.

Our bounded search tree algorithms work recursively. The number of recursions is
the number of nodes in the corresponding tree. This number is governed by homogeneous,
linear recurrences with constant coefficients. It is well known how to solve them and

2 A graph is a cluster graph iff it contains no P3 as a vertex-induced subgraph. This is also important for
our work. Note that Shamir et al. [27] write “P2-free,” but according to the graph theory literature it should be
called “P3-free.”

376 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

the asymptotic solution is determined by the roots of the characteristic polynomial (see,
e.g., [21] for more details). If the algorithm solves a problem of “size” s and calls itself
recursively for problems of sizes s − d1, . . . , s − di , then (d1, . . . , di) is called the
branching vector of this recursion. It corresponds to the recurrence

ts = ts−d1 + · · · + ts−di ,

where ts denotes the number of leaves in the search tree solving an instance of size s
and tj = 1 for 0 ≤ j < d with d = max(d1, . . . , di). This recurrence corresponds to the
characteristic polynomial

zd = zd−d1 + · · · + zd−di .

If α is a root of the characteristic polynomial which has maximum absolute value and
is positive, then ts is αs up to a polynomial factor. We call α the branching number that
corresponds to the branching vector (d1, . . . , di). Moreover, if α is a single root, then
ts = O(αs); all branching numbers that occur in this paper are single roots.

The size of the search tree is therefore O(αk), where k is the parameter and α is the
largest branching number that will occur; in our case, for CLUSTER EDITING, it will be
shown that this branching number is about 2.27 and it belongs to the branching vector
(1, 2, 2, 3, 3) in Section 4.

We assume familiarity with basic graph-theoretical notations. If x is a vertex in an
undirected graph G = (V, E), then by NG(x) we denote the set of its neighbors, i.e.,

NG(x) := { v | {x, v} ∈ E}.
With degG(x)we denote the degree of a vertex x ∈ V , i.e. |NG(x)|. We omit the index G
if it is clear from the context. The whole paper only works with simple graphs without
self-loops. By |G| we refer to the size of graph G, which is determined by the numbers
of its vertices and edges.

In our algorithms we use a table T to store annotations for the edges of the graph
such that T has an entry for every pair of vertices u, v ∈ V which can be empty or take
one of the following values:

“permanent”: In this case, {u, v} ∈ E and the algorithm is not allowed to delete {u, v}
later on; or

“forbidden”: In this case, {u, v} /∈ E and the algorithm is not allowed to add {u, v}
later on.

Note that, whenever the algorithms delete an edge {u, v} from E , we set T [u, v] to
forbidden since it would not make sense to reintroduce previously deleted edges. In
the same way, whenever the algorithms add an edge {u, v} to E , we set T [u, v] to
permanent. In the following, when adding and deleting edges, we assume that we make
these adjustments even when not mentioned explicitly.

3. Problem Kernel for Cluster Editing

A reduction rule replaces, in polynomial time, a given CLUSTER EDITING instance (G, k)
consisting of a graph G and a non-negative integer k by a “simpler” instance (G ′, k ′)

Graph-Modeled Data Clustering 377

such that (G, k) is a yes-instance iff (G ′, k ′) is a yes-instance, i.e., G can be transformed
into disjoint clusters by deleting/adding at most k edges iff G ′ can be transformed into
disjoint clusters by deleting/adding at most k ′ edges. An instance to which none of
a given set of reduction rules applies is called reduced with respect to these rules. A
parameterized problem such as CLUSTER EDITING (the parameter is k) is said to have
a problem kernel if, after the application of the reduction rules, the resulting reduced
instance has size f (k) for a function f depending only on k. (See [7] and [1] for two
recent examples concerning the graph problems VERTEX COVER and DOMINATING SET,
respectively. There, the achieved problem kernel sizes are even linear in the parameters.)

We present three reduction rules for CLUSTER EDITING. For each of them, we discuss
its correctness and give the running time which is necessary to execute the rule. In our
rules, we use table T as described in Section 2. Using the reduction rules, we show, at
the end of this section, a problem kernel consisting of at most 2k2 + k vertices and at
most 2k3 + k2 edges for CLUSTER EDITING.

Although the following reduction rules also add edges to the graph, we consider the
resulting instances as simplified. The reason is that for every added edge, the parameter
is decreased by one. In the following rules, it is implicitly assumed that, when an edge
is added or deleted, parameter k is decreased by one.

In the formulation of our rules, we use the following terminology. Given a graph
G = (V, E) and a vertex pair vi , vj ∈ V , we use common neighbor of vi and vj to refer
to a vertex z ∈ V with {z, vi } ∈ E and {z, vj } ∈ E . Similarly, a non-common neighbor
of vi and vj is a vertex z ∈ V with z �= vi and z �= vj such that either {z, vi } ∈ E or
{z, vj } ∈ E but not both.

Rule 1. For every pair of vertices u, v ∈ V :

1. If u and v have more than k common neighbors, then {u, v} has to belong to E
and we set T [u, v] := permanent. If {u, v} is not in E , we add it to E .

2. If u and v have more than k non-common neighbors, then {u, v} cannot belong
to E and we set T [u, v] := forbidden. If {u, v} is in E , we delete it.

3. If u and v have both more than k common and more than k non-common neigh-
bors, then the given instance has no solution.

Lemma 1. Rule 1 is correct.

Proof.

Case 1: Vertices u and v have more than k common neighbors. If we did exclude
{u, v} from E , then we would have to, for every common neighbor z of u and v, delete
{u, z}, {v, z}, or both. This, however, would require at least k + 1 edge deletions, a
contradiction to the maximum of k edge modifications allowed.

Case 2: Vertices u and v have more than k non-common neighbors. If we did include
{u, v} in E , then we would have to, for every non-common neighbor z of u and v, edit
one of the edges {u, z} and {v, z}. Without loss of generality, let z be a neighbor of u and
not a neighbor of v. Then we would have either to delete {u, z} from E or to add {v, z}
to E . With at least k + 1 non-common neighbors, this would require at least k + 1 edge
modifications.

