
Core Augmentation for Subgraphs

Bachelor Thesis of

Philipp Christian Loewner

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Tanja Hartmann
Dr. Ignaz Rutter

Time Period: 06.12.2012 – 05.04.2013

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 8th April 2013

iii

Abstract

The k-core of a graph is obtained by iteratively removing vertices of degree less
than k. The coreness of a vertex is the highest k for which that vertex is in the k-
core.
We study the problem of adding to a graph as few edges as possible to lift a given
vertex in that graph to the k-core. We give an algorithm that solves the problem
efficiently for fixed k and prove that if k is part of the input, then the problem
is NP-complete and cannot be approximated within a factor of (1 − δ) log(k2 · n)
or (3 − ε) log n for any δ, ε > 0, unless P = NP. Furthermore, we show that for
every instance, the optimal solution can be efficiently approximated within a factor
of k2+k

2 and we give efficient algorithms that approximate the optimal solution within
a factor of k or better, if the k-core of the input graph is not empty or if the degree
of every vertex in the input graph is smaller than k. Finally, we give heuristic
approaches for solving the problem efficiently and discuss their viability depending
on the structure of the input graph.

Deutsche Zusammenfassung

Man erhält den k-core eines Graphen, indem man iterativ alle Knoten mit Grad
kleiner als k aus ihm entfernt. Die höhste Zahl k für die ein Knoten im k-core ist
nennt man die coreness dieses Knotens.
Wir untersuchen das Problem, einen bestimmten Knoten in einem Graphen durch
Hinzufügen möglichst weniger Kanten in den k-core zu heben. Wir geben einen
Algorithmus an, der dieses Problem für festes k in Polynomialzeit löst. Zusätzlich
beweisen wir, dass das Problem für nicht-festes k NP-vollständig ist und dass kein
effizienter Algorithmus mit einer relativen Gütegarantie von (1− δ) log(k2 · n) oder
(3 − ε) log n für δ, ε > 0 existiert, es sei denn, dass P = NP. Wir zeigen, dass

sich jede Instanz des Problems mit einer relativen Gütegarantie von k2+k
2 effizient

approximieren lässt und geben Algorithmen an, die das Problem mit einer relativen
Gütegarantie von k oder besser lösen, wenn der k-core des Eingabegraphen nicht
leer ist oder wenn der Grad eines jeden Knotens im Eingabegraphen kleiner ist
als k. Schließlich entwickeln wir effiziente Heuristiken und diskutieren, unter welchen
Voraussetzungen an die Struktur des Eingabegraphen sie gute Ergebnisse liefern
können.

v

Contents

1 Introduction 1

2 Complexity 3
2.1 NP-completeness . 5
2.2 Non-Approximability . 13
2.3 Fixed parameter k . 14

3 Approximation 17

4 Heuristic approaches 21
4.1 Non-empty k-core . 22
4.2 Empty k-core . 24

5 Conclusion 27

Bibliography 29

vii

1. Introduction

In the field of theoretical computer science, graphs are commonly used to model a wide
variety of domains. In particular, they have proven useful in the design and analysis of
communication networks as well as in the analysis of social networks.
The k-core of a graph can be obtained by iteratively removing vertices of degree less
than k. The coreness of a vertex is the highest k for which the vertex is in the k-core. The
concept of cores was originally introduced by Seidman in 1983 in order to find a better
way to measure the centrality of people in social networks. Today, cores are still relevant
in this regard. For example, Christakis et al. successfully use the coreness of individuals
in a social network, among other structural parameters, to predict an outbreak of the flu
significantly earlier than with current detection methods for contagious outbreaks [CF10].
For this, they use the fact that people who are more central in a social network are typically
infected earlier than random individuals.
In the context of communication networks, Feldmann et al. use cores to show that the
topology of the file-sharing network Gnutella differs from randomly generated networks
[AFG+06].
The core structure of graphs also has applications in other fields. For example, Wuchty
et al. use core decomposition to examine the centrality of different proteins in the protein
interaction network of yeast [WA05].

In the context of both social and communication networks, the question arises how the
connectivity of a network as a whole, or the connectivity of a single node in the network
can be improved by changing the core structure of the network. Görke et al. study this
question and show that for k ≥ 3, the problem of lifting a given set of vertices in a graph
to the k-core by adding as few edges as possible is NP-complete, W [2]-hard with respect
to the solution size and the optimal solution is NP-hard to approximate within a factor of
(1−ε) log n for any ε > 0. They raise the question whether the problem is polynomial-time
computable if only a single vertex in the graph must be lifted to the k-core.
In this thesis, we study that question and conclude that it is indeed polynomial-time
computable for fixed k, while it is NP-complete if k is part of the input. In the following,
we formalize the problem.

We define G = (V,E) as undirected, simple graph with vertices V and edges E and denote
the amount of vertices and edges in G by n = |V | and m = |E|, respectively. Furthermore,
we call the set

(
V
2

)
\E the complementary edges of G. An augmentation F ⊆

(
V
2

)
\E is a

subset of complementary edges and the augmented graph is denoted by G+F = (V,E∪F).
For a vertex v ∈ V , we denote by the degree degG(v) the number of edges in E which are

1

1. Introduction

incident to v. The index serves to avoid ambiguity if we want to compare the degree of v
to its degree in a subgraph of G or a graph that results from augmenting G. If it is clear
from the context which graph is meant, then we omit the index.
For a number k ∈ N, the k-core of G is obtained by iteratively removing vertices v ∈ V with
deg(v) < k. For a vertex v ∈ V , the coreness corenessG(v) is defined as the highest number
k ∈ N for which v is in the k-core. Again, we omit the index if it is clear from the context
which graph is meant. Based on these terms, the problem Subset k-CoreAugmentation
is defined as follows.

Problem Subset k-CoreAugmentation
Instance: Graph G = (V,E), positive integer k and a set T ⊆ V of terminals
Goal: Find a minimum augmentation F such that all vertices in T are in the k-core
in G+ F

In the context of an instance of Subset k-CoreAugmentation, we call every t ∈ T a
target vertex. For an augmentation F , we call every vertex v ∈ V \ T incident to an edge
e ∈ F a helper vertex. We define the problem Single Vertex k-CoreAug as follows.

Problem Single Vertex k-CoreAug
Instance: Graph G = (V,E), positive integer k and a target vertex t ∈ V
Goal: Find a minimum augmentation F such that t is in the k-core in G+ F

There also is an alternative definition of cores: In a graph G = (V,E), a vertex v ∈ V
is in the k-core if and only if it is part of a subgraph S = (VS , ES) ⊆ G for which every
vertex u ∈ VS has degree degS(u) ≥ k. Clearly, since no vertex in S has degree less than k,
no vertex is removed from S during construction of the k-core. Conversely, the k-core only
contains vertices with a degree greater than or equal to k and is by definition a subgraph
of G.
It follows from this alternative definition that if the k-core of a graph is not empty, then
it contains at least k+ 1 vertices, otherwise there would not be enough possible neighbors
for each of them. Furthermore, a vertex v ∈ V is in the k-core exactly if it has at least k
neighbors which are in the k-core as well.

