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Abstract. Sensor network applications frequently require that the sensors know their
physical locations in some global coordinate system. This is usually achieved by equip-
ping each sensor with a location measurement device, such as GPS. However, low-end
systems or indoor systems, which cannot use GPS, must locate themselves based only
on crude information available locally, such as inter-sensor distances. We show how a
collection of sensors, capable only of measuring distances to close neighbors, can com-
pute their locations in a purely distributed manner, i.e. where each sensor communicates
only with its neighbors. This can be viewed as a distributed graph drawing algorithm.
We experimentally show that our algorithm consistently produces good results under a
variety of simulated real-world conditions.

1 Introduction
Sensor networks are a collection of (usually miniature) devices, each with limited computing
and (wireless) communication capabilities, distributed over a physical area. The network col-
lects data from its environment and should be able to integrate it and answer queries related to
this data. Sensor networks are becoming more and more attractive in environmental, military
and ecological applications (see [11] for a survey of this topic).

The advent of sensor networks has presented a number of research challenges to the
networking and distributed computation communities. Since each sensor can typically com-
municate only with a small number of other sensors, information generated at one sensor
can reach another sensor only by routing it thru the network, whose connectivity is described
by a graph. This requires ad-hoc routing algorithms, especially if the sensors are dynamic.
Traditional routing algorithms relied only on the connectivity graph of the network, but with
the introduction of so-called location-aware sensors, namely, those who also know what their
physical location is, e.g. by being equipped with a GPS receiver, this information can be used
to perform more efficient geographic routing. See [9] for a survey of these routing techniques.

Beyond routing applications, location-aware sensors are important for information dis-
semination protocols and query processing. Location awareness is achieved primarily by
equipping the sensors with GPS receivers. These, however, may be too expensive, too large,
or too power-intense for the desired application. In indoor environments, GPS does not work
at all (due to the lack of line-of-sight to the satellites), so alternative solutions must be em-
ployed. Luckily, sensors are usually capable of other, more primitive, geometric measure-
ments, which can aid in this process. An example of such a geometric measurement is the
distance to neighboring sensors. This is achieved either by Received Signal Strength Indi-
cator (RSSI) or Time of Arrival (ToA) techniques. An important question is then whether
it is possible to design a protocol by which each sensor can use this local information to
(iteratively) compute its location in some global coordinate system.

This paper solves the following sensor layout problem: Given a set of sensors with un-
known location coordinates, and a mechanism by which a sensor can estimate its distance to



a few nearby sensors, determine the coordinates of every sensor via local sensor-to-sensor
communication. These coordinates are called a layout of the sensor network.

As stated, this problem is not well-defined, because it typically will not have a unique
solution. A unique solution would mean that the system is rigid, in the sense that no individual
sensor can be moved without changing at least one of the known distances. When all

(
n
2

)
inter-sensor distances are known, the solution is indeed unique, and is traditionally solved
using the Classical Multidimensional Scaling (MDS) technique [1]. When only a subset of
the distances are known, more sophisticated techniques must be used.

When multiple solutions exist, the main phenomenon observed in the solutions is that of
foldovers, where entire pieces of the graph fold over on top of others, without violating any
of the distance constraints. The main challenge is to generate a solution which is fold-free.
Obviously the result will have translation, orientation and reflection degrees of freedom, but
either these are not important, or can be resolved by assigning some known coordinates to
three sensors.

In order to be easily and reliably implemented on a sensor network, the solution to this
sensor network layout problem should be fully distributed (decentralized). This means that
each sensor should compute based on information available only at that sensor and its imme-
diate neighbors. The class of neighbors is typically characterized by a probabilistic variant of
the disk graph: Any sensor within distance R1 is reachable, any sensor beyond distance R2 is
not reachable, and any sensor at a distance between R1 and R2 is reachable with probability
p. Of course, information from one sensor may eventually propagate thru the network to any
other sensor, but this should not be done explicitly.

