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Modelling Data-Centric Routing
INn Wireless Sensor Networks

Bhaskar Krishnamachari, Deborah Estrin, Stephen Wicker

Abstract— Sensor networks differ from traditional net- than communication between any pair of nodes. Second,
works in several ways: sensor networks have severe en-since the data being collected by multiple sensors is based
ergy constraints, redundant low-rate data, and many-to-oneé gn common phenomena, there is likely to be some re-
flows. The end-to-end routing schemes that have been pro-y,,nqancy in the data being communicated by the various
posed in the literature for mobile ad-hoc networks are not sources in sensor networks. Third. in most envisioned sce-

appropriate under these settings. Data-centric technologies X ,
are needed that perform in-network aggregation of data to "arios the sensors are not mobile (though the sensed phe-

yield energy-efficient dissemination. In this paper we model homena may be), so the nature of the dynamics in the two
data-centric routing and compare its performance with tra- networks is different. Finally, the single major resource
ditional end-to-end routing schemes. We examine the im- constraint in sensor networks is that of energy. The sit-
pact of source-destination placement and communication yation is much worse than even that in MANETS, where
network density on the energy costs, delay, and robustness oftne communicating devices handled by human users can
data aggregation. We show that data-centric routing offers . o2 e or recharged relatively often. The scale of sen-
significant performance gains across a wide range of opera- . .
tional SCeNnarios. sor networks and the necessity of unattended operation for
months at a time means that energy resources have to be
managed even more carefully. This, in turn, precludes re-
ally high data rate communication.

For these reasons the many end-to-end routing protocols
that have been proposed for MANETS in recent years are

THE wireless sensor networks of the near future afet suitable for wireless sensor networks. Alternative ap-
envisioned to consist of hundreds to thousands of iproaches are required.

expensive wireless nodes, each with some computationah5tg aggregatiorhas been put forward as a particularly
power and sensing capability, operating in an unattendggbfy| paradigm for wireless routing in sensor networks
mode. They are intended for a broad range of environ-g], [17]. The idea is to combine the data coming from
mental sensing applications from vehicle tracking to hakjifierent sources enroute — eliminating redundancy, min-
tat monitoring [4], [28], [35]. The hardware technologymizing the number of transmissions and thus saving en-
for these networks - low cost processors, miniature seRggy. This paradigm shifts the focus from the traditional
ing and radio modules are here today, with further inyqqress-centri@pproaches (finding short routes between
provements in cost and capabilities expected within ”ﬂ%irs of addressable end-nodes) to a nut@&-centricap-
next decade [4], [16], [19], [28], [29]. The applicationsproach (finding routes from multiple sources to a single

networking principles and protocols for these systems g{gstination that allows in-network consolidation of redun-
just beginning to be developed [9], [10], [14], [28]. dant data).

Wireless sensor networks are similar to mobile ad-hocWe do not propose any new protocols in this paper, but

networks (MANETS) in that both involve multi-hop comyaeher attempt to address at a higher level the gains and

munications. However, the nature of the applications agd yaoffs that can be achieved by using the data-centric

routing requirements for the two are significantly diﬁere'};{pproach as opposed to the traditional address-centric ap-
in several respects. First, the typical mode of communichoaCh_
o

tion in a sensor network is from multiple data sources . . o
The rest of the paper is organized as follows: in sec-

a data recipient/sink - a sort of a reverse-multicast, ratr{%rn Il, we define simple models of address-centric and
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tiple sources.

Figure 1 is a simple illustration of the difference be-
tween AC and DC schemes. In the address-centric ap-
proach, each source sends its information separately to the
sink (source 1 routing the data labelled “1” through node
A, and source 2 routing the data labelled “2” through nodes
C and B). In the data centric-approach, the data from the
two sources is aggregated at node B, and the combined
data (labelled “1+2") is sent from B to the sink. The lat-

) ter results in energy savings as fewer transmissions are re-

Sink Sink quired to send the information from both sources to the
a) AC Routing b) DC Routing sink.

