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Modelling Data-Centric Routing
in Wireless Sensor Networks
Bhaskar Krishnamachari, Deborah Estrin, Stephen Wicker

Abstract— Sensor networks differ from traditional net-
works in several ways: sensor networks have severe en-
ergy constraints, redundant low-rate data, and many-to-one
flows. The end-to-end routing schemes that have been pro-
posed in the literature for mobile ad-hoc networks are not
appropriate under these settings. Data-centric technologies
are needed that perform in-network aggregation of data to
yield energy-efficient dissemination. In this paper we model
data-centric routing and compare its performance with tra-
ditional end-to-end routing schemes. We examine the im-
pact of source-destination placement and communication
network density on the energy costs, delay, and robustness of
data aggregation. We show that data-centric routing offers
significant performance gains across a wide range of opera-
tional scenarios.

Keywords— Data aggregation, data-centric routing, di-
rected diffusion, wireless sensor networks.

I. I NTRODUCTION

THE wireless sensor networks of the near future are
envisioned to consist of hundreds to thousands of in-

expensive wireless nodes, each with some computational
power and sensing capability, operating in an unattended
mode. They are intended for a broad range of environ-
mental sensing applications from vehicle tracking to habi-
tat monitoring [4], [28], [35]. The hardware technology
for these networks - low cost processors, miniature sens-
ing and radio modules are here today, with further im-
provements in cost and capabilities expected within the
next decade [4], [16], [19], [28], [29]. The applications,
networking principles and protocols for these systems are
just beginning to be developed [9], [10], [14], [28].

Wireless sensor networks are similar to mobile ad-hoc
networks (MANETs) in that both involve multi-hop com-
munications. However, the nature of the applications and
routing requirements for the two are significantly different
in several respects. First, the typical mode of communica-
tion in a sensor network is from multiple data sources to
a data recipient/sink - a sort of a reverse-multicast, rather

B. Krishnamachari and S. Wicker are at the School of Electrical and
Computer Engineering, Cornell University, Ithaca, NY 14853, E-mail:
{bhaskar, wicker}@ece.cornell.edu.

D. Estrin is at the UCLA Computer Science Department, Los Ange-
les, CA 90095, E-mail: destrin@lecs.cs.ucla.edu.

This work is supported in part by the DARPA SensIT program.

than communication between any pair of nodes. Second,
since the data being collected by multiple sensors is based
on common phenomena, there is likely to be some re-
dundancy in the data being communicated by the various
sources in sensor networks. Third, in most envisioned sce-
narios the sensors are not mobile (though the sensed phe-
nomena may be), so the nature of the dynamics in the two
networks is different. Finally, the single major resource
constraint in sensor networks is that of energy. The sit-
uation is much worse than even that in MANETs, where
the communicating devices handled by human users can
be replaced or recharged relatively often. The scale of sen-
sor networks and the necessity of unattended operation for
months at a time means that energy resources have to be
managed even more carefully. This, in turn, precludes re-
ally high data rate communication.

For these reasons the many end-to-end routing protocols
that have been proposed for MANETs in recent years are
not suitable for wireless sensor networks. Alternative ap-
proaches are required.

Data aggregationhas been put forward as a particularly
useful paradigm for wireless routing in sensor networks
[13], [17]. The idea is to combine the data coming from
different sources enroute – eliminating redundancy, min-
imizing the number of transmissions and thus saving en-
ergy. This paradigm shifts the focus from the traditional
address-centricapproaches (finding short routes between
pairs of addressable end-nodes) to a moredata-centricap-
proach (finding routes from multiple sources to a single
destination that allows in-network consolidation of redun-
dant data).

We do not propose any new protocols in this paper, but
rather attempt to address at a higher level the gains and
tradeoffs that can be achieved by using the data-centric
approach as opposed to the traditional address-centric ap-
proach.