Outline

The remainder of this thesis is structured as follows: In Chapter 2, we prove that Single
Vertex k-CoreAug is NP-complete if k is part of the input and can not be efficiently
approximated within a factor of (1 − δ) log(k2 · n), unless P = NP. However, it can be
efficiently solved for fixed k. In Chapter 3, we give efficient algorithms that approximate the
optimal solution of arbitrary instances of Single Vertex k-CoreAug within a factor of
k2+k
2 . Furthermore, we give a selection of efficient algorithms that approximate the optimal

solution for restricted families of instances within a factor of k or better, depending on
the structural parameters of the input graph. In Chapter 4, we develop a set of heuristic
algorithms for Single Vertex k-CoreAug and provide reasoning on how fast they are
and for which families of instances they should reasonably perform well, although we do
not strictly prove performance guarantees for all of them. We conclude in Chapter 5 by
summarizing our findings and by posing open questions which may be interesting for future
research.

2

2. Complexity

In this chapter, we take up the question posed by Görke et al. and inspect how the com-
plexity of Subset k-CoreAugmentation changes once we only require a single vertex in
a graph to be lifted to the k-core. The following theorem states the most obvious result -
restricting the number of target vertices does not invalidate the checking algorithm for pos-
sible solutions. However, the influence of the number of target vertices on the complexity
is more subtle than just that, and will be discussed in more detail after this theorem.

Theorem 2.1. Single Vertex k-CoreAug is in NP.

Proof. Subset k-CoreAugmentation is NP-complete [GGR12]. While the general re-
sult is not directly applicable to Single Vertex k-CoreAug, we can employ the same
checking algorithm to determine if a solution is valid for any instance of Single Vertex
k-CoreAug; the only difference is that the required coreness only needs to be checked
for one vertex. As the checking algorithm for Subset k-CoreAugmentation runs in
polynomial time, it immediately follows that Single Vertex k-CoreAug ∈ NP.

We still have to discuss whether Single Vertex k-CoreAug can be efficiently solved.
At a first glance, Subset k-CoreAugmentation clearly seems easier if the number of
target vertices is reduced to a constant number, even more so if we only require one vertex
to be lifted to the k-core. On the other hand, the degree of a vertex is also an upper
bound on its coreness, so any algorithm that lifts one target vertex into the k-core must
potentially lift a whole subset S ⊆ V of helper vertices into the k-core as well.
While Görke et al. give a reduction to prove that Subset k-CoreAugmentation is NP-
complete for a fixed k ≥ 3 but variable number of target vertices, we change their reduction
to create instances with only one target vertex. However, in exchange, we have to let our
reduction adjust k accordingly. In fact, we show in Section 2.3 that Single Vertex
k-CoreAug can be solved polynomially, if k is fixed.

Our reduction heavily relies on an interesting property of cliques in relation to Core-
Augmentation: In the following, let C = (VC , EC) be a clique with c = |VC | ver-
tices and let v ∈ VC arbitrary. Since vertices in VC are all pairwise connected, v has
coreness(v) = c− 1.
By removing a single, arbitrary edge e ∈ EC , we can reduce the coreness of every v ∈ VC
to coreness(v) = c − 2. Consequently, an augmentation could increase the coreness of
every v ∈ VC back to coreness(v) = c− 1 by re-adding e.

3

2. Complexity

This property of C is useful even in more general cases, where C is only a subgraph, as
long as certain conditions are met. We use this frequently later in this chapter, so we
define cliques where exactly one edge is missing as clusters.

Definition 2.2. A c-cluster is a clique C = (VC , EC) with |VC | = c where exactly one
edge {u, v} ∈ EC is missing. We call u and v the end vertices of C and denote them
by end1(C) and end2(C), respectively.
We call inner(C) := VC \ {end1(C), end2(C)} the inner vertices of C and designate one
inner vertex w ∈ inner(C) as representative rep(C) := w.

For a c-cluster C = (VC , EC), we call e = {end1(C), end2(C)} ∈
(
VC
2

)
\ EC the closing

edge. We say that an augmentation F closes C if e ∈ F . Figure 2.1 shows a 3-cluster,
a 4-cluster and a 5-cluster.

Figure 2.1: left: 3-cluster; middle: 4-cluster; right: 5-cluster. End vertices filled red.

Later in this chapter, we construct instances of Single Vertex k-CoreAug in order to
give a reduction from DominatingSet. To be able to put the reduction and accompanying
proofs in easier terms, we first define two kinds of frequently used structures which consist
of clusters.

Definition 2.3. A cluster-overlap C of size size(C) is the result of merging size(C) c-
clusters C1, . . . , Csize(C) for c ∈ N. We merge the clusters by identifying their representa-
tives with each other and we denote center(C) = rep(C1) = . . . = rep(Csize(C)).

Figure 2.2 shows three 5-clusters and how they are combined into an overlap of size 3.

Figure 2.2: Cluster-overlap consisting of three 5-clusters. End vertices filled red, center
filled blue.

Definition 2.4. A cluster-chain C of length length(C) consists of length(C) c-clusters
(c ∈ N) denoted by C1, . . . , Clength(C) and the additional edges {end2(Ci), end1(Ci+1)} for

4

2.1. NP-completeness

1 ≤ i ≤ length(C)− 1.
We denote by end1(C) = end1(C1) and end2(C) = end2(Clength(C)) the end vertices of C.
The inner vertices of C are denoted by inner(C) = (V1 ∪ . . . ∪ Vlength(C)) \ end(C).

For a cluster-chain C, we call e = {end1(C), end2(C)} the closing edge. We say that an
augmentation F closes C if e ∈ F . Figure 2.3 shows three 5-clusters and how they are
combined to obtain a cluster-chain of length 3.

Figure 2.3: cluster-chain consisting of three 5-clusters. End vertices of the chain are filled
red.

After defining these basic structures, we are now ready to give a reduction from another
NP-complete problem to Single Vertex k-CoreAug. We show that for our reduction,
we can polynomially transform solutions for one problem into at most equally-sized solu-
tions for the other, thus proving that Single Vertex k-CoreAug is NP-complete if k
is part of the input.

2.1 NP-completeness

Our reduction transforms instances of DominatingSet to Single Vertex k-CoreAug.
The problem DominatingSet is defined as follows.

Problem DominatingSet
Instance: Graph G = (V,E).
Goal: Find a minimum set of vertices S ⊆ V such that every v ∈ V is in S or has a
neighbor in S.