2 Related Work

The problem of reconstructing a geometric graph given its edge-lengths has received some
attention in the discrete geometry and computational geometry communities, where it is rel-
evant for molecule construction and protein folding applications. Deciding whether a given
graph equipped with edge lengths admits a unique layout realizing the given edge lengths is
in general NP-hard [13]. This does not change even if a layout is known to exist (as in our
case). Interestingly enough, for the dense class of graphs known as generic graphs, it is possi-
ble to determine the uniqueness of a layout in polynomial time [6]. However, no polynomial
time algorithm is known to compute the layout.

The problem of distributed layout of a sensor network has received considerable attention
in the sensor network community. A recent work of Priyantha et al [10] classifies these into
anchor-based vs. anchor-free algorithms and incremental vs. concurrent algorithms. Anchor-
based algorithms rely on the fact that a subset of the sensors are already aware of their loca-
tions, and the locations of the others are computed based on those. In practice a large number
of anchor sensors are required for the resulting location errors to be acceptable. Incremental
algorithms start with a small core of sensors that are assigned coordinates. Other sensors are
repeatedly added to this set by local trigonometric calculations. These algorithms accumulate
errors and cannot escape local minima once they are entered. Concurrent algorithms are what
we called distributed algorithms, and work in parallel on all sensors. They are better able to
avoid local minima and avoid error accumulation. Priyantha et al [10] review a number of
published algorithms and their classifications. All of them, however, are not fully distributed.

The algorithm we shall describe in this paper is most similar in spirit to the so-called
Anchor-Free Localization (AFL) algorithm proposed by Priyantha et al [10]. The AFL algo-
rithm operates in two stages. In the first stage a heuristic is applied to generate a well-spread
fold-free graph layout which “looks similar” to the desired layout. The second stage uses a
mass-spring optimization to correct and balance local errors, converging to the final result.
The heuristic used in the first stage involves the election of five reference sensors. Four of
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these sensors are well-distributed on the periphery of the network, and serve as north, east,
south and west poles. A fifth reference sensor is chosen at the center. Coordinates are then
assigned to all nodes, using these five sensors, reflecting their assumed positions. Unfortu-
nately, all this process is far from distributed. The second stage of the algorithm attempts to
minimize the partial stress energy using a gradient descent technique. At each sensor, the co-
ordinates are updated by moving an infinitesimal distance in the direction of the spring force
operating on the sensor. This is a fully distributed protocol. It, however, involves a heuristic
choice of the infinitesimal step, and can be quite slow.

Our algorithm also involves two stages with similar objectives. The first aims to generate a
fold-free layout. This is done based on a distributed eigenvector computation which typically
spreads the sensors well. The second stage uses the result of the first stage as an initial layout
for an iterative stress-minimization algorithm. As opposed to Priyantha et al [10], it is not
based on gradient descent, rather on a more effective majorization technique.

Once again we emphasize that the main challenge is to design algorithms which are fully
distributed. This is a major concern in sensor network applications, and there is an increasing
interest in designing such solutions. These turn out sometimes to be quite non-trivial. Proba-
bly the simplest example is a distributed algorithm to compute the sum (or average) of values
distributed across the network. See [12] for a discussion of this.

3 The Problem
We are given a graph G(V = {1, . . . , n}, E), and for each edge 〈i, j〉 - its Euclidean length
lij . Denote a 2D layout of the graph by x, y ∈ R

n, where the coordinates of sensor i are
(xi, yi), and dij=

√
(xi − xj)2 + (yi − yj)2.

We know that there exists a layout of the sensors that realizes the given edge lengths. Our
goal is to reproduce this layout. This layout is usually not unique. For example consider a
2n× 2n square grid, where each internal sensor is connected to its four immediate neighbors
with an edge of length one. We can realize all lengths using the degenerate 1D layout where
half of the sensors are placed on 0 and the other half is placed on 1. Specifically, given a
sensor with grid coordinates (r, c), we place it on point 0 if r + c is even, otherwise, we place
it on point 1.