The rest of the paper is organized as follows: in sec-
tion II, we define simple models of address-centric and
data-centric routing protocols for the purpose of analysis.
Since data aggregation is the key concept in data-centric
routing, we examine optimal and suboptimal data aggre-
gation methods, measures of performance and factors af-
fecting these measures in section III. In section IV we
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Fig. 1. Illustration of AC versus DC routing

present some theoretical results pertaining to the energy
gains that can be achieved using data aggregation. This is
followed by experimental results showing how the various
suboptimal data-centric approaches compare with the opti-
mal address-centric routing in terms of the average number
of transmissions required per datum delivered to the data
sink. Section V presents experimental results showing the
effect of source placement, number and network density
on the delay due to aggregation latency. In section VI we
discuss experimental results showing that data aggregation
results in some degree of robustness to dynamics of the
sensed phenomena. We caution the reader about the as-
sumptions and omissions in our modelling in section VII.
Our work is placed in the context of other relevant work in
section VIII. We present our conclusions in section IX.

II. ROUTING MODELS

We focus our attention on a single network flow that
is assumed to consist of a single data sink attempting
to gather information from a number of data sources.
We start with simple models of routing schemes which
use data aggregation (which we term data-centric), and
schemes which do not (which we term address-centric). In
both cases we assume there are some common elements -
the sink first sends out a query/interest for data, the sensor
nodes which have the appropriate data then respond with
the data. They differ in the manner the data is sent from
the sources to the sink:

Address-centric Protocol (AC): Each source indepen-
dently sends data along the shortest path to sink based on
the route that the queries took ( “end-to-end routing” ).

Data-centric Protocol (DC): The sources send data
to the sink, but routing nodes enroute look at the con-
tent of the data and perform some form of aggrega-
tion/consolidation function on the data originating at mul-

tiple sources.
Figure 1 is a simple illustration of the difference be-

tween AC and DC schemes. In the address-centric ap-
proach, each source sends its information separately to the
sink (source 1 routing the data labelled “1” through node
A, and source 2 routing the data labelled “2” through nodes
C and B). In the data centric-approach, the data from the
two sources is aggregated at node B, and the combined
data (labelled “1+2”) is sent from B to the sink. The lat-
ter results in energy savings as fewer transmissions are re-
quired to send the information from both sources to the
sink.

A. Differentiating Scenarios

One of goals in this paper is to understand the context in
which data aggregation is useful. It is helpful to consider
the following scenarios classified in terms of the type and
dynamics of the data sent by the sources:
1. All sources send completely different information (no
redundancy)
2. All sources send identical information (complete redun-
dancy)
3. The sources send information with some intermediate,
non-deterministic, level of redundancy

In case 1, Data aggregation cannot be performed - both
AC and DC protocols will incur the same number of trans-
missions for the sink to receive all the data. In case 2, the
AC protocol can be modified to do as well as or even bet-
ter than the DC protocol by having the sink monitor the
incoming information, realize that there is duplicate in-
formation coming in, and ask all but one of the sources
to stop transmitting (assuming that this duplication is sus-
tained over a period of time). In case 3, however, the AC
protocol cannot be modified to do much better than the DC
protocol - the non-deterministic nature of the redundancy
implies that the sink cannot request some sources to shut
down. Since all sources are required to transmit, and there
is some redundancy in their transmission, the best option
is to aggregate the information coming from these sources,
which is what the DC protocol does. For the rest of the pa-
per, it will be assumed that this scenario holds.

We now look at the notion of data aggregation in more
detail.

III. D ATA AGGREGATION

Data aggregation is the combination of data from dif-
ferent sources, and can be implemented in a number of
ways. The simplest data aggregation function is duplicate
suppression - in the example of figure 1, if sources 1 and 2
both send the same data, node B will send only one of these
forward. Duplication suppression is already practiced in
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commercial wireless messaging networks. Other aggrega-
tion functions could bemax, min, or any other function
with multiple inputs. For our modelling purposes in this
paper we make a simplifying assumption - the aggregation
function is such that each intermediate node in the rout-
ing transmits a single aggregate packet even if it receives
multiple input packets. We will refer to the information
received by the sink when it has obtained the messages
transmitted by all sources in a given flow (whether or not
these messages are aggregated) as a “datum”.