378 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

Case 3: Vertices u and v have more than k common neighbors and more than k non-
common neighbors. From the proofs for Cases 1 and 2 it is clear that it would require
more than k edge modifications both when including {u, v} in E and when exclud-
ing {u, v} from E .

Note that Rule 1 applies to every vertex pair {u, v} for which the number of vertices
which are neighbors of u or v (or both) is greater than 2k.

Rule 2. For every three vertices u, v, w ∈ V :

1. If T [u, v] = permanent and T [u, w] = permanent, then {v,w}, if not already
there, has to be added to E and T [v,w] := permanent.

2. If T [u, v] = permanent and T [u, w] = forbidden, then {v,w}, if already there,
has to be deleted from E and T [v,w] := forbidden.

The correctness of Rule 2 is obvious. Regarding the running time, we analyze the
interleaved application of Rules 1 and 2 together.

Lemma 2. A graph can in O(|V |3) time be transformed into a graph which is reduced
with respect to Rules 1 and 2.

Proof. We present an algorithm to reduce a given graph G = (V, E) to a graph
G ′ = (V ′, E ′) with respect to Rules 1 and 2 in O(|V |3) time. The algorithm processes
Rules 1.1 and 1.2 and, with little additional effort, also Rules 1.3 and 2.

Data structures.

• Adjacency matrix for G.
• Two |V |×(|V | − 1)/2 arrays C and N where, for a vertex pair {vi , vj }with i < j ,

C[i, j] (N [i, j]) contains the number of common (non-common) neighbors of vi

and vj .
• Linked lists to store the vertex pairs that are candidates to be inserted into the

edge set or to be deleted from the edge set. More precisely, we maintain lists
Lc,0, Lc,1, . . . , Lc,k , and L p where Lc,r with 1 ≤ r ≤ k contains those vertex
pairs which have exactly r common neighbors. List L p contains those vertex
pairs which are scheduled to be set to permanent due to Rule 1.1 or Rule 2 (for
instance, when they have more than k common neighbors). Similarly, we maintain
lists Ln,0, Ln,1, . . . , Ln,k , and L f where Ln,s with 1 ≤ s ≤ k contains those vertex
pairs which have s non-common neighbors. List L f contains those vertex pairs
which are scheduled to be set to forbidden due to Rule 1.2 or Rule 2.
• Two |V | × (|V | − 1)/2 arrays Pc and Pn . A vertex pair {vi , vj } with i < j is

contained in at most one list from Lc,0, Lc,1, . . . , Lc,k . If {vi , vj } is contained in
one of these lists, then array entry Pc[i, j] contains a pointer to this list entry. If
{vi , vj } is contained in none of these lists, then Pc[i, j] contains a null pointer.
In an analogous way, Pn[i, j] contains a null pointer or a pointer to an entry of
{vi , vj } in one list of Ln,0, Ln,1, . . . , Ln,k .

Graph-Modeled Data Clustering 379

Initialization. We assume that the adjacency matrix for G is given. For every vertex pair
vi , vj ∈ V with i < j , we initialize C[i, j] and N [i, j] by counting their common and
non-common neighbors in the adjacency matrix. Based on these numbers, we add the pair
{vi , vj } to the appropriate list. If vi and vj have r common neighbors for 0 ≤ r ≤ k, then
{vi , vj } is added to Lc,r . If vi and vj have more than k common neighbors, then {vi , vj }
is added to L p. Analogously, {vi , vj } is added to Ln,s for s non-common neighbors,
0 ≤ s ≤ k, and added to L f for more than k non-common neighbors. If a vertex
pair is added to one of Lc,0, Lc,1, . . . , Lc,k , then a pointer to that entry is stored for
that vertex pair in Pc[i, j] (analogously in Pn[i, j] if the vertex pair is added to one
of Ln,0, Ln,1, . . . , Ln,k). If now or in the following algorithm, one vertex pair {vi , vj }
satisfies both C[i, j] > k and N [i, j] > k, then the algorithm terminates, reporting that
the instance has no solution due to Rule 1.3.

Algorithm. In the following we describe one iteration of the algorithm. The algorithm
terminates when both L p and L f are empty. If at least one of L p and L f is non-empty,
the vertex pairs in L p and L f are waiting to be processed. One iteration of the algorithm
processes one of these vertex pairs. In the following we describe how to process a vertex
pair {vi , vj }, i < j , taken from L p. Processing a vertex pair from L f will, then, work in
an analogous way, and is omitted here.

For a vertex pair {vi , vj } from L p, vi and vj are scheduled to be connected by a
permanent edge due to Rule 1 or Rule 2. We make sure that {vi , vj } is in the edge set
and we set T [vi , vj] := permanent. If, thereby, we added a new edge to the edge set,
parameter k has to be decreased by one.

When adding a new edge to the edge set,

(a) we have to update the counters of common and non-common neighbors (if we
change counters, then we also have to update the lists) and

(b) we have to test whether the added edge gives rise to an application of Rule 2.

Regarding (a), we assume that we add a new edge {vi , vj }. We assume that k still
has its “old” value, i.e., it is not yet decreased by one. To update the counters and to
test whether the lists have to be updated, we consider every vertex vl with vl �= vi and
vl �= vj , since only for {vi , vl} and {vj , vl} the counters of common and non-common
neighbors can change. Since we add a new edge, we have to consider the following
situations (without loss of generality we assume i < j < l):

• Vertex vl is a common neighbor of vi and vj . Then we set N [i, l] := N [i, l]− 1,
C[i, l] := C[i, l]+ 1, N [j, l] := N [j, l]− 1, and C[j, l] := C[j, l]+ 1.
• Vertex vl is a neighbor of exactly one of vi and vj . Without loss of generality

we assume that vl is a neighbor of vj but not a neighbor of vi . Then we set
N [i, l] := N [i, l]− 1, C[i, l] := C[i, l]+ 1, and N [j, l] := N [j, l]+ 1.
• Vertex vl is neither a neighbor of vi nor a neighbor of vj . Then we set N [i, l] :=

N [i, l]+ 1 and N [j, l] := N [j, l]+ 1.