Source 2 Source 2

A. Differentiating Scenarios

Fig. 1. lllustration of AC versus DC routin
J J One of goals in this paper is to understand the context in

' o which data aggregation is useful. It is helpful to consider
present some theoretical results pertaining to the enetgy following scenarios classified in terms of the type and
gains that can be achieved using data aggregation. Thigydamics of the data sent by the sources:
followed by experimental results showing how the various All sources send completely different information (no
suboptimal data-centric approaches compare with the OFPHdundancy)

mal address-centric routing in terms of the average numbpera|| sources send identical information (complete redun-
of transmissions required per datum delivered to the d@{gncy)

sink. Section V presents experimental results showing t8e The sources send information with some intermediate,
effect of source placement, number and network densi{yn-deterministic, level of redundancy

on the delay due to aggregation latency. In section VI we|n case 1, Data aggregation cannot be performed - both
discuss experimental results showing that data aggregatighand DC protocols will incur the same number of trans-
results in some degree of robustness to dynamics of tgsions for the sink to receive all the data. In case 2, the
sensed phenomena. We caution the reader about thepgSprotocol can be modified to do as well as or even bet-
sumptions and omissions in our modelling in section Vi{er than the DC protocol by having the sink monitor the
Our work is placed in the context of other relevant work ifhcoming information, realize that there is duplicate in-
section VIII. We present our conclusions in section IX. fgrmation coming in, and ask all but one of the sources
to stop transmitting (assuming that this duplication is sus-
tained over a period of time). In case 3, however, the AC

We focus our attention on a single network flow thgtrotocol cannot be modified to do much better than the DC
is assumed to consist of a single data sink attemptipgptocol - the non-deterministic nature of the redundancy
to gather information from a number of data sourcesnplies that the sink cannot request some sources to shut
We start with simple models of routing schemes whiathown. Since all sources are required to transmit, and there
use data aggregation (which we term data-centric), alsdsome redundancy in their transmission, the best option
schemes which do not (which we term address-centric).ifito aggregate the information coming from these sources,
both cases we assume there are some common elemewiich is what the DC protocol does. For the rest of the pa-
the sink first sends out a query/interest for data, the senper, it will be assumed that this scenario holds.
nodes which have the appropriate data then respond withWWe now look at the notion of data aggregation in more
the data. They differ in the manner the data is sent frotetail.
the sources to the sink:

Address-centric Protocol (AC) Each source indepen-
dently sends data along the shortest path to sink based oData aggregation is the combination of data from dif-
the route that the queries took ( “end-to-end routing”). ferent sources, and can be implemented in a number of

Data-centric Protocol (DC). The sources send datavays. The simplest data aggregation function is duplicate
to the sink, but routing nodes enroute look at the cosuppression - in the example of figure 1, if sources 1 and 2
tent of the data and perform some form of aggregheth send the same data, node B will send only one of these
tion/consolidation function on the data originating at muforward. Duplication suppression is already practiced in

II. ROUTING MODELS

IIl. DATA AGGREGATION



IEEE INFOCOM 2002 3

commercial wireless messaging networks. Other aggre: SOUrces
tion functions could benax min, or any other function '
with multiple inputs. For our modelling purposes in thit
paper we make a simplifying assumption - the aggregati
function is such that each intermediate node in the rot
ing transmits a single aggregate packet even if it receiv
multiple input packets. We will refer to the information
received by the sink when it has obtained the messa(
transmitted by all sources in a given flow (whether or n
these messages are aggregated) as a “datum”.

A. Optimal Aggregation

Say there aré sources, labelled; throughsS;, and a O oT oz as o 0% o5 o7 o5 05
sink, labelledD. Let the network grapli = (V, E) con-
sist of all the node¥’, with E consisting of edges betweerFig. 2. Illustration of the event-radius model for source posi-
nodes that can communicate with each other directly. With tions
the assumption that the number of transmissions from any
node in the data aggregation tree is exactly one, the datse consists of only the shortest path between the sink and
aggregation tree can be thought of as the reverse of a mbk nearest source. At each step after that the next source
ticast tree: instead of a single source sending a packetlgsest to the current tree is connected to the tree.
all receivers, all the sources are sending a single packet tdhis is by no means an exhaustive list, but is represen-
the same receiver. It is well-known that the multicast treetive of some of the data aggregation tree heuristics that
with a minimum number of edges is a minimum Steineyan be implemented.
tree on the network graph. The following can therefore be
readily obtained: C. Performance measures