A. Optimal Aggregation

Say there arek sources, labelledS1 throughSk, and a
sink, labelledD. Let the network graphG = (V,E) con-
sist of all the nodesV , with E consisting of edges between
nodes that can communicate with each other directly. With
the assumption that the number of transmissions from any
node in the data aggregation tree is exactly one, the data
aggregation tree can be thought of as the reverse of a mul-
ticast tree: instead of a single source sending a packet to
all receivers, all the sources are sending a single packet to
the same receiver. It is well-known that the multicast tree
with a minimum number of edges is a minimum Steiner
tree on the network graph. The following can therefore be
readily obtained:

Result 1: The optimum number of transmissions re-
quired per datum for the DC protocol is equal to the num-
ber of edges in the minimum Steiner tree in the network
which contains the node set(S1, ...Sk, D).

Corollary: Assuming an arbitrary placement of sources,
and a general network graph G, the task of doing DC rout-
ing with optimal data aggregation is NP-hard.

The latter follows from the NP-completeness of the min-
imum Steiner problem on Graphs [11].

B. Suboptimal Aggregation

The following are three generally suboptimal schemes
for generating data aggregation trees that we examine in
this paper.
1. Center at Nearest Source (CNS): In this data aggre-
gation scheme, the source which is nearest the sink acts
as the aggregation point. All other sources send their data
directly to this source which then sends the aggregated in-
formation on to the sink.
2. Shortest Paths Tree (SPT): In this data aggregation
scheme, each source sends its information to the sink along
the shortest path between the two. Where these paths over-
lap for different sources, they are combined to form the
aggregation tree.
3. Greedy Incremental Tree (GIT) : In this scheme the
aggregation tree is built sequentially. At the first step the

Fig. 2. Illustration of the event-radius model for source posi-
tions

tree consists of only the shortest path between the sink and
the nearest source. At each step after that the next source
closest to the current tree is connected to the tree.

This is by no means an exhaustive list, but is represen-
tative of some of the data aggregation tree heuristics that
can be implemented.

C. Performance measures

In exploring the gains and tradeoffs involved in data-
centric protocols, we need to specify performance mea-
sures of interest. Three are examined in some detail in this
paper:
• Energy Savings: By aggregating the information com-
ing from the sources, the number of transmissions is re-
duced, translating to a savings in energy.
• Delay: There is latency associated with aggregation.
Data from nearer sources may have to be held back at in-
termediate nodes in order to combine them with data from
sources that are farther away.
• Robustness: Somewhat related to the first measure is the
fact that with data aggregation there is a decrease in the
marginal energy cost of connecting additional sources to
the sink. This can be considered as providing some degree
of robustness to dynamics in the sensed phenomena.

D. Source Placement Models

The chief factors that can affect the performance of data
aggregation methods are the positions of the sources in the
network, the number of sources, and the communication
network topology. In order to investigate these factors, we
study two models of source placement, the event-radius
(ER) model, and the random sources (RS) model. In both
models, we generate a sensor network by scatteringn sen-
sor nodes randomly in a unit square. One of these nodes is
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Fig. 3. Illustration of the random-sources model for source po-
sitions

the data sink. All nodes are assumed to be able to commu-
nicate with any other nodes that are within some distance
R (the communication radius). The location of the data
sources depends on the models as follows:
• Event-Radius Model: In this model, a single point in
the unit square is defined as the location of an “event.” This
may correspond to a vehicle or some other phenomenon
being tracked by the sensor nodes. All nodes within a dis-
tanceS (called the sensing range) of this event that are not
sinks are considered to be data sources. The average num-
ber of sources is approximatelyπ ∗ S2 ∗ n (somewhat less
than this if we take into account boundary effects). This
model is shown in figure 2.
• Random-Sources Model: In this model,k of the nodes
that are not sinks are randomly selected to be sources. Un-
like in the event-radius model, the sources are not neces-
sarily clustered near each other. This is illustrated in figure
3.