It is known that DominatingSet is NP-complete [GJ79]. In the following, let I = (G =
(V,E), d) be an instance of the decision problem whether there is a dominating set S in G
that contains at most d vertices.
We construct a corresponding instance I ′ = (G′ = (V ′, E′), t, k, d) of the decision problem
whether there is an augmentation of size at most d that lifts the vertex t in G′ to the
k-core. Since our reduction is derived from that employed by Görke et al. [GGR12] in
their proof that Subset k-CoreAugmentation is NP-complete for k ≥ 3, we give a
quick outline of their reduction and state the changes that were necessary to adapt it to
Single Vertex k-CoreAug. This is followed by a detailled description of our reduction.
Görke et al. create a marking gadget and a checking gadget for each vertex v ∈ V . The
marking gadget is a cluster-chain of length deg(v) + 1 consisting of 4-clusters, where one
of the clusters is associated with v. The other clusters are each associated with one of v’s

5

2. Complexity

neighbors in G. For each vertex u ∈ V , Görke et al. overlap every cluster associated with u
and call the center of the resulting cluster-overlap the checking gadget for u. They require
every checking gadget to be lifted to the 3-core. The idea is that each end vertex of a
cluster-chain only has degree 2, while every inner vertex has degree at least 3. Thus, by
closing the cluster-chain for a vertex v ∈ V , an augmentation can lift every inner vertex
of that cluster-chain to the 3-core. This holds in particular for the checking gadgets of v
and all its neighbors in G. Hence, closing a cluster-chain of a vertex v ∈ V is equivalent
to adding v to a subset S ⊆ V for the original instance I of DominatingSet.
The basic idea behind our reduction is to add another vertex t to G′ and to connect it to
other vertices in G′ such that for some k ∈ N, t is in the k-core exactly if every checking
gadget is. Obviously, choosing k = 3 and connecting t to every checking gadget does not
work, since for |V | ≥ 3, an augmentation could simply choose three checking gadgets and
connnect them to a clique, thus solving our constructed instance with a constant number
of edges. Our solution for this problem is to choose k depending on the number of vertices
in V , adjust the number of vertices in the clusters accordingly and add a diffusion gadget
between t and the checking gadgets. This ensures that if an augmentation does not lift
every checking gadget to the k-core, then the number of required edges explodes in such
a way that we can trivially find an augmentation of equal size that lifts every checking
gadget to the k-core.

After stating the general idea of our reduction, we now provide detailled construction
instructions. Without loss of generality, let |V | ≥ 4 and even. This is possible because
we can add an arbitrary number of isolated vertices to V and then invoke our reduction.
Since those vertices have to be in every dominating set, we will simply remove them from
the dominating set that we calculate from our solution for I ′ without explicitly stating it
in the remainder.

In the first step of our reduction, we choose k = 2 · |V | + 2. Then we create the marking
gadget Cv for every vertex v ∈ V , which is a cluster-chain with length(Cv) = deg(v) + 1
that consists of (k+ 1)-clusters. We associate each vertex u ∈ V that is adjacent to v with
one cluster in Cv and denote that cluster by Cv

u. We associate the remaining cluster in Cv
with v and denote it by Cv

v .

In the second step, we modify the graph to obtain the checking gadget for each vertex
v ∈ V . For this, we overlap each cluster that is associated with v, yielding a cluster-
overlap Jv with size(Jv) = deg(v) + 1.
Note that Jv consists of the clusters Cu

v from the marking gadgets of every vertex u ∈ V
that is adjacent to v, as well as the cluster Cv

v from v’s own marking gadget.
We call center(Jv) the checking gadget for v.

In the third step, we create the diffusion gadget. This is a (|V |+1)-regular subgraph of G′

consisting of k− 2 = 2 · |V | vertices. We create this subgraph by first creating the vertices
and assigning each vertex a unique number from 1 to 2 · |V |.
We then add each edge {u, v} where u is a vertex in the diffusion gadget that has an even
number and v has an odd number, giving each vertex in the diffusion gadget degree |V |.
Last, we partition both the evenly numbered and the oddly numbered vertices in pairs
such that every vertex is contained in exactly one pair and add edges between the vertices
that we just paired up. This is possible because |V | is even and the diffusion gadget
contains 2 · |V | vertices, yielding an even number of both evenly and oddly numbered
vertices. We connect each vertex in the diffusion gadget to each checking gadget.

In the last step, we add the target vertex t and connect it to every vertex in the diffusion
gadget. Additionally, we add a (k + 1)-clique to the graph and connect two arbitrary
vertices from the clique to t. We require t to be lifted to the k-core.

6

2.1. NP-completeness

Figures 2.4 through 2.6 depict example transformations on different input graphs and in
different levels of detail.

v1 v2 v3 v4

Cv1
v1

Cv2
v1

Cv1
v2

Cv2
v2

Cv3
v2 Cv3

v3

Cv2
v3 Cv4

v4

Figure 2.4: Example reduction for DominatingSet ∝ Single Vertex k-CoreAug,
showing only marking and checking gadgets. Top: G. Bottom: G′. Mark-
ing gadgets are drawn in the same color as the corresponding vertex in G,
checking gadgets are filled with that color.

Figure 2.5: Example reduction for DominatingSet ∝ Single Vertex k-CoreAug,
showing only marking and checking gadgets. Left: G. Right: G′. Marking
gadgets and checking gadgets are depicted as small blue and big red dots, re-
spectively. For every vertex v ∈ V , the checking gadget center(Jv) is connected
to the marking gadget Cv with a solid line and to the marking gadget Cu for
every neighbor u of v with a dashed line.

7

2. Complexity

Figure 2.6: Example reduction for DominatingSet ∝ Single Vertex k-CoreAug.
Top: G. Bottom: G′. Marking gadgets and checking gadgets are depicted
as small blue and big red dots, respectively. For each vertex v ∈ V , the check-
ing gadget center(Jv) is connected to the marking gadget Cv with a solid line
and to the marking gadget Cu for every neighbor u of v with a dashed line.
Small black vertices represent the diffusion gadget, big black and big white
vertex represent the target vertex and the (k + 1)-clique, respectively.

Runtime

Creating a (k + 1)-cluster or a (k + 1)-clique takes time O(k2) for vertices and edges.
There are O(deg(v)) (k+ 1)-clusters created for every vertex v ∈ V , where deg(v) itself is
bounded by |V |, resulting in a running time of

O(k2 ·
∑
v∈V

deg(v)) ⊆ O(|V |2 · |V |2) ⊆ O(|V |4)

8

2.1. NP-completeness

for creating the marking and checking gadgets. Our algorithm for creating the diffusion
gadget clearly runs in polynomial time, and so does creating the (k+ 1)-clique and linking
the gadgets. Hence the running time for the whole reduction is polynomial in |V |.

Correctness

We show that for every valid dominating set S that solves I, we can compute an augmen-
tation F of smaller or equal size that solves I ′ and vice versa.