Fortunately, there is additional information that we may exploit to eliminate spurious
solutions to the layout problem - we know that the graph is a full description of the close
sensors. Consequently, the distance between each two nonadjacent sensors should be greater
than some constant r, which is larger than the longest edge. This can further constrain the
search space and eliminate most undesired solutions. Formally, we may pose our problem as
follows:

Layout problem Given a graph G({1, . . . , n}, E), and for each edge 〈i, j〉 - its length
lij , find an optimal layout (p1, . . . , pn) (pi ∈ R

d is the location of sensor i), which satisfies
for all i �= j: {‖pi − pj‖ = lij if 〈i, j〉 ∈ E

‖pi − pj‖ > r if 〈i, j〉 /∈ E

Here, r = max〈i,j〉∈E lij . For the rest of this paper we assume d = 2.
It seems that an optimal layout is unique (up to translation, rotation and reflection) in

many practical situations. For example, it overcomes the problem in the 2n×2n grid example
described above. However, there are graphs for which an optimal layout is not unique. For
example, consider the 6-sensor graph in Fig. 1, which shows two different optimal layouts.

An optimal layout is similar to that generated by common force-directed graph drawing
algorithms that place adjacent sensors closely while separating nonadjacent sensors. There-
fore, we may exploit some known graph drawing techniques. For example, separating non-
adjacent sensors can be achieved by solving an electric-spring system with repulsive forces
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Fig. 1. Two different optimal layouts of the same graph.

between these sensors [2, 3]. Another possibility is to somehow estimate the distances lij
between nonadjacent sensors (e.g., as the graph-theoretic distance) and then to minimize the

full stress energy:
∑

i<j
(dij−lij)

2

l2ij
using an MDS-type technique; see [7].

However, since we aim at a distributed algorithm which should minimize communication
between the sensors, dealing with repulsive forces or long-range target distances is not prac-
tical, as this will involve excessive inter-sensor interaction, which is very expensive in this
scenario. To avoid this, we propose an algorithm which is based only on direct information
sharing between adjacent sensors, avoiding all communication between nonadjacent sensors
or any centralized supervision. Note that such a restriction rules out all common algorithms
for general graph drawing problem; we are not aware of any layout algorithm that satisfies
it. But our case may be easier for two reasons. First, we deal with geometric graphs which
are usually well structured and easier to draw. Second, we are guaranteed the existence of an
optimal layout.

4 Smart Initialization and Eigen-projection

A useful energy function which is minimized by the desired layout is the localized stress
energy:

Stress(x, y) =
∑

〈i,j〉∈E

(dij − lij)2 , (1)

where dij =
√

(xi − xj)2 + (yi − yj)2. Since we are guaranteed the existence of a layout
where dij = lij , it is reasonable to hope that if we start minimizing the localized stress energy
with a “smart” initial layout, the process will converge to a local minimum that is actually
the right solution. To construct such an initial layout, we exploit the fact that nonadjacent
sensors should be placed further apart. This means that we seek a layout that spreads the
sensors well. We first deal with the one-dimensional case. We will design an energy function
which is minimized by such a layout, and can be optimized in a strictly distributed fashion.
The function is defined as follows:

E(x) =

∑
〈i,j〉∈E wij ||xi − xj ||2∑

i<j ||xi − xj ||2 (2)

Here, wij is some measure for the similarity of the adjacent sensors i and j. It should be
derived from lij , e.g., wij = 1/(lij + α) or wij = exp(−αlij), α � 0; in our experiments
we used wij = exp(−lij). Minimizing E(x) is useful since it tries to locate adjacent sensors
close to each other while separating nonadjacent sensors. It can also be solved fairly easily.
Denote by D the diagonal matrix whose i’th diagonal entry is the sum of the i’th row of
W : Dii =

∑
j:〈i,j〉∈E wij . The global minimum of E(x) is the eigenvector of the related

weighted Laplacian matrix Lw = D −W associated with the smallest positive eigenvalue;
see [5, 8]. In practice, it is better to work with the closely related eigenvectors of the transition

4



matrix D−1W , which have some advantages over the eigenvectors of Lw; see [8]. Note that
the top eigenvalue of D−1W is λ1 = 1, associated with the constant eigenvector v1 = 1n =
(1, 1, . . . , 1), so the optimal solution is actually the second eigenvector v2.