IV. ENERGY SAVINGS DUE TO DATA AGGREGATION

A. Theoretical Results

We now give some analytical bounds on the energy costs
and savings that can be obtained with data aggregation,
based on the distances between the sources and the sink,
and the inter-distances among the sources. The upshot of
this section is that the greatest gains due to data aggrega-
tion are obtained when the sources are all close together
and far away from the sink.

Let di be the distance of the shortest path from source
Si to the sink in the graph. Per datum, the total number of
transmissions required for the optimal AC protocol in this
case (call itNA) is:

NA = d1 + d2 + ...dk = sum(di) (1)

How well can the optimal DC protocol do?
Result 2: Let the number of transmissions required for

the optimal DC protocol beND. ThenND ≤ NA.
Proof: Doing data-aggregation optimally can only de-

crease the minimum number of edges needed compared
to the situation when sources send information to the sink
along shortest paths.�

Definition: The “diameter” X of a set of nodesS
in a graphG is the maximum of the pairwise shortest
paths between these nodesX = maxi,j∈SSP (i, j) where
SP (i, j) is the shortest number of hops needed to go from
nodei to j in G.

Result 3: If the source nodesS1, S2, . . . Sk have a di-
ameterX ≥ 1. The total number of transmissions (ND)
required for the optimal DC protocol satisfies the follow-
ing bounds:

ND ≤ (k − 1)X + min(di) (2)

ND ≥ min(di) + (k − 1) (3)

Proof : (2) can be obtained by a construction - the data
aggregation tree which consists of(k−1) sources sending
their packets to the remaining source which is nearest to
the sink. This tree has no more than(k − 1)X + min(di)
edges, hence the optimum tree must have no more than
this. (3) is obtained by considering the smallest possi-
ble Steiner tree which would happen if the diameter were
1. In this case, the shortest path from the source node at
min(di) must be part of the minimum Steiner tree, and
there is exactly one edge from each of the other source
nodes to this node.�

Result 4: If the diameterX < min(di), thenND <
NA. In other words, the optimum data-centric protocol
will perform better than the AC protocol.

Proof :

⇒ ND < (k − 1)X + min(di) < (k)min(di)
⇒ ND < sum(di) = NA. (4)

�

Definition : Let us define the fractional savings,FS,
obtained by using the DC protocol as opposed to the AC
protocol as follows:

FS = (NA −ND)/(NA) (5)

FS can range from 0 (no savings) to 1 (100 percent sav-
ings). The following are the lower and upper bounds on
FS, which follow directly from (2) and (3) and the above
definition.
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Result 5: The fractional savings FS satisfies the follow-
ing bounds:

FS ≥ 1− ((k − 1)X + min(di))/sum(di) (6)

FS ≤ 1− (min(di) + k − 1)/sum(di) (7)

To clarify the matter, assume that all the sources are
at the same shortest-path distance from the sink. i.e.
min(di) = max(di) = d.

Then we have that

1− ((k − 1)X + d)
kd

≤ FS

≤ 1− (d + k − 1)
(kd)

(8)

Result 6: Assume X and k are fixed, then as d tends to
infinity (i.e. as the sink is farther and farther away from
the sources):

limd→∞FS = 1− 1/k. (9)

Proof:
In the limit, X << d, andk << d. It suffices to show

that both lower and upper bounds in (8) converge to the
same right hand side value:

limd→∞

(
1− (k − 1)X + d

kd

)
= limd→∞

(
1− (k − 1)X

kd
− d

kd

)
= 1− 1/k (10)

and

limd→∞

(
1− (d + k − 1)

(kd)

)
= limd→∞

(
1− d

kd
− (k − 1)

kd

)
= 1− 1/k (11)

�

Essentially, what Result 6 tells us is quite intuitive. If
the distance between the sink and the sources is large com-
pared to the distance between the sources, then the opti-
mal DC protocol gives k-fold savings. When there are 4
sources that are close together and located far-away from
the sink, then the AC protocol will have about 4 times as
many transmissions, i.e. there are roughly 75% fewer
transmissions with data aggregation. When there are 10
such sources, the gains are nearly 90%, and so on...