First, let S be a dominating set that solves I. We construct an augmentation F by closing
the marking gadget Cv in G′ for every v ∈ S.
First of all, we note that F contains exactly |S| ≤ d edges, so it has valid solution size
with respect to I ′. The following Lemma implies that in addition to having valid size, F
also lifts t to the k-core:

Lemma 2.5. Closing a cluster or marking gadget in the instances constructed by our
reduction lifts every vertex in that cluster or marking gadget to the k-core.

Proof. Counting only internal edges in a cluster, we observe that every inner vertex has
degree k. The two end vertices both have degree k − 1, so adding an edge between them
increases both their degrees to k. Obviously, after closing the cluster, it is a subgraph
of G′ where every vertex has degree at least k and is thus in the k-core.
The argument for marking gadgets is very similar: Counting only internal edges, we observe
that every inner vertex in every cluster has degree k. Since the clusters are additionally
connected to a cluster-chain, every end vertex of every cluster has degree k except for the
two end vertices of the whole cluster-chain, which have degree k − 1. Closing the cluster-
chain increases the degrees of both its end vertices to k, thus making the whole chain a
subgraph where every vertex has degree at least k. It is thus in the k-core.

We have to prove that F lifts t to the k-core in G′ + F . By construction, the marking
gadget Cv contains the checking gadget for every vertex u ∈ V that is adjacent to v as
well as the checking gadget for v itself. Since every vertex w ∈ V is dominated by S,
the checking gadget of w must be in at least one closed marking gadget in the augmented
graph and is thus in the k-core.
For every vertex v in the diffusion gadget we have deg(v) = 2 · |V |+ 2 = k, because they
all have degree |V | + 1 from internal edges in the gadget and they are connected to each
of the |V | checking gadgets and the target vertex t. We have already shown that each
checking gadget is in the k-core.
The target vertex t is connected to every one of the 2 · |V | vertices in the diffusion gadget
as well as two vertices from the (k+ 1)-clique and thus has deg(t) = 2 · |V |+ 2 = k. Every
vertex in the (k + 1)-clique has degree k as well.
Thus, the closed marking gadgets, the diffusion gadget, t and the (k + 1)-clique form a
subgraph of G′ in which every vertex has degree at least k and is thus in the k-core.
In conclusion, F has valid size and lifts t to the k-core in G′ + F , so F solves I ′.

Conversely, let F be an augmentation that lifts t to the k-core. We show how to ob-
tain a dominating set S for G of smaller or equal size.

Initially, consider the special case where F only closes marking gadgets in G′. In this case,
we can simply reverse the construction above by choosing the set S as the set of every
vertex v ∈ V whose marking gadget Cv is closed in the augmented graph G′+F . Note that
if even a single checking gadget was not in the k-core in G′ + F , then all of the vertices
in the diffusion gadget would be left with at most k − 1 adjacent vertices. So in order

9

2. Complexity

for t to be in the k-core, F would either have to contain additional edges connecting the
vertices in the diffusion gadget to new neighbors, lifting them to the k-core, or it would
have to contain an edge connecting t to a new neighbor in the k-core for each vertex in the
diffusion gadget that was not in the k-core in G′+F . But F only closes marking gadgets,
so every checking gadget is in the k-core after all.
By construction, the marking gadget of a vertex v ∈ V contains the checking gadget for
v as well as the checking gadgets of all vertices adjacent to v in G. Since every checking
gadget is in the k-core in G′ + F , every vertex in V must either be in S or adjacent to a
vertex in S, and S hence dominates G. Additionally, we have exactly one vertex in S for
every closed marking gadget, which yields |S| = |F |.

Of course, not every augmentation F is structured as presumed above. In the following,
we show that, nonetheless, every augmentation F that solves I ′ can be modified without
adding any edges such that it still solves I ′ and only closes marking gadgets. This makes it
possible to construct a dominating set S that solves I for every possible augmentation F
that solves I ′.
We identify two classes of augmentations F that can solve I ′: Those where not every
checking gadget is in the k-core in G′ + F and those where every checking gadget is.

First, let r be the number of checking gadgets that are not in the k-core in G′ + F and
assume r ≥ 1. We count the smallest possible number of edges that F must contain in
order to lift t to the k-core.
We denote by s the number of vertices in the diffusion gadget that F lifts to the k-core.
Consider that t only has degree k in the unaugmented graph G′, but is in the k-core
in G′ + F . Thus, for every vertex u in the diffusion gadget that is not in the k-core, F
must replace the edge {t, u} ∈ E by another edge {t, v} ∈ F such that v actually is in the
k-core. Since t has two adjacent vertices that already are in the k-core in the unaugmented
graph G′, the augmentation F must satisfy k− s− 2 incidences in order for t to be in the
k-core in G′ + F .
In addition to that, observe that for every checking gadget that is not in the k-core inG′+F ,
every vertex in the diffusion gadget misses one adjacent vertex in the k-core. Since we
have r checking gadgets that are not in the k-core, F needs to satisfy r · s incidences to
lift s vertices in the diffusion gadget to the k-core.
One edge can satisfy two incidences, which yields the formula

|F | ≥ r · s
2

+
k − 2− s

2
=
r · s+ k − 2− s

2
=

(r − 1) · s+ k − 2

2
.

In order to find the minimum number of edges that F needs to contain, we need to minimize
its size over the two variables r and s. Since we have r ≥ 1 and s ≥ 0, we obviously get a
minimum if r = 1 or s = 0. Both yield

|F | ≥ k − 2

2
=

2 · |V |+ 2− 2

2
= |V |.

But then, we can simply discard F and introduce the augmentation F2, which closes every
marking gadget. Every checking gadget is in at least one marking gadget, so as already
proven above, every checking gadget is in the k-core. But then, every vertex in the diffusion
gadget is in the k-core as well, and so is t. Thus, F2 solves I ′ with |F2| ≤ |F | and F2 only
closes marking gadgets. Then we can simply employ the algorithm above on F2 to calculate
a dominating set of equal size that solves I.

The only remaining cases are augmentations that lift every checking gadget to the k-
core and contain edges that do not close marking gadgets. Again, we show how these
augmentations can be transformed to smaller or equally-sized augmentations that lift at
least the same vertices to the k-core and only close marking gadgets. The remainder is

10

2.1. NP-completeness

very similar to the proof that Görke et al. already use for their transformation, with only
few additions to account for the different structure of our graph.