If the value of an entry in C changes, we update lists Lc,r , 1 ≤ r ≤ k, and L p. If the
value of an entry in N changes, we update lists Ln,s , 1 ≤ s ≤ k, and L f . Updating these
lists is described using the example of increasing C[i, l]. If C[i, l] is increased to a value
of at most k+ 1, and {vi , vl} is contained in one of the lists Lc,r , 1 ≤ r ≤ k, then {vi , vl}

380 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

is contained in Lc,C[i,l]−1 (with respect to the new value of C[i, l]). We remove {vi , vl}
from Lc,C[i,l]−1, using the pointer stored in Pc[i, l]. If the new value C[i, l] satisfies
C[i, l] = k + 1, we move the entry to the end of list L p and, otherwise, we move the
entry to the end of list Lc,C[i,l]. When we move {vi , vl} to L p, we delete the pointer stored
in Pc[i, l] since it is no longer needed.

Having updated the counters and lists in the described way, we append list Lc,k (still
with respect to the old value of k) to the end of list L p since, for the vertex pairs in Lc,k

and the new value of k, Rule 1.1 applies. In the same way, we append list Ln,k to the end
of list L f due to Rule 1.2. Then we actually decrease parameter k by 1.

Regarding (b), we test whether the permanent edge {vi , vj } gives rise to an applica-
tion of Rule 2 as follows. Again, we consider every vertex vl with vl �= vi and vl �= vj

and test whether {vi , vl} is permanent but not {vj , vl} or vice versa. Without loss of
generality, we assume that {vi , vl} is permanent but not {vj , vl}. If not already contained
in L p or L f , we add the non-permanent vertex pair {vj , vl} to the list L p. Both tests, (a)
and (b), can, by making use of the adjacency matrix and the arrays Pc and Pn , be done
in O(|V |) time. This completes the description of the iteration processing vertex pair
{vi , vj }. When {vi , vj } is processed, its corresponding entry is removed from L p.

The outlined iteration is repeated until k = 0 or both L p and L f are empty. If
parameter k reaches 0 before L p and L f are empty, then the given instance has no
solution. If L p and L f are empty while k ≥ 0, there is no remaining vertex pair for
which Rule 1 or Rule 2 applies and, thus, the resulting graph is reduced with respect to
Rules 1 and 2.

Running time. The initialization of the lists and arrays, i.e., to count the number of
common and non-common neighbors for every vertex pair can be done in O(|V |3) time:
For every vertex pair {vi , vj }, we consider all vertices vl with vl �= vi and vl �= vj . An
entry for {vi , vj } is added to the appropriate lists in constant time.

One iteration of the algorithm takes at most O(|V |) time, since the list entries can
be accessed and moved in constant time, by using the pointers stored in arrays Pc and Pn .
Beyond that, the iteration involves only a loop over all vertices in V .

There are less than |V |2 iterations (at most one for every vertex pair) since, after
a vertex pair is processed, it is removed from all lists. Summarizing, the total time to
reduce the given graph is O(|V |3).

The following rule completes the set of reduction rules proposed in this section.

Rule 3. Delete the connected components which are cliques from the graph.

The correctness of Rule 3 is straightforward. Computing the connected components of
a graph and checking for cliques can easily be done in linear time:

Lemma 3. Rule 3 can be executed in O(|G|) time.

Notably, for the problem kernel size to be shown, Rules 1 and 3 would be sufficient.
Rule 2 is also taken into account since it is very easy and general and can be executed
in the course of executing Rule 1. Thus, Rules 1–3 constitute a small set of general and

Graph-Modeled Data Clustering 381

easy reduction rules which yields a problem kernel with O(k2) vertices and O(k3) edges
and which is computable in O(|V |3) time. Note that the O(|V |3) running time given
here is only a worst-case bound and it is to be expected that the application of the rules
is much more efficient in practice.

The following theorem shows that reducing a graph with respect to Rules 1–3 leads
to a problem kernel for CLUSTER EDITING.

Theorem 1. CLUSTER EDITING has a problem kernel which contains at most 2k2 + k
vertices and at most 2k3 + k2 edges. It can be found in O(|V |3) time.

Proof. Let G = (V, E) be a graph which is reduced with respect to Rules 1–3. Without
loss of generality, we assume that G is connected. For a non-connected graph G, we
process every connected component separately. Since Rule 3 deletes all isolated cliques
from the given graph, G is not a clique and we need at least one edge modification to
transform, by a minimum number of edge modifications, G = (V, E) into a graph G ′ =
(V, E ′), consisting of disjoint cliques. Let k be the minimum number of required edge
modifications, namely ka edge additions and kd edge deletions. Under the assumption
that G is reduced with respect to Rules 1–3, we will show by contradiction that |V | ≤
(2k + 1) · k and that |E | ≤ (2k+1

2

) · k as follows.
Assume that |V | > (2k + 1) · k. We distinguish two cases, namely the case that

ka = 0 and the case that 1 ≤ ka ≤ k. In both cases we show a contradiction to our
assumption that the graph is reduced with respect to Rule 1.

Case 1: ka = 0. We have kd edge deletions, 1 ≤ kd = k, to transform G into G ′. Let
VC ⊂ V denote the vertex set of a largest clique in G ′. The vertices in VC also form a
clique in G since ka = 0. Since G is connected, at least one vertex u ∈ VC is connected
to a vertex v /∈ VC . We further distinguish two subcases: either v is not connected to any
other vertex u′ ∈ VC with u′ �= u or there is a u′ ∈ VC with u′ �= u and {u′, v} ∈ E .

Case 1.1: Vertex v is not connected to any other vertex u′ ∈ VC with u′ �= u. We can
lower-bound the clique size by |VC | ≥ |V |/(kd + 1): By kd edge deletions, G is trans-
formed into a graph G ′ containing at most kd + 1 cliques and, therefore, a largest clique
in G ′ contains at least |V |/(kd + 1) vertices. Firstly, we assume that kd ≥ 2 (∗). Using
our further assumptions that |V | > (2k + 1) · k (∗∗) and kd = k (∗∗∗) we obtain

|VC | ≥ |V |
kd + 1

(∗∗)
>

(2k + 1) · k
kd + 1

(∗∗∗)= 2k2 + k

k + 1
=k2 + k

k + 1
+ k2

k + 1

(∗)≥ k + 1.