Result 7: If the subgraphG′ of the communication
graphG induced by the set of source nodes(S1, . . . Sk) is

connected, the optimal data aggregation tree can be formed
in polynomial time.

Proof: The proof is constructive. Start GIT. The tree is
initialized with the path from the sink to the nearest source.
At each additional step of the GIT, the next source to be
connected to the tree is always exactly one step away (such
a source is guaranteed to exist sinceG′ is connected). At
the end of the construction, the number of edges in the tree
is thereforedmin+(k−1), which is the lower bound given
in relation (3). Hence the lower bound is tight and there-
fore optimal. The GIT construction runs in polynomial
time w.r.t. the number of nodes [33]. Hence although find-
ing the optimal data aggregation tree is NP-hard in general,
in this particular situation, we have a polynomial special-
case.�

Result 8: In the ER model, whenR > 2S, the optimal
data aggregation tree can be formed in polynomial time.

Proof: It is easy to see that whenR > 2S, all sources
are within one hop of each other. This is therefore a special
case of result 8. Under this condition, both GIT and CNS
schemes will result in the optimal data aggregation tree.�

B. Experimental Results

We now present our experimental results showing the
energy costs of AC and DC protocols for both the ER and
RS source placement models. The experimental setup is as
follows: for the ER model, 5 evenly spaced values of the
sensing rangeS from 0.1 to 0.3 are tested, while for the
RS model the number of sourcesk is varied 1 to 15 in in-
crements of 2. For both models the communication radius
R is varied from 0.15 to 0.45 in increments of 0.05. For
each combination ofS or k andR 100 experiments were
run. Each experiment consists of a random placement of
then = 100 nodes including the sink node in a square are
of unit size. In some cases (particularly when the values
of E or R are low) a particular experiment may result in
unconnected graphs or no sources; the measurements from
these cases are not taken into account while computing the
averages. The error-bars shown in the plots represent the
standard error in the mean.

Figures 4 and 7 show a 3D surface plot of the number
of transmissions in the ideal AC protocol for both models.
In both cases these costs are greatest when a) the num-
ber of sources is large and b) the communication range is
low. The former is obvious as the number of transmissions
should increase with sources; the latter is understandable
since the number of hops between the sources and the sink
(indeed between any two nodes in the network) is high
when the communication radius is low.

Figure 5 compares the transmission energy costs of the
various protocols as the communication range is varied,
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Fig. 4. Cost of address-centric routing (average number of
transmissions) in event-radius model

Fig. 5. Comparison of energy costs versus communication ra-
dius in event-radius model

Fig. 6. Comparison of energy costs versus sensing range in
event-radius model

Fig. 7. Cost of address-centric routing (average number of
transmissions) in the random-sources model

Fig. 8. Comparison of energy costs versus communication ra-
dius in random-sources model

Fig. 9. Comparison of energy costs versus number of sources
in random-sources model
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keeping the sensing range constant at 0.2 (which corre-
sponds to about 12.5 sources on average, ignoring edge-
effects). At the very bottom is the lower bound onND

given in relation 3. In this figure it can be seen that
the GITDC seems to coincide with the lower bound all
throughout. This is because whenS is even of moder-
ate length, with high probability, the subgraph which lies
within the circle of radiusS around the event is connected,
and result 7 holds. The performance of the CNSDC ap-
proaches optimal asR increases, as per result 8. The
SPTDC protocol also performs well all through. In all
cases there is a50 − 80% savings compared to the AC
protocol. Figure 8 is the equivalent plot for the Random
Sources Model. The first thing to note is that the lower
bound is no longer tight, since the sources are placed ran-
domly anywhere in the network and unless the network is
dense (highR) the sources are unlikely to be within one
hop of each other. In this setting the GITDC performs the
best, followed by SPTDC, CNSDC and AC, respectively.
CNSDC performs poorly in this setting since the sources
are far apart and it doesn’t pay to always aggregate at the
source nearest to the sink.