For sake of simplicity, we temporarily allow the augmentation to contain loops and parallel
edges. Furthermore, we assume that each vertex incident to edges in F is in the k-core,
or otherwise we could remove the edge without changing the k-core, yielding a smaller
solution.
Note that, since every checking gadget is in the k-core, it must have k neighbors that are
in the k-core as well. Every vertex in the diffusion gadget is in the k-core and connected
to every checking gadget, but there are only k− 2 vertices in the diffusion gadget. Hence,
every checking gadget needs two adjacent vertices in the k-core apart from the vertices in
the diffusion gadget.
Thus, F must either contain two edges incident to every checking gadget, or, for checking
gadgets where this is not the case, F must contain at least one edge incident to those
checking gadgets and lift at least one of their neighbors (apart from vertices in the diffusion
gadget) to the k-core. For each checking gadget for which none of the above is true, F
must lift at least two of its neighbors to the k-core. In the following, we count the number
of edges incident to vertices in a marking gadget that F needs to contain in order for even
one vertex in that marking gadget to be in the k-core.

Every checking gadget is the center of an overlap of (k + 1)-clusters. For an arbitrary
checking gadget, we choose an arbitrary one of these clusters and count the number of
edges incident to vertices (apart from the checking gadget) in that cluster that F needs
to contain in order to lift even one of those vertices to the k-core. We denote by r ∈ N
the number of vertices (apart from the checking gadget) in the cluster that is in the k-core
in G′+F and by i ∈ N the number of edges incident to vertices in the cluster that F needs
to contain. We need a total number of k ·r edges incident to the r vertices in order for them
to be in the k-core. Since the checking gadget is in the k-core due to our preconditions
and it is connected to every one of our selected vertices, we can subtract r from the total
number of needed incidences. Furthermore, there are edges between all possible selected
vertices except the end vertices of the cluster. First, we focus only on inner vertices of the
cluster. We cover cases where its end vertices are lifted to the k-core later on. Since we
do not lift end vertices and since the checking gadget does not count towards r in the first
place, we get the restriction r ≤ k − 2 and we have r2 − r incidences by edges between
inner vertices in the cluster. This yields the following value for i depending on r.

i ≥ r · k − r − (r2 − r) = r · k − r2 = r · (k − r)

This yields a minimum for both r = 0 and r = k, both of which are against our precon-
ditions. Since the function above is a negative parabola that contains (0, 0), we obtain
minimal value such that r matches our preconditions for r = 1, which yields i ≥ k − 1.
But since we have k = 2 · |V |+ 2 and |V | ≥ 4 by construction, this yields i ≥ 9. Thus, if F
lifts inner vertices of a cluster apart from the checking gadget to the k-core, then it must
contain at least 9 incidences to vertices in that cluster.
We have not yet covered cases where F lifts end vertices of the cluster to the k-core. First,
assume that F lifts exactly one end vertex of the cluster to the k-core and let end1 be that
vertex. Since we allow only one end vertex to be lifted to the k-core and that end vertex
is still connected to every inner vertex of the cluster as well as to the checking gadget, the
formula above still applies. The only difference is that if end1 is not an end vertex of the
marking gadget that contains the cluster, then it is connected to an end vertex of another
cluster and thus possibly needs one less incidence, if the connected end vertex is in the
k-core. This yields i ≥ r · (k − r) − 1 or i ≥ r · (k − r), depending on the coreness of the
connected end vertex. Clearly, the first formula yields a smaller value for every r. Thus,
in the domain of allowed values for r we get minimal value for i for r = 1 or r = k − 1,

11

2. Complexity

both of which yield a value of i ≥ k − 2. Thus, F must contain at least i ≥ 8 incidences
to vertices in the cluster.
The only remaining case is that F lifts both end vertices of the cluster to the k-core. We
have already proven that even if F does not contain additional edges which are incident
to inner vertices from the cluster apart from the end vertices, this will lift every vertex
in the cluster to the k-core. We examine how F can lift the end vertices of the cluster
to the k-core. If the marking gadget that contains the cluster only consists of a single
cluster, then both end vertices of the cluster have degree k − 1. Thus, F needs to satisfy
one additional incidence for each end vertex and we have i ≥ 2. Otherwise, if exactly one
of the end vertices of the cluster is an end vertex of the marking gadget that contains
the cluster, then that end vertex has degree k − 1 and F needs to satisfy one additional
incidence in order for that vertex to be in the k-core. The other end vertex is connected
to an end vertex of another cluster. If F does not lift the connected end vertex to the
k-core, then the end vertex in our cluster needs one additional neighbor in the k-core,
and F needs to satisfy a total amount of i ≥ 2 incidences, one for each end vertex. If F
lifts the connected end vertex to the k-core, then F lifts at least one vertex in another
cluster to the k-core. If neither of the end vertices of the cluster are end vertices of the
marking gadget that contains the cluster, then we can apply the argument above to both
end vertices - that is, F needs to satisfy one additional incidence for each end vertex, if it
does not lift the respective connected end vertex to the k-core. But if F lifts a connected
end vertex from another cluster to the k-core, then it clearly lifts at least one vertex from
that cluster to the k-core. Thus, this counting argument can be applied recursively to the
other clusters for which F lifts vertices to the k-core.
We have just proven that if any vertex in a marking gadget (except for checking gadgets)
is in the k-core, then F needs to satisfy at least two incidences for vertices in that marking
gadget.

For every marking gadget C that contains vertices in the k-core which are not checking
gadgets, let I ⊆ F be the edges of F that are incident to vertices in C. We choose an
arbitrary edge {u, v} ∈ I where u is in C and replace it by {end1(C), v}. We replace every
other edge {x, y} where x is in C by {end2(C), y}. If a replacement creates a loop on
one of the end vertices, then we replace the loop by the closing edge of C. After these
replacements, every vertex in C is in the k-core since both of C’s end vertices are. This
holds in particular for every checking gadget that C contains. Additionally, no incidences
outside of C are changed. Thus, t remains in the k-core.
For every checking gadget d that has incident edges in F , let I ⊆ F contain exactly those
edges. If we have |I| = 1, then at least one of the marking gadgets that contains d must
be in the k-core after performing the replacement above, because for the checking gadget
to be in the k-core with only one edge incident to it in F , at least one of the neighbors
of that checking gadget apart from vertices in the diffusion gadget must be in the k-core.
But then, the replacement performed above has changed F such that the whole marking
gadget containing that vertex is in the k-core. Let C be an arbitrary one of the marking
gadgets that contain d and are in the k-core and let {{d, v}} = I. We replace the edge
by {end1(C), v}.
If we have |I| ≥ 2, then choose an arbitrary {d, v} ∈ I. We choose an arbitrary marking
gadget C that contains d and replace our edge by {end1(C), v}. Every other edge {d, y} ∈ I
we replace by {end2(C), y}. Again, we replace any loops that may occur on end vertices
by the closing edge of C and again, every vertex in C is in the k-core after performing
the replacements. We have not changed any incidences outside of d, so again this can not
influence the rest of the graph.
We call the new solution that results from exchanging edges for all marking and checking
gadgets this way F1. In this changed solution F1, either no vertices in a marking gadget
are incident to edges of F1 or both end vertices are incident to edges of F1. Hence, either

12

2.2. Non-Approximability

a whole marking gadget is in the k-core or it is not in the k-core at all. Additionally, F1

contains no edges that are incident to inner vertices (including checking gadgets) of marking
gadgets.