Consequently, |VC | ≥ k+2 and u has at least k+1 neighbors—all vertices u′ ∈ VC with
u′ �= u—which are not neighbors of v. This contradicts the assumption that G is reduced
with respect to Rule 1. Secondly, assuming that kd = k = 1 while |V | > (2k+1) ·k = 3,
G ′ consists of two cliques; either both contain at least two vertices or one of them contains
at least three vertices—both times, Rule 1 would apply, a contradiction.

Case 1.2: There is a u′ ∈ VC with u′ �= u and {u′, v} ∈ E . We can lower-bound the
clique size by at least |V |/kd : G is transformed into a graph G ′ containing at most
kd cliques and, therefore, a largest clique in G ′ contains at least |V |/kd vertices. With

382 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

the assumptions |V | > (2k + 1) · k (∗) and kd = k (∗∗), we obtain

|VC | ≥ |V |
kd

(∗)
>
(2k + 1) · k

kd

(∗∗)= 2k + 1.

Consequently, VC contains more than 2k + 1 vertices and at most k many of them are
connected to v. Therefore, u has more than k + 1 neighbors in this clique which are not
neighbors of v, contradicting the assumption that G is reduced with respect to Rule 1.

Case 2: 1 ≤ ka ≤ k. We know, since ka + kd = k, that kd < k. Again, let VC ⊆ V
denote the vertex set of a largest clique in G ′. Since G ′ contains at most kd + 1 cliques,
we have |VC | ≥ |V |/(kd + 1). With kd < k, this yields |VC | ≥ |V |/k and, using
|V | > (2k + 1) · k, we obtain

|VC | > (2k + 1). (1)

Since the vertices of VC form a clique in G ′ and at most k many edges are added in the
transformation from G to G ′, in G there are at most k vertex pairs (vi , vj) with i < j
and vi , vj ∈ VC which are not connected by an edge. In the following we show that,
under the two assumptions that |VC | > 2(k + 1) and that |{(vi , vj) | vi , vj ∈ VC , i <
j, {vi , vj } /∈ E}| ≤ k, the graph cannot be reduced with respect to Rule 1. To this end,
we consider the cases that ka = k and that ka < k separately.

Case 2.1: ka = k. We conclude that VC = V and G ′ consists of only one clique. Since
ka = k ≥ 1, there are vi , vj ∈ V with i < j and {vi , vj } /∈ E . Further, we know
that V contains more than 2k + 1 vertices and, thus, there are more than

(2k+1
2

)
many

vertex pairs. Out of these vertex pairs, at most k vertex pairs (including {vi , vj }) are not
connected by an edge. By counting arguments, vi and vj have at least k + 1 common
neighbors in G and Rule 1 would apply, in contradiction to our assumption that G is
reduced with respect to Rule 1.

Case 2.2: ka < k. We can conclude that there are u ∈ VC and v /∈ VC such that
{u, v} ∈ E . Due to inequality (1), there are more than 2k + 1 vertices in VC . On the one
hand, there are at least (2k+ 1)− ka − 1 vertices u′ ∈ VC with {u′, u} ∈ E . On the other
hand, there are at most kd − 1 vertices u′ ∈ VC with {u′, v} ∈ E . Consequently, we have
at least

(2k + 1)− (ka + kd) = (2k + 1)− k = k + 1

vertices u′ ∈ VC with {u′, u} ∈ E but {u′, v} /∈ E . This implies that u has at least k + 1
neighbors in G which are not neighbors of v and Rule 1 applies. In both cases, for ka = k
and for 1 ≤ ka < k, we obtain a contradiction to the assumption that G is reduced since
Rule 1 would apply.

Regarding the edge set of the connected component, we infer a contradiction from
the assumption that |E | > (2k+1

2

)
k in an analogous way as for the vertex set: Again, we

let VC be the vertex set of a largest clique in G ′ and we distinguish between the cases
kd = 0 and kd > 0. If kd = 0, then we can easily derive that |VC | > 2k + 1 and the
contradiction follows in analogy to Case 2.1 above. If kd > 0, we derive (omitting some
details here) that |VC | ≥ 2k + 1. Then the contradiction follows in analogy to Case 2.2
above.

Graph-Modeled Data Clustering 383

Summarizing, the reduced graph contains at most 2k2 + k vertices and at most(2k+1
2

)
k = 2k3 + k2 edges (otherwise, no solution exists). The running time follows

directly from Lemmas 2 and 3.

4. Search Tree Algorithm for Cluster Editing

In this section we describe a recursive algorithm for CLUSTER EDITING that follows the
bounded search tree paradigm. The basic idea of the algorithm is to identify a “conflict
triple” consisting of three vertices and to branch into subcases to repair this “conflict” by
adding or deleting edges between the three considered vertices. Thus, we invoke recursive
calls on instances which are simplified in the sense that the value of the parameter is
decreased by at least one. Before starting the algorithm and after every such branching
step, we compute the problem kernel as described in Section 3. The running time of
the algorithm is, then, mainly determined by the size of the resulting search tree. In
Section 4.1 we introduce a straightforward branching strategy that leads to a search tree
of size O(3k); in Section 4.2, we show how a more involved branching strategy leads to
a search tree of worst-case size O(2.27k).

Note that the more general result of Cai [5] as discussed in the Introduction also pro-
vides an algorithm with exponential factor 3k . By way of contrast, however, he uses a sort
of enumerative approach with more computational overhead (concerning polynomial-
time computations). In addition, the search tree algorithm in Section 4.1 also lies the
basis for a more refined search tree strategy with the improved exponential term 2.27k .
Since our mathematical analysis is purely worst-case, we expect that the search tree
sizes would be usually much smaller in practical settings; this seems particularly plau-
sible because our search tree strategy as discussed in Section 4.3 also allows numerous
heuristic improvements of the running time and the search tree size without influencing
the worst-case mathematical analysis.