Result I The optimum number of transmissions re- In exploring the gains and tradeoffs involved in data-
quired per datum for the DC protocol is equal to the nungentric protocols, we need to specify performance mea-
ber of edges in the minimum Steiner tree in the netwosres of interest. Three are examined in some detail in this
which contains the node sgf, ...Sy, D). paper:

Corollary: Assuming an arbitrary placement of sources, Energy Savings By aggregating the information com-
and a general network graph G, the task of doing DC roltrg from the sources, the number of transmissions is re-

ing with optimal data aggregation is NP-hard. duced, translating to a savings in energy.
The latter follows from the NP-completeness of the min- Delay. There is latency associated with aggregation.
imum Steiner problem on Graphs [11]. Data from nearer sources may have to be held back at in-

termediate nodes in order to combine them with data from
sources that are farther away.

The following are three generally suboptimal schemesRobustness Somewhat related to the first measure is the
for generating data aggregation trees that we examingfaat that with data aggregation there is a decrease in the
this paper. marginal energy cost of connecting additional sources to
1. Center at Nearest Source (CNS)In this data aggre- the sink. This can be considered as providing some degree
gation scheme, the source which is nearest the sink agtsobustness to dynamics in the sensed phenomena.
as the aggregation point. All other sources send their data
directly to this source which then sends the aggregated - Source Placement Models
formation on to the sink. The chief factors that can affect the performance of data
2. Shortest Paths Tree (SPT) In this data aggregationaggregation methods are the positions of the sources in the
scheme, each source sends its information to the sink aloragwork, the number of sources, and the communication
the shortest path between the two. Where these paths onetwork topology. In order to investigate these factors, we
lap for different sources, they are combined to form thetudy two models of source placement, the event-radius
aggregation tree. (ER) model, and the random sources (RS) model. In both
3. Greedy Incremental Tree (GIT) : In this scheme the models, we generate a sensor network by scatterisen-
aggregation tree is built sequentially. At the first step ttsmr nodes randomly in a unit square. One of these nodes is

B. Suboptimal Aggregation
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sources How well can the optimal DC protocol do?
=N ] Result 2 Let the number of transmissions required for
the optimal DC protocol bé&/p. ThenNp < Ny.

Proof: Doing data-aggregation optimally can only de-
crease the minimum number of edges needed compared
to the situation when sources send information to the sink
along shortest path§&l

Definition The “diameter” X of a set of nodesS
in a graphG is the maximum of the pairwise shortest
paths between these nod¥s= max; jesSP(i,j) where
SP(i, j) is the shortest number of hops needed to go from
) nodei to j in G.

Result 3 If the source nodes’, Sy, ... S, have a di-
Fig. 3. lllustration of the random-sources model for source pgmeterX > 1. The total number of transmissiond’f)

sitions required for the optimal DC protocol satisfies the follow-
ing bounds:

the data sink. All nodes are assumed to be able to commu-
nicate with any other nodes that are within some distance .
R (the communication radius). The location of the data Np < (k= 1)X + min(d;) )
sources depends on the models as follows: Np > min(d;) + (k- 1) (3)
« Event-Radius Modet In this model, a single point in _ _
the unit square is defined as the location of an “event.” ThisPT00f : (2) can be obtained by a construction - the data
may correspond to a vehicle or some other phenomerRf#fregation tree which consists(éf— 1) sources sending
being tracked by the sensor nodes. All nodes within a di§€ir packets to the remaining source which is nearest to
tances (called the sensing range) of this event that are i€ Sink. This tree has no more th@n— 1) X + min(d;)
sinks are considered to be data sources. The average n§#9€s, hence the optimum tree must have no more than
ber of sources is approximatety S2 = n (somewhat less this. (3) is obtalngd by considering _the smallest possi-
than this if we take into account boundary effects). Thide Steiner tree which would happen if the diameter were
model is shown in figure 2. 1. In this case, the shortest path from the source node at
« Random-Sources Model In this model of the nodes 7%n(di) must be part of the minimum Steiner tree, and
that are not sinks are randomly selected to be sources. Ulf'e is exactly one edge from each of the other source
like in the event-radius model, the sources are not necB8des to this node.]