The vector v2 can be computed in a distributed manner by iteratively averaging the value
at each sensor with the values of its neighbors:

xi ← a

(
xi +

∑
〈i,j〉∈E wijxj∑
〈i,j〉∈E wij

)
(3)

Readers familiar with numerical linear algebra will recognize this process as power iter-
ation of the matrix I + D−1W . Power iteration converges to the eigenvector of the iterated
matrix corresponding to the eigenvalue with highest absolute value. Here we initialize the
process by a vector y which is D-orthogonal to v1, namely yT Dv1 = 0, using a distributed
method that will be described shortly. Hence, the process will converge to v2 - the next high-
est eigenvector of I + D−1W (or, equivalently D−1W ); see [8]. D-orthogonality, rather
than simple orthogonality, is required because D−1W is not symmetric. The constant a > 0
controls the growth of ‖x‖; in our implementation we picked a = 0.51.

4.1 Two dimensional layout
We now turn our attention to the two-dimensional layout problem. E(x) is defined also in
higher dimensions (where x is short for (x, y)), and a “smart” initial 2D layout is achieved by
taking the x coordinate to be v2 - the second eigenvector of D−1W , and the y coordinate to
be v3 - the third eigenvector of D−1W . Unfortunately, the power iteration (3) will not detect
v3, as it is dominated by v2, unless we start the process (3) with a vector D-orthogonal to
x = v2.

Constrained by the distributed computation requirement, it is not easy to initialize the
process with a vector D-orthogonal to v2. We resort to the following lemma:

Lemma 1. Given two vectors x and y and matrices D and A, the vector Ay is D-orthogonal
to x if AT Dx = 0.

Proof. Since AT Dx = 0, then yT AT Dx = 0. Equivalently (Ay)T Dx = 0 and the lemma
follows. ��
Therefore, it suffices to construct a “local matrix” A such that AT Dx = 0. By “local” we
mean that Ai,j �= 0 only if 〈i, j〉 ∈ E. This will enable a distributed computation. In our case
when D is diagonal, a suitable matrix is the following:

Ai,j =

⎧⎨
⎩
−xj/Dii 〈i, j〉 ∈ E
0 〈i, j〉 /∈ E, i �= j i, j = 1, . . . , n
−∑k Ai,k i = j

It is easy to verify that AT Dx = 0.
To summarize, to obtain y = v3, we pick some random vector u, and initialize y with Au.

Note that the computation of Au involves only local operations, and can be easily distributed.
Then, we run the power iteration (3) on vector y.

Eliminating the v1 component
Note that the initial vector is D-orthogonal to v2 but not necessarily D-orthogonal to v1 = 1n.
Hence, after many iterations, the result will be y = αv1 + εv3, for some very small ε. While
the process ultimately converges to what seems to be an essentially useless vector, its values
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near the limit is what is interesting. Since v1 is the constant vector - 1n, these values are
essentially a scaled version of v3 displaced by some fixed value (α) and they still retain the
crucial information we need.

However when the numerical precision is low and the ratio α/ε is too high we might lose
the v3 component. Fortunately, we can get around this by translating and scaling y during
the power iteration. Specifically, every βn iterations (we use β = 1/2) compute mini yi and
maxi yi. A distributed computation is straightforward and can be completed with number of
iterations bounded by the diameter of the graph (at most n − 1). Then, linearly transform y
by setting

yi ← yi −mini yi

maxi yi −mini yi
− 1

2
, i = 1, . . . , n (4)

After this, mini yi = −0.5 and maxi yi = 0.5. Since translation is equivalent to addition of
γv1 and scaling cannot change direction, we can still express y as α̂v1 + ε̂v3.

Now assume, without loss of generality, that maxi v3 − mini v3 = 1, and recall that
v1 = (1, 1, . . . , 1). The D-orthogonality of v3 to 1n implies: maxi v3 > 0 and mini v3 < 0.
In turn, mini yi = −0.5 and maxi yi = 0.5 imply that |α̂| < 0.5. Moreover, since all the
variability of y is due to its v3 component, we get ε̂ = 1. Therefore, (4) guarantees that the
magnitude of the v3 component is larger than that of the v1 component, avoiding potential
numerical problems.