4.1. Basic Branching Strategy

Central for the branching strategy described in this section is the following lemma
observed in [27].

Lemma 4. A graph G = (V, E) consists of disjoint cliques iff there are no three
vertices u, v, w ∈ V with {u, v} ∈ E , {u, w} ∈ E , but {v,w} /∈ E .

Lemma 4 implies that, if a given graph does not consist of disjoint cliques, then we can
find a conflict triple of vertices between which we either have to insert or to delete an
edge in order to transform the graph into disjoint cliques. In the following we describe
the recursive procedure that results from this observation. Inputs are a graph G = (V, E)
and a non-negative integer k, and the procedure reports, as its output, whether G can be
transformed into a union of disjoint cliques by deleting and adding at most k edges.

• If the graph G is already a union of disjoint cliques, then we are done: report the
solution and return.

384 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

• Otherwise, if k ≤ 0, then we cannot find a solution in this branch of the search
tree: return.
• Otherwise, identify u, v, w ∈ V with {u, v} ∈ E , {u, w} ∈ E , but {v,w} /∈ E

(they exist with Lemma 4). Recursively call the branching procedure on the
following three instances consisting of graphs G ′ = (V, E ′) with non-negative
integer k ′ as specified below:
(B1) E ′ := E − {u, v} and k ′ := k − 1. Set T [u, v] := forbidden.
(B2) E ′ := E − {u, w} and k ′ := k − 1. Set T [u, v] := permanent, T [u, w] :=

forbidden, and T [v,w] := forbidden.
(B3) E ′ := E + {v,w} and k ′ := k − 1. Set T [u, v] := permanent, T [u, w] :=

permanent, and T [v,w] := permanent.

Proposition 1. CLUSTER EDITING can be solved in O(3k · k2 + |V |3) time.

Proof. The recursive procedure suggested above is obviously correct. Concerning the
running time, we observe the following. The preprocessing in the beginning to obtain
the reduction to a problem kernel can be done in O(|V |3) time (Theorem 1). After
that, we employ the search tree with size clearly bounded by O(3k). Hence, it remains
to justify the factor k2 which stands for the computational overhead related to every
search tree node. Firstly, note that in a further preprocessing step, we can once set up a
linked list of all conflict triples. This is clearly covered by the O(|V |3) term. Secondly,
within every search tree node (except for the root) we deleted or added one edge and,
thus, we have to update the conflict list accordingly. Due to Theorem 1, we only have
O(k2) graph vertices now and with little effort, one verifies that the addition or deletion
of an edge can make at most O(k2) new conflict triples appear and it can make at most
O(k2) conflict triples disappear. Using a doubly linked list of all conflict triples, one can
update the list, after adding or deleting an edge of the graph, in O(k2) time: after adding
or deleting edge {vi , vj }, vi , vj ∈ V , we iterate over all O(k2) many vertices vl ∈ V ,
vl �= vi and vl �= vj . Only the status of the vertex triples {vi , vj , vl} can be changed by
this modification, either by causing a new conflict (then the triple has to be added to the
conflict list) or by being a conflict solved by the modification (then the triple has to be
deleted from the conflict list). This update for one vertex triple can be done in constant
time, by employing a hash table or by using a size-|V |3 array to store, for every vertex
triple, pointers to possible entries in the conflict list. Summarizing, the conflict list can
be updated in O(|V |) = O(k2) time.

In fact, it “does not really matter” what the polynomial factor in k is, as the inter-
leaving technique of [25] can be applied improving Proposition 1:

Corollary 1. CLUSTER EDITING can be solved in O(3k + |V |3) time.

Proof. In [25] it was shown that, in case of a polynomial size problem kernel, by doing
the “kernelization” repeatedly during the course of the search tree algorithm whenever
possible, the polynomial factor in parameter k can be replaced by a constant factor.

Graph-Modeled Data Clustering 385

4.2. Refining the Branching Strategy

The branching strategy from Section 4.1 can be easily improved as described in the
following. We still identify a conflict triple of vertices, i.e., u, v, w ∈ V with {u, v} ∈
E , {u, w} ∈ E , but {v,w} /∈ E . Based on a case distinction, we provide additional
branching steps for every possible situation. The amortized analysis of the successive
branching steps, then, yields the better worst-case bound on the running time. We start
with distinguishing three main situations that may apply when considering the conflict
triple:

(C1) Vertices v and w do not share a common neighbor, i.e. �x ∈ V, x �= u :
{v, x} ∈ E and {w, x} ∈ E .

(C2) Vertices v and w have a common neighbor x �= u and {u, x} ∈ E .
(C3) Vertices v and w have a common neighbor x �= u and {u, x} /∈ E .

Regarding case (C1), we show in the following lemma that, here, a branching into
two cases (B1) and (B2) as described in Section 4.1 suffices.

Lemma 5. Given a graph G = (V, E), a non-negative integer k, and u, v, w ∈ V with
{u, v} ∈ E , {u, w} ∈ E , but {v,w} /∈ E . If v and w do not share a common neighbor
besides u, then branching case (B3) cannot yield a better solution than both cases (B1)
and (B2), and can therefore be omitted.

Proof. Consider a clustering solution G ′ for G where we did add {v,w} (see Figure 1).
We use NG∩G ′(v) to denote the set of vertices which are neighbors of v in G and in G ′.
Without loss of generality, assume that |NG∩G ′(w)| ≤ |NG∩G ′(v)|. We then construct a
new graph G ′′ from G ′ by deleting all edges adjacent to w. It is clear that G ′′ is also a
clustering solution for G. We compare the cost of the transformation G → G ′′ with that
of the transformation G → G ′:

• −1 for not adding {v,w},
• +1 for deleting {u, w},
• −|NG∩G ′(v)| for not adding all edges {w, x}, x ∈ NG∩G ′(v),
• +|NG∩G ′(w)| for deleting all edges {w, x}, x ∈ NG∩G ′(w).

uu

vv ww

NG∩G′(v) NG∩G′(w)

G G′

Fig. 1. In case (C1), adding edge {v,w} does not need to be considered. Here, G is the given graph and G ′ is a
clustering solution of G by adding edge {v,w}. The dashed lines denote the edges being deleted to transform G
into G ′, and the bold lines denote the edges being added. Observe that the drawing only shows that parts of
the graphs (in particular, edges) which are relevant for our argumentation.