sarily clustered near each other. This is illustrated in figureResult 4 If the diameterX’ < min(d;), thenNp <
3. Ny4. In other words, the optimum data-centric protocol

will perform better than the AC protocol.
IV. ENERGY SAVINGS DUE TO DATA AGGREGATION Proof :

k=10
sources

A. Theoretical Results = Np < (k— D)X + min(ds) < (k)min(ds)

We now give some analytical_bound_s on the energy cqsts = Np < sum(d;) = Na. (&)
and savings that can be obtained with data aggregation,
based on the distances between the sources and the sink,
and the inter-distances among the sources. The upshot dbefinition : Let us define the fractional savings,s,
this section is that the greatest gains due to data aggregistained by using the DC protocol as opposed to the AC
tion are obtained when the sources are all close togetpestocol as follows:
and far away from the sink.

Let d; be the distance of the shortest path from source

g

S; to the sink in the graph. Per datum, the total number of FS = (Ng—Np)/(Na) (5)
transmissions required for the optimal AC protocol in this )
case (call itV ) is: F'S can range from O (no savings) to 1 (100 percent sav-

ings). The following are the lower and upper bounds on
F'S, which follow directly from (2) and (3) and the above
Ny=di+do+..d = sum(dz) (l) definition.
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Result 5 The fractional savings FS satisfies the followeonnected, the optimal data aggregation tree can be formed
ing bounds: in polynomial time.
Proof: The proof is constructive. Start GIT. The tree is
FS > 1—((k=1)X +min(d;))/sum(d;) (6) initialized with the path from the sink to the nearest source.
FS <1-— (min(d;) + k —1)/sum(d;) (7) At each additional step of the GIT, the next source to be
) connected to the tree is always exactly one step away (such
To clarify the matter, assume that all the sources ate, rce js guaranteed to exist siriéeis connected). At
at the same shortest-path distance from the sink. ife end of the construction, the number of edges in the tree
min(d;) = max(d;) = d. is therefored,,;,, + (k — 1), which is the lower bound given
Then we have that in relation (3). Hence the lower bound is tight and there-
fore optimal. The GIT construction runs in polynomial

(k—1)X +4d) time w.r.t. the number of nodes [33]. Hence although find-
1= kd <FS ing the optimal data aggregation tree is NP-hard in general,
(d+k-1) in this particular situation, we have a polynomial special-
<l—"— )
(kd) casel]

_ Result 8 In the ER model, whe® > 25, the optimal
~ Result 8 Assume X and k are fixed, then as d tends @yt aggregation tree can be formed in polynomial time.
infinity (i.e. as the sink is farther and farther away from poof- |t is easy to see that wheR > 2, all sources
the sources): are within one hop of each other. This is therefore a special
case of result 8. Under this condition, both GIT and CNS
limg ..o FS = 1—1/k. ) schemes will result in the optimal data aggregation fiiee.

Proof: B. Experimental Results

In the limit, X << d, andk << d. It suffices to show We now present our experimental results showing the
that both lower and upper bounds in (8) converge to tleaergy costs of AC and DC protocols for both the ER and
same right hand side value: RS source placement models. The experimental setup is as
follows: for the ER model, 5 evenly spaced values of the
(k—1)X +d sensing rangé from 0.1 to 0.3 are tes_ted, while for the
k:d) RS model the number of sourckss varied 1 to 15 in in-

crements of 2. For both models the communication radius
= limg o (1 _E-DX d> =1-1/k (10) Risvaried from 0.15 to 0.45 in increments of 0.05. For
kd kd each combination of or k and R 100 experiments were
run. Each experiment consists of a random placement of
then = 100 nodes including the sink node in a square are
of unit size. In some cases (particularly when the values
it (1 ~(d+k- 1)) of E or R are low) a particular experiment may result in
(kd) unconnected graphs or no sources; the measurements from

limg—oo <1 —

and

— limy <1 o d (k — 1)> o1k 1) these cases are not taken into accpunt while computing the
e kd kd averages. The error-bars shown in the plots represent the
D standard error in the mean.