We have already proven that lifting each checking gadget to the k-core will lift t as well
as every vertex in the diffusion gadget to the k-core, while every vertex in the (k + 1)-
clique is in the k-core even without an augmentation being applied. Thus, we can safely
remove any incidences from these vertices without changing the k-core of the augmented
graph. For this, we remove every edge from F1 that is not incident to at least one end
vertex of a marking gadget. Furthermore, let I ⊆ F1 be the edges in F1 that are incident
to exactly one end vertex of a marking gadget. After the replacement performed above,
every edge e ∈ I is incident to one end vertex of a marking gadget and one vertex that
is either t, or part of the diffusion gadget or (k + 1)-clique. We replace e by the closing
edge of the marking gadget. This does not affect the k-core since we can safely remove
any incidences from any of the vertices that e may be connected to apart from the end
vertex, and we lift every vertex in the marking gadget to the k-core by closing it.
We call F2 the new solution that results from removing and replacing the edges in F1

with the procedure described above. Additionally to the properties of F1, F2 lifts at least
the same vertices to the k-core and only contains edges between end vertices of marking
gadgets.

We now change the augmentation F2 such that it only closes marking gadgets. For this,
let C be a marking gadget that is not already closed by F2, but for which every vertex is in
the k-core. Then, due to the construction above, for both end vertices of C there is at least
one incident edge in F2. We arbitrarily choose the edges {end1(C), u} and {end2(C), v}
from F2 and replace them by the edges {end1(C), end2(C)} and {u, v}. If we have u = v
and this creates a loop {u, u}, then we replace the loop by the closing edge of the marking
gadget that contains u. Obviously, this closes C and leaves the k-core unchanged.
We execute the procedure above as long as there are unclosed marking gadgets in G′+F2

for which every vertex is in the k-core and call the augmentation obtained by the procedure
above F3.

Finally, we remove the temporarily allowed parallel edges from our augmentation. We do
not need to replace loops, since we already replaced them by closing edges for marking
gadgets right away. Observe that G′ + F3 only contains either closing edges for marking
gadgets or edges between end vertices of different marking gadgets that are already closed.
Thus, we simply remove all but one closing edge for each closed marking gadget as well
as all edges between end vertices of different marking gadgets. We call the augmentation
obtained by this procedure F4.
Clearly, |F4| ≤ |F | and every checking gadget is in the k-core in G′ +F4. Additionally, F4

only contains closing edges for marking gadgets. Thus, we can obtain a dominating set S
that solves I by the procedure described above. Together with the fact that this can
obviously be performed in polynomial time, this proves the following theorem:

Theorem 2.6. Single Vertex k-CoreAug is NP-complete, if k is part of the input.

2.2 Non-Approximability

We now examine how our results can be interpreted in terms of efficient approximation
algorithms for Single Vertex k-CoreAug. The following theorem is based on our
reduction from the previous section and covers the impossibility to efficiently approximate
Single Vertex k-CoreAug within a certain factor of the optimal solution.
However, our reduction creates a very specific family of instances of Single Vertex k-
CoreAug and using it, we cannot prove that there are no families of instances that can be

13

2. Complexity

approximated efficiently. In fact, we further examine possible approximation algorithms
in Chapter 2 and show that there are instances of Single Vertex k-CoreAug for which
the optimal solution can be efficiently approximated, although we do not prove a relative
performance guarantee close to this factor.

Theorem 2.7. There is no efficient algorithm that approximates the best possible result
of Single Vertex k-CoreAug within a factor of

• (1− δ) log(k2 · n)

• (3− ε) log n

for any δ, ε > 0, unless P = NP.

Proof. DominatingSet can not be efficiently approximated within a factor of (1−ε) log n
for any ε > 0 [BYM84, Fei98].
If an approximation within the given factor was possible for Single Vertex k-CoreAug,
then an approximation algorithm for DominatingSet could simply use our reduction to
obtain an instance I ′ of Single Vertex k-CoreAug for any instance I of Dominat-
ingSet. For each vertex v ∈ V , I ′ contains one (k + 1)-cluster (the component Cv

v). The

clusters created for the vertices each contain k + 1 vertices as well as k2+k
2 − 1 edges.

For each edge {u, v} ∈ E, I ′ contains two (k+ 1)-clusters Cv
u and Cu

v as well as two edges
connecting these clusters to their respective marking gadgets. For each of those clusters,
we count k vertices (since they overlap with the cluster created for the vertices u and v by

one vertex) as well as k2+k
2 edges.

So far, for marking and checking gadgets, we have |V | · (k + 1) + 2 · |E| · k vertices as well

as |V | · (k2+k
2 − 1) + 2 · |E| · k2+k

2 edges. We continue by counting the vertices and edges
that are created by our reduction independent from the structure of G.
The instance I ′ contains a (k + 1)-clique (with k + 1 vertices and k2+k

2 egdes) and the
diffusion gadget, which contains k − 2 = 2 · |V | vertices and (|V | + 1) · |V | edges. The
diffusion gadget is connected to the target vertex with 2 · |V | edges and to the checking
gadgets with 2 · |V |2 edges. Finally, we have two edges connecting the target vertex to two
vertices from the (k + 1)-clique.

We see a total increment in the number of vertices in G′ by a factor that is linear in k,
as well as an increment in the number of edges by a factor that is quadratic in k. This
results in an overall increment of the input size by a factor in Θ(k2).
Since, for a valid solution of I ′, there exists a solution for I of equal size, an approximation
algorithm for DominatingSet can calculate an approximation within the factor (1 −
ε) log n for I from any solution that approximated I ′ within a factor of (1− ε) log(k2 · n).
This contradicts the non-approximability of DominatingSet.

For the second part, note that

(1− ε) log(k2 · n) ≤ (1− ε) log(n3) = 3 · (1− ε) log(n)

which amounts to (3− ε) log(n) for some other ε > 0.

2.3 Fixed parameter k

In this thesis, we do not give any conclusions about whether Single Vertex k-CoreAug
is fixed parameter tractable. However, if we set k fixed, then we can solve Single Vertex
k-CoreAug optimally in polynomial time, where the degree of the polynom depends on k.
We formulate a more precise notion of this in the following theorem.

14

2.3. Fixed parameter k

Theorem 2.8. An instance I = (G = (V,E), k, t) of Single Vertex k-CoreAug can
be solved optimally in a runtime of

• OPT ·|V |2OPT · f(G)

• k2+k
2 · |V |k2+k · f(G)

where f(G) denotes the (polynomial) running time for computing the k-core of G and
possible augmented graphs G+ F .

Proof. We solve I by systematically trying augmentations of increasing size. We perform
a number of iterations and denote by i ≥ 1 the number of the current iteration. In every
iteration, we try every possible augmentation of size exactly i and calculate the k-core of
every resulting augmented graph. We return the first augmentation for which t is in the
k-core. The returned augmentation is clearly minimal.