386 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

u

uu u u

uu

u

v

vv v v

vv

v

w

ww w w

ww

w

x

xx x x

xx

x

−1

−2−2 −3−3

1©

2© 3© 4©

5© 6© 7© 8©

Fig. 2. Branching for case (C2). Bold lines denote permanent, dashed lines forbidden edges.

Herein, we omitted possible vertices which are neighbors of w in G ′ but not neighbors
of w in G because they would only increase the cost of transformation G → G ′.

In summary, the cost of G → G ′′ is not higher than the cost of G → G ′, i.e., we
do not need more edge additions and deletions to obtain G ′′ from G than to obtain G ′

from G.

Lemma 5 shows that in case (C1) a branching into two cases is sufficient, namely
to consider graphs G1 = (V, E − {u, v}) and G2 = (V, E − {u, w}) recursively, each
time decreasing the parameter value by one.

For case (C2), we change the order of the basic branching. In the first branch we
add edge {v,w}. In the second and third branches we delete edges {u, v} and {u, w}, as
illustrated by Figure 2.

• Add {v,w} as labeled by 2© in Figure 2. The cost of this branch is 1.
• Mark {v,w} as forbidden and delete {u, v}, as labeled by 3©. This creates the new

conflict triple u, v, x . To resolve this conflict, we make a second branching. Since
adding {u, v} is forbidden, there are only two branches to consider:
— Delete {v, x}, as labeled by 5©. The cost is 2.
— Mark {v, x} as permanent and delete {u, x}. With reduction Rule 2 from

Section 3, we then delete {w, x}, too, as labeled by 6©. The cost is 3.
• Mark {v,w} as forbidden and delete {u, w} (4©). This case is symmetric to the

previous one, so we have two branches with costs 2 and 3, respectively.

In summary, the branching vector for case (C2) is (1, 2, 3, 2, 3).
For case (C3), we perform a branching as illustrated by Figure 3:

• Delete {u, v}, as labeled by 2©. The cost of this branch is 1.
• Mark {u, v} as permanent and delete {u, w}, as labeled by 3©. With Rule 2, we

can additionally mark {v,w} as forbidden. We then identify a new conflict triple
u, v, x . Not being allowed to delete {u, v}, we can make a 2-branching to resolve
the conflict:
— Delete {v, x}, as labeled by 5©. The cost is 2.

Graph-Modeled Data Clustering 387

u

uu u u

uu

u

v

vv v v

vv

v

w

ww w w

ww

w

x

xx x x

xx

x

−1

−2−2 −3−3

1©

2© 3© 4©

5© 6© 7© 8©

Fig. 3. Branching for case (C3).

— Mark {v, x} as permanent. This implies {u, x} needs to be added and {w, x}
to be deleted due to reduction Rule 2, as labeled by 6©. The cost is 3.

• Mark {u, v} and {u, w} as permanent and add {v,w}, as labeled by 4©. Vertices u,
w, and x form a conflict triple. To solve this conflict without deleting {u, w}, we
make a 2-branching:
— Delete {w, x} as labeled by 7©. We then also need to delete {v, x}. The cost

is 3. Additionally, we can mark {u, x} as forbidden.
— Add {u, x}, as labeled by 8©. The cost is 2. Additionally, we can mark {u, x}

and {v, x} as permanent.

It follows that the branching vector for case (C3) is (1, 2, 3, 3, 2).
In summary, this leads to a refinement of the branching with a worst-case branching

vector of (1, 2, 2, 3, 3), yielding branching number 2.27. Since the recursive algorithm
stops whenever the parameter value has reached 0 or below, we obtain a search tree size
of O(2.27k). This results in the following theorem.

Theorem 2. CLUSTER EDITING can be solved in O(2.27k + |V |3) time.

4.3. Heuristic Improvements

The following rules do not affect the worst-case time complexity since there is no guar-
antee that any of them ever applies; however, they might be useful for a practical im-
plementation, since they are fairly cheap and can help reduce the size of the search tree
substantially if they do apply.

4.3.1. Branching Rules

• If {u, v} ∈ E and u and v do not have a common neighbor, branch into two
cases: either delete {u, v} or delete all edges adjacent to u and v except {u, v},
leaving {u, v} as a 2-clique. With an argument similar to that used in Lemma 5,
it is easy to see that an optimal solution can be found in one of the two described
subcases. This branching is usually noticeably better than that of Theorem 2 (case

388 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

(C1)); e.g., with u and v both being degree 3 vertices, the branching corresponds
to the branching vector (1, 4) and the branching number 1.39.

4.3.2. Reduction Rules. In some cases no branching is needed, and an instance G with
parameter k can be directly replaced with a simplified instance G ′ with parameter k ′.
The correctness of the following rules can be easily seen with the above branching rules
and symmetry arguments.

Let u, v, w, x, y be distinct vertices.

• If deg(u) = deg(v) = 1 and N (u) = N (v) = {w}, then delete {u, w} and set
k ′ := k − 1.
• If deg(u) = 1, deg(v) = 2, N (u) = {v}, and N (v) = {u, w}, then delete {v,w}

and set k ′ := k − 1.
• If deg(u) = 2, deg(v) = deg(w) = 3, N (u) = {v,w}, N (v) = {u, w, x},

and N (w) = {u, v, y}, then delete {v, x} and {w, y} and set k ′ := k − 2.

Presumably, these rules can be further generalized, e.g., to handle cliques with few
connections to outside vertices.

4.3.3. Bail-Out Rules. Some branches in the search tree need not be followed, since
either they cannot lead to a solution or because it is known that for any solution they
might lead to, we find another solution which is at least as good in another branch.