Essentially, what Result 6 tells us is quite intuitive. If Figures 4 and 7 show a 3D surface plot of the number
the distance between the sink and the sources is large coffrtransmissions in the ideal AC protocol for both models.
pared to the distance between the sources, then the dptiboth cases these costs are greatest when a) the num-
mal DC protocol gives k-fold savings. When there are [Ber of sources is large and b) the communication range is
sources that are close together and located far-away frimw. The former is obvious as the number of transmissions
the sink, then the AC protocol will have about 4 times ahould increase with sources; the latter is understandable
many transmissions, i.e. there are roughly %Z5ewer since the number of hops between the sources and the sink
transmissions with data aggregation. When there are (Iideed between any two nodes in the network) is high
such sources, the gains are nearly’90and so on... when the communication radius is low.

Result 7 If the subgraphG’ of the communication Figure 5 compares the transmission energy costs of the
graphG induced by the set of source nodgs, . .. Si) is various protocols as the communication range is varied,
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keeping the sensing range constant at 0.2 (which coraggregation scheme shown in figure 1a. Note that this de-
sponds to about 12.5 sources on average, ignoring edgg-depends on the aggregation function - for some simple
effects). At the very bottom is the lower bound &7 kinds of data aggregation such as duplicate suppression,
given in relation 3. In this figure it can be seen thdhere is no need for data to be withheld at an aggregating
the GITDC seems to coincide with the lower bound allode. For more complicated forms of data aggregation,
throughout. This is because wheéhis even of moder- where the output aggregated packet depends on the com-
ate length, with high probability, the subgraph which liesination of multiple input packets this delay is an issue.
within the circle of radiuss around the event is connected, It can be seen that, in the worst case, the latency due
and result 7 holds. The performance of the CNSDC ajw aggregation will be proportional to the number of hops
proaches optimal a® increases, as per result 8. Théetween the sink and the farthest source. When no aggre-
SPTDC protocol also performs well all through. In algation is employed, the delay between the time when the
cases there is 80 — 80% savings compared to the ACvarious sources transmit data and the sink receives the first
protocol. Figure 8 is the equivalent plot for the Randomacket is proportional to the number of hops between the
Sources Model. The first thing to note is that the lowaink and the nearest source. Hence one way to quantify the
bound is no longer tight, since the sources are placed raffect of aggregation delay is to examine the difference be-
domly anywhere in the network and unless the networktiseen these two distances. This is shown in figures 10-13.
dense (highR) the sources are unlikely to be within oné&’he experimental setup is the same as discussed in section
hop of each other. In this setting the GITDC performs tH®-B. The upper curve in all these figures is representative
best, followed by SPTDC, CNSDC and AC, respectivelgf the latency delay in DC schemes with non-trivial aggre-
CNSDC performs poorly in this setting since the sourcegation functions and the lower curve is representative of
are far apart and it doesn’t pay to always aggregate at the latency delay in AC schemes. The difference between
source nearest to the sink. these curves is greatest in both models when the commu-
Figures 6 and 9 both show that the transmission costsimeation radius is low, and when the number of sources is
crease as the number of sources is increased. In the eveigih. In figure 13, as the number of sources increases the
radius model, it can be seen that the CNSDC protocol paro curves saturate to extreme values. The upper curve
forms poorly when the sensing range is really large. Wheaturates to a value of about 4 which is about the maxi-
S = 0.3, nearly a third of all nodes in the experiments achum number of hops between the sink and any node in
as sources and for many of these sources it may be fasternetwork. The lower curve saturates at a value close to
to route directly to the sink rather than through one pahe minimum number of hops (1).
ticular source that is closest to the sink. Figure 9 shows
that the gains due to a good data aggregation techniqueV!- ROBUSTNESS DUE TODATA AGGREGATION