The maximum number of possible edges between vertices in G is

|E| ≤ (|V | − 1)2 + (|V | − 1)

2
=
|V |2 − 2 · |V |+ |V | − 1

2
=
|V |2 − |V |

2

In every iteration, we choose every possible combination of i edges from the complementary
edges of G, the number of which is limited by the same upper bound as |E|. This results in
a total number of

(
(|V |2 − |V |)/2

i

)
combinations checked in the ith iteration. For m iterations,

we obtain a total number of

m∑
i=1

(
(|V |2 − |V |)/2

i

)
=

m∑
i=1

(|V |
2−|V |
2)!

i! · (|V |
2−|V |
2 − i)!

≤
m∑
i=1

(|V |
2−|V |
2)!

(|V |
2−|V |
2 − i)!

≤
m∑
i=1

(
|V |2 − |V |

2
)i

≤
m∑
i=1

(
|V |2 − |V |

2
)m

≤
m∑
i=1

(|V |2 − |V |)m

≤ m · (|V |2 − |V |)m
≤ m · |V |2m

combinations of edges checked.
The theorem becomes clear considering that we need to perform OPT iterations to find a
minimal augmentation. Additionally, a minimal augmentation contains at most OPT ≤
k2+k
2 edges, since otherwise we could obtain a smaller augmentation by choosing t as well

as k other vertices in G and augmenting G such that the chosen vertices form a (k + 1)-
clique.

15

3. Approximation

In Section 2.2 we prove that, in general, Single Vertex k-CoreAug can not be effi-
ciently approximated within a factor that is logarithmic in k and n, unless P = NP. In
this chapter, we prove that every instance of Single Vertex k-CoreAug can be effi-
ciently approximated within a factor of k2+k

2 . Additionally, we give algorithms that can
approximate some instances of Single Vertex k-CoreAug efficiently within a factor of
k or better, depending on the structure of the input graph. Unfortunately, we are not able
to give an algorithm that can efficiently approximate every instance of Single Vertex
k-CoreAug within a factor of k.
The relative performance guarantee of all algorithms discussed in this chapter depends on
k or on structural parameters of the input graph and is independent from its size. This is
quite good, since we can assume k << n in realistic instances.

Theorem 3.1. An instance I = (G = (V,E), k, t) of Single Vertex k-CoreAug can

be efficiently approximated within a factor of k2+k
2 .

Proof. We choose an arbitrary set S ⊆ V \ t of k vertices and select F such that S ∪ {t}
is a (k + 1)-clique in G + F . Since a (k + 1)-clique contains exactly k2+k

2 edges and the
optimal solution contains at least one edge, the statement follows immediately.

This algorithm is quite naive, but yields better results if the graph provides special struc-
tural properties. In particular, if each vertex v ∈ V has deg(v) < k (note that this
implies that the k-core of the input graph is empty), then we can calculate the relative
performance guarantee more precisely. For this, we define the maximum degree among the
vertices in G as dmax := max{deg(v)|v ∈ V }. In particular, the following theorem implies
that the smaller dmax relative to k, the closer we are to a relative performance guarantee
of 1.

Theorem 3.2. An instance I = (G = (V,E), k, t) of Single Vertex k-CoreAug can
be efficiently approximated within a factor of k

k−dmax
≤ k, if dmax < k.

Proof. We employ the same algorithm as in Theorem 3.1 and denote by F the augmenta-
tion which it returns. The augmentation F connects k + 1 vertices such that they form a
clique in G+F . This clique contains exactly k2+k

2 edges, so this is an upper bound on the
size of F .
In the following, let F ′ be the optimal solution and OPT := |F ′|. Clearly, F ′ must contain

17

3. Approximation

so many edges that there are k + 1 vertices in the augmented graph that have degree at
least k. But every vertex in G has at most degree dmax and thus needs k−dmax additional
incidences. Since every edge in F ′ can satisfy two incidences, it must contain at least
OPT ≥ (k−dmax)·(k+1)

2 edges.
Additionally, note that we have dmax < k and that dmax only allows discrete values, thus
dmax ≤ (k − 1). Considering all of the above, we obtain the formula

|F |
OPT

≤
k·(k+1)

2
(k−dmax)(k+1)

2

=
k

k − dmax
≤ k

k − (k − 1)
= k.

We now examine instances where the k-core is not empty in the unaugmented graph. Note
that this is not complementary to the previous theorem.
For a vertex v ∈ V , we denote by neighk(v) = #{{v, u} ∈ E| coreness(u) ≥ k} the
number of vertices in G adjacent to v that are in the k-core. This definition allows us
to state the size of the augmentations produced by the approximation algorithm which
is used in the following two theorems. Additionally, the following lemma allows us to
prove a lower bound on the size of the optimal solution even when there are vertices in
the input graph of degree higher than k. Without this lemma, we would only be able to
assume OPT ≥ 1 in the following two theorems, thus allowing for less precision in our
performance guarantees. In addition, we use this lemma frequently in Chapter 4, where
we examine heuristic approaches for solving Single Vertex k-CoreAug.

Lemma 3.3. An augmentation F can increase the coreness of every vertex v ∈ V by at
most |F |.

Proof. As every augmented graph again can be used as input graph, it is sufficient to prove
that an augmentation F of size |F | = 1 can only increase the coreness of a vertex in a
graph G = (V,E) by at most 1. We show this by proving that removing a single edge
from G can not lower the coreness of any vertex in G by more than 1. We choose an arbi-
trary vertex x ∈ V with corenessG(x) =: k and remove an arbitrary edge e = {u, v} ∈ E.
We denote by G′ := (V,E \{e}) the graph resulting from removing e from G and calculate
corenessG′(x) in the modified graph. We denote by S and S′ the k-core of G and G′,
respectively. There are three cases to be considered:

• If neither u nor v is in S, then e is not incident to any vertex in S. Hence, removing e
leaves the degree of every vertex in S unchanged. We thus obtain S′ = S, x is in S′

and corenessG′(x) = corenessG(x).

• Either u or v is in S. Without loss of generality, let u ∈ S. Since v 6∈ S, the edge e
is not in S either. Hence the degree of every vertex in S remains unaffected by
removing e and we have S′ = S. Again, we get corenessG′(x) = corenessG(x).

• If both u and v are in S, then we have degG′(u) = degG(u) − 1 ≥ k − 1 and
degG′(v) = degG(v) − 1 ≥ k − 1 while the degree of every other vertex remains
unchanged. In particular, every other vertex that is in S still has degree greater
than, or equal to k after removing e. Hence, every vertex that is in S remains in the
(k − 1)-core of G′. Thus, we obtain corenessG′(x) ≥ corenessG(x)− 1.