• Let G0 be the original input graph and let G be the graph in the current state
of the algorithm. If G contains a vertex v with degG(v) ≥ 2 degG0

(v) then the
current branch of the search tree can be omitted, since we can be certain to find an
optimal solution in another branch of the search tree. This rule is correct as can
be seen as follows: for any possible clustering solution G ′ of G, we can construct
another clustering solution G ′′ by removing all edges adjacent to v in G ′. Clearly,
the cost of transforming G0 to G ′′ is not higher than the cost of transforming G0

to G ′.

5. Cluster Deletion

From the basic 3-branching algorithm for CLUSTER EDITING in Section 4.1, it is straight-
forward to get an O(2k+|V |3) time algorithm for CLUSTER DELETION as follows. Given
a conflict triple consisting of vertices u, v, w ∈ V with {u, v} ∈ E , {u, w} ∈ E , but
{v,w} /∈ E , the insertion of an edge is not allowed here and, thus, we only need to
make a branching into two cases: either delete edge {u, v} or delete edge {u, w}. In the
remainder of this section, we show how the branching number can be improved from 2
to 1.77.

As in Section 4.2, we start with identifying u, v, w ∈ V with {u, v} ∈ E , {u, w} ∈ E ,
but {v,w} /∈ E , and distinguish the following three cases:

(C1) Vertices v and w do not share any common neighbor besides u, i. e., �x ∈
V, x �= u : {v, x} ∈ E and {w, x} ∈ E .

Graph-Modeled Data Clustering 389

(C2) Vertices v and w have a common neighbor x �= u and {u, x} /∈ E .
(C3) Vertices v and w have a common neighbor x �= u and {u, x} ∈ E .

Regarding case (C1), we distinguish three subcases:

(C1.1) Vertices v and w have no other neighbors besides u:
It is easy to observe that we do not need to make any branching, it suffices
to delete one arbitrary edge from {u, v} and {u, w} to resolve this conflict
without branching.

(C1.2) Vertices v or w have a neighbor x �= u with {u, x} /∈ E . We assume that
vertex v has such a neighbor, i. e., {v, x} ∈ E , {w, x} /∈ E , and {u, x} /∈ E .
We make a branching into two cases:
• Delete edge {u, v}. The cost of this branch is 1.
• Mark edge {u, v} as permanent and delete {u, w}. Since {u, v} is perma-

nent and there is no edge between u and x , edge {v, x} has to be deleted
as well. Thus, the cost of this branch is 2.

(C1.3) All neighbors of vertices v and w are also neighbors of u. Let x be such
a neighbor and assume that {v, x} ∈ E , {w, x} /∈ E , and {u, x} ∈ E . We
make a branching into two cases:
• Delete {u, w}. The cost of this branch is 1.
• Mark {u, w} as permanent and delete {u, v}. Since edge {u, w} is perma-

nent and there is no edge between w and x , edge {u, x} has to be deleted
as well. The cost of this branch is 2.

Summarizing the three subcases, we have for case (C1) a worst-case branching vector
of (1, 2).

For case (C2), we apply the following branching:

• Delete {u, v}. The cost of this branch is 1.
• Mark {u, v} as permanent and delete {u, w}. We then identify a new conflict

triple v, u, x . Since edge {u, v} is permanent, we can only resolve this conflict by
deleting {v, x}. The cost of this branch is 2.

Consequently, the branching vector for case (C2) is (1, 2).
For case (C3), we apply the following branching, illustrated in Figure 4.

• Delete {u, v} (see 2© in Figure 4). This creates a new conflict triple x, u, v. To
resolve this conflict, we make a 2-branching:
— Delete {v, x} (3©). The cost of this branch is 2.
— Mark {v, x} as permanent and delete {u, x} (4©). However, this implies that
{w, x} needs to be deleted. The cost is 3.

• Delete {u, w} (5©). This creates a new conflict triple x, u, w. To resolve this
conflict, we make a 2-branching:
— Delete {w, x} (6©). The cost of this branch is 2.
— Mark {w, x} as permanent (7©). However, this implies that {u, x} and also
{v, x} have to be deleted. The cost is 3.

It follows that the branching vector for case (C3) is (2, 3, 2, 3).

390 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

uu

u

u

u

uu u

vv

v

v

v

vv v

ww

w

w

w

ww w

xx

x

x

x

xx x
−2 −2−3 −3

1©

2©2©

3© 4©

5©

6© 7©

Fig. 4. Branching for case (C3) of the search tree algorithm for CLUSTER DELETION. Bold lines denote
permanent edges and dashed lines forbidden edges.

In summary, the worst case is case (C3), where the branching vector is (2, 3, 2, 3)
which corresponds to branching number 1.77. In analogy to Theorem 2, we obtain the
following theorem:

Theorem 3. CLUSTER DELETION can be solved in O(1.77k + |V |3) time.

6. Conclusion

Adopting a parameterized point of view [2], [9], [10], [12], [13], we have shed new
light on the algorithmic tractability of the NP-complete problems CLUSTER EDITING and
CLUSTER DELETION. We developed efficient fixed-parameter algorithms in both cases
and the algorithms seem easy enough in order to allow for efficient implementations.

We feel that the whole field of data clustering problems might benefit from more
studies on the parameterized complexity of the many problems related to this field. There
appear to be numerous parameters (e.g., number of clusters, number of “data cleaning
operations”, dimensionality of the data space) that make sense in this context.

Ongoing and future work. In ongoing work we try to provide efficient implementations
of our algorithms. It has to be investigated which of the reduction and branching rules are
of real practical importance and which of them (although necessary for the theoretical
worst-case analysis) only increase the administrative overhead instead of really speed-
ing up the algorithms. Furthermore, it might be interesting to investigate how standard
heuristic techniques such as branch-and-bound or A∗ from artificial intelligence can be
used in our approach to obtain further speed-ups in practice. We plan to experiment with
real-world clustering data and to incorporate additional features (such as edge and/or
vertex weights) in order to deal with more realistic settings.