Figures 6 and 9 both show that the transmission costs in-
crease as the number of sources is increased. In the event-
radius model, it can be seen that the CNSDC protocol per-
forms poorly when the sensing range is really large. When
S = 0.3, nearly a third of all nodes in the experiments act
as sources and for many of these sources it may be faster
to route directly to the sink rather than through one par-
ticular source that is closest to the sink. Figure 9 shows
that the gains due to a good data aggregation technique
(like GITDC) can be very significant when the number of
sources is high.

To summarize, our experiments show that the energy
gains due to data aggregation can be quite significant with
SPTDC or GITDC particularly when there are are a lot of
sources (largeS or largek) that are many hops from the
sink (smallR).

V. DELAY DUE TO DATA AGGREGATION

Although data aggregation results in fewer transmis-
sions, there is a tradeoff - potentially greater delay because
data from nearer sources may have to be held back at an
intermediate node in order to be aggregated with data com-
ing from sources that are farther away. This can be seen by
referring back to figure 1; in figure 1b, node B which acts
as the aggregating node for sources 1 and 2, is only one
hop from source 1 but is two hops from source 2. Thus
if both sources transmit the data simultaneously, the data
from source 1 will get to B before the data from source 2
and take longer to get to the sink than it would in the no

aggregation scheme shown in figure 1a. Note that this de-
lay depends on the aggregation function - for some simple
kinds of data aggregation such as duplicate suppression,
there is no need for data to be withheld at an aggregating
node. For more complicated forms of data aggregation,
where the output aggregated packet depends on the com-
bination of multiple input packets this delay is an issue.

It can be seen that, in the worst case, the latency due
to aggregation will be proportional to the number of hops
between the sink and the farthest source. When no aggre-
gation is employed, the delay between the time when the
various sources transmit data and the sink receives the first
packet is proportional to the number of hops between the
sink and the nearest source. Hence one way to quantify the
effect of aggregation delay is to examine the difference be-
tween these two distances. This is shown in figures 10-13.
The experimental setup is the same as discussed in section
IV-B. The upper curve in all these figures is representative
of the latency delay in DC schemes with non-trivial aggre-
gation functions and the lower curve is representative of
the latency delay in AC schemes. The difference between
these curves is greatest in both models when the commu-
nication radius is low, and when the number of sources is
high. In figure 13, as the number of sources increases the
two curves saturate to extreme values. The upper curve
saturates to a value of about 4 which is about the maxi-
mum number of hops between the sink and any node in
the network. The lower curve saturates at a value close to
the minimum number of hops (1).

VI. ROBUSTNESS DUE TODATA AGGREGATION

As indicated before, with data aggregation there is
a lower marginal energy cost of connecting additional
sources to the sink as opposed to the AC approach. Con-
sider the GITDC protocol, for example. At each step, the
energy cost (in terms of additional edges, i.e. additional
number of transmissions per datum) of connecting an addi-
tional source is simply the shortest distance of that source
to the aggregation tree at the current step. In the AC pro-
tocol, however, the cost of adding an additional source is
the distance of that source all the way to the sink. Figures
14 and 15 show this relationship. The x-axis represents
the number of sources connected to the sink and the y-axis
represents the total number of transmissions required for
all sources to communicate to the sink. In both models of
source placement, ER as well as RS, for a given energy
budget, a greater number of sources can be connected to
the sink. Thus the energy savings with aggregation can
be transformed to provide a greater degree of robustness
to dynamics in the sensed phenomena. For example if at
any given time only a fraction of all sources can give ac-
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Fig. 10. Distance of sink to nearest and farthest source versus
communication radius in event-radius model