(like GITDC) can be very significant when the number of As indicated before, with data aggregation there is
sources is high. a lower marginal energy cost of connecting additional
To summarize, our experiments show that the energyurces to the sink as opposed to the AC approach. Con-
gains due to data aggregation can be quite significant wifider the GITDC protocol, for example. At each step, the
SPTDC or GITDC particularly when there are are a lot @ergy cost (in terms of additional edges, i.e. additional
sources (larges' or largek) that are many hops from thenumber of transmissions per datum) of connecting an addi-
sink (smallz). tional source is simply the shortest distance of that source
to the aggregation tree at the current step. In the AC pro-
tocol, however, the cost of adding an additional source is
Although data aggregation results in fewer transmithe distance of that source all the way to the sink. Figures
sions, there is a tradeoff - potentially greater delay becauskand 15 show this relationship. The x-axis represents
data from nearer sources may have to be held back attla@number of sources connected to the sink and the y-axis
intermediate node in order to be aggregated with data cor@presents the total number of transmissions required for
ing from sources that are farther away. This can be seendllysources to communicate to the sink. In both models of
referring back to figure 1; in figure 1b, node B which actsource placement, ER as well as RS, for a given energy
as the aggregating node for sources 1 and 2, is only dnelget, a greater number of sources can be connected to
hop from source 1 but is two hops from source 2. Thuke sink. Thus the energy savings with aggregation can
if both sources transmit the data simultaneously, the ddta transformed to provide a greater degree of robustness
from source 1 will get to B before the data from sourcet® dynamics in the sensed phenomena. For example if at
and take longer to get to the sink than it would in the reny given time only a fraction of all sources can give ac-

V. DELAY DUE TO DATA AGGREGATION
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curate readings of the sensed phenomena, then a gre%gglregatlon on routing performance. It can be argued that

number of such readings can be processed and sent too,{lﬁrecategorlzatlon of protocols into address-centric versus

sink in the DC protocol even if both schemes use the Sal%%ta—centrlc on _th_|_s basis is pverly S|mpl|st|c_, and has_ o
amount of total energy. The gains are, of course, smal Qred the possibility of hybrid protocols which comb_lne
in the random-sources model since there is less scopet St advantages of both. For example, one can conceive of

aggregation when the sources are randomly located. the sources flndlng_ routes_ to the s!nk in a traditional end-
to-end manner, while the intermediate nodes are endowed

with some intelligence and can perform data aggregation
on messages passing through them.

The reader should note the simplifying assumptions weSecond, in discussing the energy costs of the routing
have made in the above analysis and some performapcetocols we have not considered any of the overhead costs
issues that have not been taken into account in our maalsolved in setting up or maintaining the routing paths
elling. First, we have chosen to make a somewhat stdr&m the sources to the sink. There are two reasons for
contrast between routing protocols which do and do niblis - one is that to do so we would have been forced to
use data aggregation in order to highlight the effect of datke into account specifics about how the routes are set

VIlI. SHORTCOMINGS OF THEM ODELLING



IEEE INFOCOM 2002 9

nodes. It could be argued that this processing delay is a
T second order effect and unlikely to be as significant as the
latency delay we analyzed. We chose not to model the
delay due to congestion as this would depend on a num-
ber of additional details such as the MAC protocol used,
the traffic in the network; also, again, it is not clear that
congestion delay would have a differential impact on data
centric versus address-centric protocols.

Finally, our analysis has focused on the case where there
is a single sink. Although this is a reasonable scenario
for many applications, it is reasonable to ask what would
A happen if there were additional sinks. One solution is to
2 4 5 s 0 12 11 16 8 think of the different flows in that case as a superposition

plumber of sources connectedto sik of many single sink data-flows. However, this would yield
an over-estimate of the energy costs, as further aggregation
eé%tt\/ings can be possible if there are redundancies in the
sources and the data being requested by the various sinks.
This will be a topic for future study.
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VIIl. RELATED WORK
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The use of sensor networks has been envisioned in a
range of settings such as industrial applications [35], vehi-
cle tracking applications [28] and habitat monitoring [4].
A number of independent efforts have been made in recent
years to develop the hardware and software architectures
needed for wireless sensing. Of particular note are UC
Berkeley's Smart Dust Motes [19], TinyOS [16], and the
PicoRadio [29] project; the Wireless Integrated Network
Sensors (WINS) project [28] and PC-104 based sensors
R T T T T e, [4] developed at University of California Los Angeles; and