4.2 Balancing the axes
Obviously, the process described in Section 4.1 can yield x and y coordinates at very different
scales. Usually, we require that ||x|| = ||y||, but this is difficult to achieve in a distributed
manner. An easier alternative that is more suitable for a distributed computation is a balanced
aspect ratio, i.e.:

max
i

xi −min
i

xi = max
i

yi −min
i

yi

Since the computation of the y-coordinates already achieved maxi yi − mini yi = 1, it
remains to ensure that the x coordinates have the same property. We achieve this by perform-
ing:

xi ← xi

maxi xi −mini xi
, i = 1, . . . , n (5)

Note that we only scale the x-coordinates and do not translate them, because translation
involves the v1 component that is not part of the x-coordinates.

In fact, it might be beneficial to scale x by (5) a few times during the power iteration
(3). This can prevent potential numerical problems when the coordinates are extremely large
(overflow) or small (underflow).

5 Optimizing the Localized Stress Energy
At this point we have reasonable initial locations for both the x- and y-coordinates, and are
ready to apply a more accurate 2D optimization process for minimizing the localized stress.
A candidate could be simple gradient descent, which is easily distributed, as in [10]. Each
sensor would update its x-coordinates as follows:

xi(t + 1) = xi(t) + δ
∑

j:〈i,j〉∈E

(xj(t)− xi(t))
dij(t)

(dij(t)− lij) , (6)

where dij(t) =
√

(xi(t)− xj(t))2 + (yi(t)− yj(t))2. The y-coordinates are handled simi-
larly. This involves a scalar quantity δ whose optimal value is difficult to estimate. Usually a
conservative value is used, but this slows down the convergence significantly.
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A more severe problem of this gradient descent approach is its sensitivity to the scale of
the initial layout. Obviously the minimum of E(x) is scale-invariant, since E(cx) = E(x)
for c �= 0. However, the minimum of Stress(x) is certainly not scale-invariant as we are given
specific target edge lengths. Therefore before applying gradient descent we have to scale the
minimum of E(x) appropriately.

Fortunately, we can avoid the scale problem by using a different approach called ma-
jorization. Besides being insensitive to the original scale, it is usually more robust and avoids
having to fix a δ for the step size. For a detailed description of this technique, we refer the
interested reader to multidimensional scaling textbooks, e.g., [1]. Here we provide just a brief
description.

Using the Cauchy-Schwartz inequality we can bound the localized 2D stress of a layout
(x, y) by another expression of (x, y) and (a, b), as follows:

Stress(x, y) � xT Lx + yT Ly + xT L(a,b)a + yT L(a,b)b + c , x, y, a, b ∈ R
n , (7)

with equality when x = a and y = b. Here, c is a constant independent of x, y, a, b. L is the
graph’s unweighted n× n Laplacian matrix (also independent of x, y, a, b) defined as:

Li,j =

⎧⎨
⎩
−1 〈i, j〉 ∈ E
0 〈i, j〉 /∈ E i, j = 1, . . . , n
−∑j �=i Li,j i = j

The weighted Laplacian n× n matrix La,b is defined as:

L
(a,b)
i,j =

⎧⎪⎨
⎪⎩
−lij · inv

(√
(ai − aj)2 + (bi − bj)2

)
〈i, j〉 ∈ E

0 〈i, j〉 /∈ E i, j = 1, . . . , n

−∑j �=i L
(a,b)
i,j i = j

where

inv(x) =
{

1/x x �= 0
0 x = 0

Note the special treatment that the inv function gives to the zero value. Given a layout
a, b, we can find another layout (x, y) which minimizes the r.h.s. xT Lx+yT Ly+xT La,ba+
yT La,bb + c by solving the linear equations:

Lx = L(a,b)a
Ly = L(a,b)b

Using inequality (7) we are guaranteed that the stress of the layout has decreased when going
from (a, b) to (x, y), i.e., Stress(x, y) � Stress(a, b). This induces an iterative process for
minimizing the localized stress. At each iteration, we compute a new layout (x(t+1), y(t+1))
by solving the following linear system:

L · x(t + 1) = L(x(t),y(t)) · x(t)
L · y(t + 1) = L(x(t),y(t)) · y(t)

(8)