Fig. 11. Distance of sink to nearest and farthest source versus
sensing range in event-radius model

curate readings of the sensed phenomena, then a greater
number of such readings can be processed and sent to the
sink in the DC protocol even if both schemes use the same
amount of total energy. The gains are, of course, smaller
in the random-sources model since there is less scope for
aggregation when the sources are randomly located.

VII. SHORTCOMINGS OF THEMODELLING

The reader should note the simplifying assumptions we
have made in the above analysis and some performance
issues that have not been taken into account in our mod-
elling. First, we have chosen to make a somewhat stark
contrast between routing protocols which do and do not
use data aggregation in order to highlight the effect of data

Fig. 12. Distance of sink to nearest and farthest source versus
communication radius in random-sources model

Fig. 13. Distance of sink to nearest and farthest source versus
number of sources in random-sources model

aggregation on routing performance. It can be argued that
our categorization of protocols into address-centric versus
data-centric on this basis is overly simplistic, and has ig-
nored the possibility of hybrid protocols which combine
the advantages of both. For example, one can conceive of
the sources finding routes to the sink in a traditional end-
to-end manner, while the intermediate nodes are endowed
with some intelligence and can perform data aggregation
on messages passing through them.

Second, in discussing the energy costs of the routing
protocols we have not considered any of the overhead costs
involved in setting up or maintaining the routing paths
from the sources to the sink. There are two reasons for
this - one is that to do so we would have been forced to
take into account specifics about how the routes are set
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Fig. 14. Average number of transmissions required to connect
to a given number of sources in event-radius model

Fig. 15. Average number of transmissions required for sink
to receive data from a given number of sources in random-
sources model

up and this would affect the generality of the analysis, the
second is that it is not clear that taking these costs into ac-
count would have any differential impact on AC versus DC
protocols. In addition to energy savings due to data aggre-
gation, there will also be some additional energy savings
through the avoidance of globally unique IDs, which can
require a significant number of bytes in the small packets
typical of sensor networks. Such savings have not been
modelled here.

Third, our analysis of the delay focused only on the la-
tency due to aggregation. There are two other possible
sources of delay that we did not take into account - pro-
cessing delay and delay due to congestion. There is likely
to be an additional delay in data-centric protocols due to
the processing that needs to be performed by aggregating

nodes. It could be argued that this processing delay is a
second order effect and unlikely to be as significant as the
latency delay we analyzed. We chose not to model the
delay due to congestion as this would depend on a num-
ber of additional details such as the MAC protocol used,
the traffic in the network; also, again, it is not clear that
congestion delay would have a differential impact on data
centric versus address-centric protocols.

Finally, our analysis has focused on the case where there
is a single sink. Although this is a reasonable scenario
for many applications, it is reasonable to ask what would
happen if there were additional sinks. One solution is to
think of the different flows in that case as a superposition
of many single sink data-flows. However, this would yield
an over-estimate of the energy costs, as further aggregation
savings can be possible if there are redundancies in the
sources and the data being requested by the various sinks.
This will be a topic for future study.

VIII. R ELATED WORK

The use of sensor networks has been envisioned in a
range of settings such as industrial applications [35], vehi-
cle tracking applications [28] and habitat monitoring [4].
A number of independent efforts have been made in recent
years to develop the hardware and software architectures
needed for wireless sensing. Of particular note are UC
Berkeley’s Smart Dust Motes [19], TinyOS [16], and the
PicoRadio [29] project; the Wireless Integrated Network
Sensors (WINS) project [28] and PC-104 based sensors
[4] developed at University of California Los Angeles; and
theµAMPS project at MIT [23]. The challenges and de-
sign principles involved in networking these devices are
discussed in [9], [10], and [22]. Energy-efficient medium
access schemes applicable for sensor networks are pre-
sented in [7], [31] and [37]. Techniques for balancing the
energy load among sensors using randomized rotation of
cluster heads are discussed in [15]. Some attention has
also been given to developing localized self-configuration
mechanisms in sensor networks [5].