Number of Sources Connected to Sink the uAMPS project at MIT [23]. The challenges and de-
sign principles involved in networking these devices are
Fig. 15. Average number .Of transmissions requirgd for sikscussed in [9], [10], and [22]. Energy-efficient medium
to receive data from a given number of sources in randozcass schemes applicable for sensor networks are pre-
sources model sented in [7], [31] and [37]. Techniques for balancing the
energy load among sensors using randomized rotation of
up and this would affect the generality of the analysis, tltuster heads are discussed in [15]. Some attention has
second is that it is not clear that taking these costs into @adso been given to developing localized self-configuration
count would have any differential impact on AC versus D@echanisms in sensor networks [5].
protocols. In addition to energy savings due to data aggre-The great majority of wireless routing protocols devel-
gation, there will also be some additional energy savingped in recent years have been for mobile ad-hoc commu-
through the avoidance of globally unique IDs, which camication networks [27]. Depending on whether the routes
require a significant number of bytes in the small packeigse maintained at all times or if they are created afresh
typical of sensor networks. Such savings have not beghen needed, these are categorized jmactive [24],
modelled here. reactive [18], [20], [25], [26], or hybrid [12] protocols.

Third, our analysis of the delay focused only on the I&&ome work has also been directed to incorporating GPS-
tency due to aggregation. There are two other possililkee geographical information with the routing technique
sources of delay that we did not take into account - prft], [21]. These approaches are all address-centric, in that
cessing delay and delay due to congestion. There is likéhey are focused on end-to-end routing between pairs of
to be an additional delay in data-centric protocols due anldressable nodes. There has also been work on address-
the processing that needs to be performed by aggregatiegtric routing protocols that conserve energy and max-
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imize the system lifetime. In these schemes, which aified and investigated some of the factors affecting per-
applicable to sensor networks, routing metrics that incdormance, such as the number of placement of sources,
porate energy expenditure considerations are defined dmd the communication network topology. The formation
each link [6], [32]. of an optimal data aggregation tree is generally NP-hard.
The application-specific nature of sensor networks leadf&e presented some suboptimal data aggregation tree gen-
to the alternative approach we have described in this papedtion heuristics and showed the existence of polynomial
as data-centric. The meta-naming of data is suggestesgspecial cases.
[14] as a means to reduce transmission of redundant dat@he modelling tells us that whether the sources are clus-
for flooding-like schemes for information disseminatiortered near each other or located randomly, significant en-
Directed diffusior{17] is the protocol that is most like theergy gains are possible with data aggregation. These gains
data-centric routing models analyzed in this paper. In dire greatest when the number of sources is large, and when
rected diffusion, all nodes are application-aware and cothe sources are located relatively close to each other and
municate named data. The benefits of application specifar, from the sink. We discussed how these energy gains
in-network processing and data-aggregation are quantifezh be translated into increased robustness to dynamics in
through experimental results in [13]. In the experimentaénsed phenomena. The modelling, though, also seems to
set-up described in that paper, the form of data aggregaggest that aggregation latency could be non-negligible
tion used (duplicate suppression) reduces the traffic by apd should be taken into consideration during the design
to 42% for four sources. process. Data-centric architectures such as directed diffu-
The notion of in-network processing during routing ision should support a Type of Service (TOS) facility that
not unique to sensor networks alone. In Active Networkgould permit applications to effect desired tradeoffs be-
intermediate routing nodes can perform customized cotween latency and energy.
putations on and modify the contents of messages passing
through them on a per-user or per-application basis [34]. ACKNOWLEDGMENTS
Limited_router—assisjt technique_s have also be(_en_ Proposedne authors would like to acknowledge the help of
for multicast on the internet which would permit intermecphaiermek Intanagonwiwat.
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