In recent work we started to provide a general framework for computer-generated
search trees for graph modification problems [14], [16]. Using the sheer computing
power of machines and obtaining a large number of case distinctions, we achieved at
least theoretical improvements over the search tree sizes given in this paper. More pre-
cisely, the improved search tree bounds achieved are O(1.92k) for CLUSTER EDITING and

Graph-Modeled Data Clustering 391

O(1.53k) for CLUSTER DELETION. To what extent these lowered worst-case bounds also
have practical significance remains an issue of future research. Note that the computer-
generated search trees have a significantly increased number of branching cases which
causes increased overhead in the implementation, etc.

Theoretical challenges. Shamir et al. [27] showed that so-called p-CLUSTER EDITING

is NP-complete for p ≥ 2 and p-CLUSTER DELETION is NP-complete for p ≥ 3. Herein,
p denotes the number of cliques that should be generated by as few edge modifications
as possible. Hence, there is no hope for fixed-parameter tractability with respect to
parameter p, because fixed-parameter tractability with respect to parameter p would thus
imply P = NP. Moreover, Shamir et al. consider the p-CLUSTER COMPLETION problem
(where only edge additions are allowed)3 and claim an algorithm running in O(n p)

time.4 Further parameterized complexity investigations concerning the parameter p in
graph clustering problems seem appropriate.

We conclude with two concrete open questions concerning data reduction by pre-
processing, i.e., problem kernelization:

1. Is there a significantly better reduction to a problem kernel for CLUSTER DELE-
TION than we have for CLUSTER EDITING? Note that in Section 5 for CLUSTER

DELETION we implicitly made use of the problem kernelization as given for
CLUSTER EDITING in Section 3.

2. Do CLUSTER EDITING and CLUSTER DELETION even allow for problem kernels
of linear size O(k)? For VERTEX COVER on general graphs [7] and DOMINATING

SET on planar graphs [1] such results are known, but it seems hard to derive
similar results in our setting.

Acknowledgment

We thank Jochen Alber (Tübingen) and Elena Prieto-Rodriguez (Newcastle, Australia) for inspiring discus-
sions and two anonymous referees of Theory of Computing Systems for comments that helped improving the
presentation.

References

[1] J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for Dominating Set. Journal
of the ACM, 51(3):363–384, 2004.

[2] J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for hard problems: a parameterized point
of view. Discrete Mathematics, 229:3–27, 2001.

[3] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1–3):89–113, 2004.
[4] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal of Computational

Biology, 6(3/4):281–297, 1999.

3 Observe that general CLUSTER COMPLETION (without bound p on the number of clusters) is trivially
polynomial-time solvable by simply determining all connected components of the graphs and transforming
them into cliques.

4 The algorithm described by them seems to have O(pn) running time but the O(n p) running time can
be shown by additional arguments.

392 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier

[5] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. Infor-
mation Processing Letters, 58:171–176, 1996.

[6] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. In Proc. of 44th
IEEE FOCS, pages 524–533, 2003.

[7] J. Chen, I. Kanj, and W. Jia. Vertex Cover: further observations and further improvements. Journal of
Algorithms, 41:280–301, 2001.

[8] E. D. Demaine and N. Immorlica. Correlation clustering with partial information. In Proc. of 6th
APPROX, pages 1–13. Volume 2764 of LNCS. Springer, Berlin, 2003.

[9] R. G. Downey. Parameterized complexity for the skeptic (invited paper). In Proc. of 18th IEEE
Conference on Computational Complexity, pages 147–169, 2003.

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, New York, 1999.
[11] D. Emanuel and A. Fiat. Correlation clustering – minimizing disagreements on arbitrary weighted

graphs. In Proc. of 11th ESA, pages 208–220. Volume 2832 of LNCS. Springer, Berlin, 2003.
[12] M. R. Fellows. Parameterized complexity: the main ideas and connections to practical computing. In

Experimental Algorithmics, pages 51–77. Volume 2547 of LNCS. Springer, Berlin, 2002.
[13] M. R. Fellows. New directions and new challenges in algorithm design and complexity, parameterized

(invited paper). In Proc. of 8th WADS, pages 505–519. Volume 2748 of LNCS. Springer, Berlin, 2003.
[14] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation of search tree algorithms for

hard graph modification problems. Algorithmica, 39:321–347, 2004.
[15] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Mathematical Program-

ming, 79:191–215, 1997.
[16] F. Hüffner. Graph Modification Problems and Automated Search Tree Generation. Diploma Thesis,

WSI für Informatik, Universität Tübingen, October 2003.
[17] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, NJ,

1988.
[18] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems on chordal,

strongly chordal, and proper interval graphs. SIAM Journal on Computing, 28(5):1906–1922, 1999.
[19] S. Khot and V. Raman. Parameterized complexity of finding subgraphs with hereditary properties.

Theoretical Computer Science, 289:997–1008, 2002.
[20] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering. Acta Informatica,

23(3):311–323, 1986.
[21] O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science,

223(1–2):1–72, 1999.
[22] M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of

Algorithms, 31:335–354, 1999.
[23] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modification problems.

Discrete Applied Mathematics, 113:109–128, 2001.
[24] R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover further improved. In Proc. of 16th

STACS, pages 561–570. Volume 1563 of LNCS. Springer, Berlin, 1999.
[25] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-parameter-tractable algorithms.

Information Processing Letters, 73:125–129, 2000.
[26] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms for Weighted Vertex Cover.

Journal of Algorithms, 47(2):63–77, 2003.
[27] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete Applied Mathematics,

144:173–182, 2004.
[28] R. Sharan and R. Shamir. CLICK: A clustering algorithm with applications to gene expression analysis.

In Proc. of 8th ISMB, pages 307–316. AAAI Press, Menlo Park, CA, 2000.
[29] R. Sharan and R. Shamir. Algorithmic approaches to clustering gene expression data. In T. Jiang et al.

(eds): Current Topics in Computational Molecular Biology, pages 269–300. The MIT Press, Cambridge,
MA, 2002.

Received May 30, 2003, and in revised form November 7, 2003, and in final form December 2, 2003.
Online publication January 28, 2005.