The great majority of wireless routing protocols devel-
oped in recent years have been for mobile ad-hoc commu-
nication networks [27]. Depending on whether the routes
are maintained at all times or if they are created afresh
when needed, these are categorized intoproactive [24],
reactive [18], [20], [25], [26], or hybrid [12] protocols.
Some work has also been directed to incorporating GPS-
like geographical information with the routing technique
[1], [21]. These approaches are all address-centric, in that
they are focused on end-to-end routing between pairs of
addressable nodes. There has also been work on address-
centric routing protocols that conserve energy and max-
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imize the system lifetime. In these schemes, which are
applicable to sensor networks, routing metrics that incor-
porate energy expenditure considerations are defined for
each link [6], [32].

The application-specific nature of sensor networks leads
to the alternative approach we have described in this paper
as data-centric. The meta-naming of data is suggested in
[14] as a means to reduce transmission of redundant data
for flooding-like schemes for information dissemination.
Directed diffusion[17] is the protocol that is most like the
data-centric routing models analyzed in this paper. In di-
rected diffusion, all nodes are application-aware and com-
municate named data. The benefits of application specific,
in-network processing and data-aggregation are quantified
through experimental results in [13]. In the experimental
set-up described in that paper, the form of data aggrega-
tion used (duplicate suppression) reduces the traffic by up
to 42% for four sources.

The notion of in-network processing during routing is
not unique to sensor networks alone. In Active Networks,
intermediate routing nodes can perform customized com-
putations on and modify the contents of messages passing
through them on a per-user or per-application basis [34].
Limited router-assist techniques have also been proposed
for multicast on the internet which would permit interme-
diate routers to look at special router-assist fields on pack-
ets in order to eliminate redundant signaling and perform
subcasting [3].

Optimal data aggregation, as we have shown in this pa-
per, requires the formation of a minimum Steiner tree, a
well known NP-complete problem arising in many net-
working contexts [36]. The greedy incremental tree (GIT)
heuristic scheme described in our paper (also known as the
nearest participant first algorithm) is a well-known approx-
imation algorithm for this problem[33]. It is known to have
an approximation ratio of 2 (i.e. the tree that it outputs can
have no more than 2 times as many edges as the optimum).
A distributed version of this algorithm is discussed in [2].
The best known approximation algorithm for the minimum
Steiner tree problem has an approximation ratio of about
1.55 [30].

Finally, we mention here in passing that there is another
sense in which the phrase “data-centric networking” has
been used [8]; namely to describe an approach to ubiqui-
tous computing in which human users are identified not
with static computing devices but with their personalized
services and data.

IX. CONCLUSIONS

We have modelled and analyzed the performance of
data-centric routing in wireless sensor networks. We iden-

tified and investigated some of the factors affecting per-
formance, such as the number of placement of sources,
and the communication network topology. The formation
of an optimal data aggregation tree is generally NP-hard.
We presented some suboptimal data aggregation tree gen-
eration heuristics and showed the existence of polynomial
special cases.

The modelling tells us that whether the sources are clus-
tered near each other or located randomly, significant en-
ergy gains are possible with data aggregation. These gains
are greatest when the number of sources is large, and when
the sources are located relatively close to each other and
far from the sink. We discussed how these energy gains
can be translated into increased robustness to dynamics in
sensed phenomena. The modelling, though, also seems to
suggest that aggregation latency could be non-negligible
and should be taken into consideration during the design
process. Data-centric architectures such as directed diffu-
sion should support a Type of Service (TOS) facility that
would permit applications to effect desired tradeoffs be-
tween latency and energy.
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