Note that the matrix L is semi positive-definite. Without loss of generality we can fix the
location of one of the sensors (utilizing the translation degree of freedom of the localized
stress) and obtain a strictly diagonally dominant matrix. Therefore, we can safely use Jacobi
iteration [4] for solving (8), which is easily performed in a distributed manner as follows.
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Assume we are given a layout (x(t), y(t)) and want to compute a better layout (x(t +
1), y(t + 1)) by a single iteration of (8). Then we iteratively perform for each i = 1, . . . , n:

xi ← 1
degi

∑
j:〈i,j〉∈E

(xj + lij(xi(t)− xj(t)) inv(dij(t))

yi ← 1
degi

∑
j:〈i,j〉∈E

(yj + lij(yi(t)− yj(t)) inv(dij(t))
(9)

Note that x(t), y(t) and d(t) are constants in this process which converges to (x(t+1), y(t+
1)). Interestingly, when deriving (x(t + 1), y(t + 1)) only the angles between sensors in
(x(t), y(t)) are used. Therefore, this process is independent of the scale of the current layout.
Remark
It is possible to simplify the 2D majorization process somewhat. When the iterative process
(9) converges the layout scale issue is resolved. Hence, instead of continuing with another
application of (8) to obtain a newer layout, it is possible to resort to a faster local process
(which, in contrast, is scale-dependent). In this process each sensor uses a local version of
the energy where all other sensors are fixed. By the same majorization argument the localized
stress decreases when applying the following iterative process:

xi ← 1
degi

∑
j:〈i,j〉∈E

(xj + lij(xi − xj)inv(dij))

yi ← 1
degi

∑
j:〈i,j〉∈E

(yj + lij(yi − yj)inv(dij))
(10)

Here, as usual dij =
√

(xi − xj)2 + (yi − yj)2. This process is similar to (9), except that
xi, xj and dij are no longer constants. We have used this in our implementation, and it seems
to accelerate the convergence. Note that this is quite close to the gradient descent (6) when
using δ = 1/degi, a different stepsize per sensor.

6 Experimental Results
We have implemented our algorithm and the AFL algorithm [10], and compared their perfor-
mance on a variety of inputs. In the first experiment, we construct a family of graphs contain-
ing 1000 sensors distributed uniformly in a 10×10 square. Each two sensors are connected if
they are in range R, where we used R = 0.5, 0.6, 0.7, 0.8, 0.9, 1. If the graph is disconnected,
the largest connected component was taken. We measure the sensitivity of the algorithm to
noise controlled by the fractional range measurement error parameter σ. The distances fed as
input to our algorithm are the true distances lij , to which uniformly distributed random noise
in the range [−σlij , + σlij ] is added; σ = 0, 0.05, 0.1, 0.25, 0.5. Consequently, each graph
in this family is characterized by the values of R and σ. For each pair (R, σ) we generated
30 corresponding random graphs. Some properties of these graphs are displayed in Table 1.

It seems that the key to successful results is a good initial layout from which the stress
minimization routine can start. To compare the performance of our algorithm to that of the
AFL algorithm and a more naive method, we ran three different initialization methods on
each input followed by the same stress minimization algorithm: (1) Stress majorization with
random initialization (RND). (2) Stress majorization with AFL initialization (AFL). (3) Stress
majorization with eigen-projection initialization (EIGEN). For each method the quality of
the final solution is measured by its Average Relative Deviation (ARD), which measures the
accuracy of all pairwise distances:

ARD =
2

n(n− 1)

∑
i<j

|dij − lij |
min(lij , dij)
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R size avg degree max degree min degree
0.5 993 7 17.2 1
0.6 999.5 10 22 1.4
0.7 1000 14 27.5 2.4
0.8 1000 18.2 33.5 3.7
0.9 1000 23 40 5.1
1.0 1000 28.4 47.1 6.7

Table 1. Average (over 30 experiments) properties of largest connected component of graphs obtained
by distributing 1000 sensors in a 10 × 10 square, using different values of R.

The results are summarized in Table 2, where each cell shows the average ARD of
RND/AFL/EIGEN for 30 different graphs characterized by the same (R, σ) pair. For all
graphs, EIGEN consistently outperformed RND and AFL by a significant margin, whereas
AFL barely improved RND. As expected, performance of the algorithms is improved as
graphs become denser revealing more information about the underlying geometry. Note, that
the sparser graphs contain nodes of degree smaller than 3, which are inherently non-rigid
thereby preventing accurate recovery. We can also see that EIGEN is quite robust in the pres-
ence of noise and its performance only moderately deteriorate as σ grows. In Figure 2 we
show typical results of AFL and EIGEN, before and after stress minimization.

σ = 0 σ = 0.05 σ = 0.1 σ = 0.25 σ = 0.5
RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN

R = 0.5 13.5 11.16 0.078 13 10.9 0.078 13.2 11.1 0.079 12.6 10.9 0.099 12.8 10.9 0.14
R = 0.6 11.7 7.38 0.0099 11.7 7.47 0.011 11.6 8.12 0.015 11.5 7.54 0.031 10.9 7.9 0.118
R = 0.7 10.1 5.77 0.0029 10.1 6.11 0.0048 9.81 6.01 0.0079 10.2 6.24 0.018 9.87 6.13 0.049
R = 0.8 8.75 4.93 0.0018 9.04 4.89 0.0034 8.21 4.82 0.0059 8.86 4.81 0.015 8.45 5.09 0.033
R = 0.9 7.40 4.27 0.001 7.56 4.05 0.0027 7.58 4.12 0.0052 7.36 4.31 0.013 7.50 4.20 0.028
R = 1.0 6.61 3.58 0.0008 6.66 3.45 0.0025 6.63 3.46 0.0047 6.91 3.79 0.012 6.59 3.77 0.026

Table 2. Average relative deviation of square-based proximity graphs with varying (R, σ) using
RND / AFL / EIGEN. Each result is averaged over 30 graphs.

In another experiment, we worked with sensors distributed uniformly on a perforated
disk, with external radius 10 and internal radius 3. Note that the area of the disk is smaller
than this of the 10 × 10 square, so we use now only 715 sensors to retain the same density.
Again, the graphs are characterized by the range and noise parameters (R, σ), and for each
such a pair we generated 30 corresponding random graphs. The properties of these graphs
are shown in Table 3. Also, in Figure 3 we show a typical result of EIGEN, before and after
the stress majorization. We ran RND, AFL and EIGEN on these graphs and summarized the
results in Table 4. The topology of the disk is different than that of the square, and it ended
in a somewhat lower quality results for EIGEN and somewhat improved results for RND.
However, all the observations from the square-based experiment still hold here.

R size avg degree max degree min degree
0.5 710 7 16.9 1
0.6 714.6 10 21.4 1.5
0.7 715 13.6 27 2.5
0.8 715 17.6 32.5 4
0.9 715 22.1 39 6.1
1.0 715 27 45.6 8.2

Table 3. Properties of largest connected component of graphs obtained by distributing 715 sensors on a
perforated disk with radii 3 and 10, using different values of R.
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original placement

eigen-projection initialization =⇒ stress minimization

AFL initialization =⇒ stress minimization
Fig. 2. Reconstructing a 1000-sensor proximity graph by localized stress majorization preceded by ei-
ther eigen-projection or AFL; the superiority of eigen-projection is observable. Here R = 0.8, σ = 0.

σ = 0 σ = 0.05 σ = 0.1 σ = 0.25 σ = 0.5
RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN

R = 0.5 9.03 10.46 0.15 8.55 10.42 0.16 10.23 10.36 0.16 10.12 10.48 0.17 8.69 10.3 0.19
R = 0.6 10.56 7.75 0.034 10.92 7.35 0.036 10.55 7.67 0.04 10.31 7.75 0.058 10.18 7.57 0.11
R = 0.7 9.20 5.97 0.012 9.37 5.84 0.012 9.14 5.72 0.016 9.16 5.51 0.027 8.73 5.98 0.066
R = 0.8 7.91 5.01 0.0057 7.97 4.82 0.0067 8.01 5.00 0.0091 7.73 4.97 0.019 7.88 4.86 0.041
R = 0.9 6.76 3.99 0.0037 6.93 3.91 0.0053 7.20 3.98 0.0074 7.07 4.22 0.016 6.86 4.05 0.034
R = 1.0 6.31 3.30 0.0027 5.96 3.38 0.0042 5.71 3.32 0.0063 6.27 3.27 0.014 5.84 3.50 0.031

Table 4. Average relative deviation of disk-based proximity graphs with varying (R, σ) using
RND / AFL / EIGEN. Each result is averaged over 30 graphs.
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original placement eigen-projection initialization =⇒ stress minimization

Fig. 3. Reconstructing a 715-sensor disk-based proximity graph by localized stress majorization pre-
ceded by eigen-projection. Here R = 0.8, σ = 0.

7 Extensions
There are a number of ways the basic algorithm can be extended:

7.1 Hybrid method
It is possible to couple the stress optimization together with the eigen-projection in a sin-
gle process. In such a process, we continuously perform a few local majorization iterations,
where each sensor is relocated according to process (10), followed by a single barycentric
placement, where each sensor is placed in the 2D barycenter of its neighbors.

The introduction of a few barycentric iterations during the majorization goes a long way
towards preventing folding and convergence to local minima. Our recommendation is to start
the process as a pure eigen-projection, then to continue with this hybrid method and to finish
with a pure localized stress majorization.

7.2 Termination
A general concern in distributed systems is reaching agreement. In our application, this is rel-
evant in reaching agreement when to terminate any particular iterative stage of the algorithm.
It is easy for each sensor to check whether it has converged, so each sensor can terminate that
way. However, transition to another phase of the algorithm that involves a different type of
computation requires some sort of collective agreement on convergence. Currently, we just
limit the maximal number of iterations (as a function of the number of sensors). In some
settings, it would be reasonable to allow the sensors to perform an eternal process of stress
minimization. When asked for their coordinates they should deliver the freshest result. This
is especially suitable when sensor locations are dynamic, so they should be continuously
updating their estimated locations.

7.3 Numerical stability
When computing the y-coordinates, the power iteration process (3) may occasionally lose its
D-orthogonality to x = v2, due to limited numerical precision. This can lead to high corre-
lation between the x- and y-coordinates. Currently, we are using double precision arithmetic
and our application will suffer from this problem when the graphs are pretty dense (average
degree � 30). For such dense graphs the performance of the hybrid method is excellent and
compensates for this deficiency of the power iteration. We believe that if the algorithm is
implemented with extended numerical precision, one should not encounter such problems.
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7.4 Working in three dimensions
When applying our eigen-projection method to 3D layouts, the z vector should be v4 - the
fourth eigenvector of I + D−1W . This means we must compute a vector z which is D-
orthogonal to both x and y already computed. To achieve this, we partition the sensors into
disjoint sets, each of cardinality 3 at least. Possibly, some sensors are left as singletons. In
each set there should be a sensor that is adjacent to all other sensors of its set; let’s call it the
“center”. This is a randomized max “star-matching” that can be performed in a distributed
manner, using a few sweeps. Consider a set {i, j, k}, where i is the center. Now, i should
know xi,yi,Dii,xj ,yj ,Djj ,xk,yk,Dkk, which is possible since i can communicate with both j
and k. Using this information, sensor i computes a vector (zi, zj , zk) which is “D-orthogonal”
to (xi, xj , xk), and (yi, yj , yk). By this we mean that Diizixi+Djjzjxj +Dkkzkxk = 0, and
also Diiziyi + Djjzjyj + Dkkzkyk = 0. This is done simply by a standard Gram-Schmidt
process. Similarly, each center assigns the sensors of its set their z-coordinates. Also, each
sensor i that was not assigned to a set takes zi = 0. This way we get an initial z which
is D-orthogonal to x and y. Before computing this z, we should use the same technique to
compute an exact y = v3, which is D-orthogonal to both 1n and x.

8 Conclusion

We have presented an algorithm to generate sensor network layouts in a fold-free manner
based on short-range inter-node distances. This algorithm is fully distributed (decentralized),
and relies on no explicit communication other than that between immediate neighbors. The
fully distributed nature of the algorithm is crucial for a practical implementation which avoids
excessive communication. To the best of our knowledge, this is the first fully distributed al-
gorithm for graph drawing or sensor layout. Beyond this important feature, judging from our
experiments, our algorithm seems to be superior to the state-of-the-art in the sensor network
literature. Future work includes extension of our methods to dynamic sensor networks and
sensor networks where more geometric information (such as angles) is available.
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