We now use the previous lemma to prove the following two theorems.

18

Theorem 3.4. An instance I = (G = (V,E), k, t) of Single Vertex k-CoreAug can

be efficiently approximated within a factor of k−neighk(t)
k−coreness(t) ≤ k− neighk(t) ≤ k if the k-core

of G is not empty.

Proof. First, we compute the k-core of G. If t is already in the k-core, then we do not need
to augment the graph and obtain a relative performance guarantee of 1, despite the fraction
in the theorem being undefined for k = coreness(t). Otherwise, we have coreness(t) < k
and thus, the fraction in our theorem is well-defined. In this case, since the k-core of G
is not empty, we can augment the graph by adding arbitrary edges {t, v} where v ∈ V
is in the k-core, until t is in the k-core as well. Clearly, this happens after k − neighk(t)
edges, since t has k neighbors in the k-core at that point. Let F ′ be the optimal solution
with |F ′| = OPT. Lemma 3.3 implies that OPT ≥ k − coreness(t). Thus, we get

|F |
OPT

≤ k − neighk(t)

k − coreness(t)
≤ k − neighk(t) ≤ k.

Using the same algorithm and lower bound on the size of the optimal solution, we can also
show the following absolute performance guarantee for instances where the k-core of the
input graph is not empty.

Theorem 3.5. An instance I = (G = (V,E), k, t) of Single Vertex k-CoreAug can be
efficiently approximated resulting in an augmentation that uses at most OPT + coreness(t)−
neighk(t) ≤ OPT +k − neighk(t)− 1 edges, if the k-core of G is not empty.

Proof. We employ the same algorithm as above and denote by F the obtained augmenta-
tion, connecting t to vertices in the k-core until t is in the k-core as well. This leads to
an augmentation of size |F | ≤ k − neighk(t). Like in the previous theorem, we denote by
OPT ≥ k − coreness(t) ≥ 1 the size of the optimal solution.

We calculate the difference between |F | and the size of the optimal solution and obtain

|F | −OPT ≤ k− neighk(t)−OPT ≤ k− neighk(t)− (k− coreness(t)) ≤ k− neighk(t)− 1

Unfortunately, the theoretical performance guarantees discussed in this chapter all have
preconditions on the structure of the graph. In addition to that, the algorithms used in
our proofs are all very naive. It seems reasonable to assume that for practical situations,
we can give algorithms that perform better than our performance guarantees, or perform
well even when the preconditions for our performance guarantees do not apply. In the
next chapter, we give a selection of heuristic algorithms that should perform fairly well in
practical situations.

19

4. Heuristic approaches

In Chapter 3, we developed efficient approximation algorithms for Single Vertex k-
CoreAug, but were not able to give an efficient algorithm such that we could guarantee
a relative performance better than k2+k

2 for every instance. In this chapter, we expand on
this by developing two heuristic algorithms for Single Vertex k-CoreAug. One works
for instances where the k-core of the input graph is not empty. This algorithm is able to
consistently perform at least as well as our k-approximation in chapter 3. We discuss in
how far the heuristic algorithm can be used for instances where the k-core of the input
graph is empty and come to the conclusion that it can not solve every instance where
that is the case. To complement this, we introduce another heuristic algorithm that can
solve every possible instance of Single Vertex k-CoreAug, but for which we cannot
give a performance guarantee. Both heuristic algorithms run in polynomial time and are
parameterized such that the parameter massively influences their runtime and the quality
of the solutions that they calculate. Thus, the parameter can be adjusted according to the
situation to trade solution quality for runtime and vice versa.
First, we prove the following lemma which, in addition to Lemma 3.3, allows us to gain
a more precice understanding of what a single edge in an approximation can do in the
context of Single Vertex k-CoreAug. We use this lemma frequently in the remainder
of this chapter.

Lemma 4.1. An augmentation F = {{u, v}} of size |F | = 1 can only increase the coreness
of a vertex w, if coreness(w) = min{coreness(u), coreness(v)}.

Proof. Let G = (V,E) be a graph with at least one edge and let x ∈ V arbitrary. We
remove an arbitrary edge e = {u, v} ∈ E and denote by G′ = (V,E \e) the graph obtained
by removing e from G. The coreness of x in G is denoted by k = corenessG(x). The k-core
of G and G′ are denoted by S and S′, respectively.
We prove that if corenessG′(x) 6= corenessG(x), then corenessG′(x) =
min{corenessG′(u), corenessG′(v)}. We have already shown in the proof of Lemma 3.3 that
if corenessG′(x) 6= corenessG(x), then corenessG′(x) = corenessG(x)− 1 as well as u and v
are both in S. There are three cases to consider:

• If both u and v are in S′, then degG′(u) ≥ k and degG′(v) ≥ k. But since we only
remove e, the degree of no other vertex in S changes. Thus, we have S′ = S and
corenessG′(x) = corenessG(x).

21

4. Heuristic approaches

• Either u or v is in S′. Without loss of generality, let u ∈ S′. Since v 6∈ S′, Lemma
3.3 implies that corenessG′(v) = k − 1 and, if the coreness of x changed at all, then
we have corenessG′(x) = k− 1 = corenessG′(v) = min{corenessG′(u), corenessG′(v)}.

• If neither u nor v is in S′, then Lemma 3.3 implies that corenessG′(v) = corenessG′(u) =
k − 1 and thus, if the coreness of x changed at all, then we have corenessG′(x) =
k − 1 = corenessG′(v) = corenessG′(u) = min{corenessG′(u), corenessG′(v)}.

Our approximation algorithms for Single Vertex k-CoreAug depend heavily on the
structural parameters of the input graph. First, we examine cases where the k-core of the
input graph is not empty.

4.1 Non-empty k-core

If the k-core of the input graph is not empty, then we can use the basic algorithm from
Theorem 3.4 and connect t to vertices in the k-core until t is in the k-core as well. This
lifts t to the k-core with an augmentation F of size |F | = k − neighk(t). In the following,
we examine in which cases the size of the augmentation can be further reduced. For this,
we define the viability of an augmentation as follows.

Definition 4.2. Let I = (G, k, t) an instance of Single Vertex k-CoreAug and let F
be an augmentation for G. We denote by G′ := G+F the augmented graph. The viability
of F is defined as viability(F) := min{k,neighk

G′(t)}−neighk
G(t)−|F |. For the integer c

with c = viability(F), we say that F is c-viable on G.

Put less formally, an augmentation has positive viability if at adds more neigbors in the
k-core to t than it contains edges, but adding unnecessary edges after t is already lifted to
the k-core does not count. In particular, the augmentation obtained by our approximation
algorithm is always 0-viable. We focus on trying to find an augmentation F that has the
highest possible viability, since the augmentation with the highest viability among those
that lift t to the k-core is obviously the smallest, and thus, optimal. If this augmentation
does not yet lift t to the k-core, then we can expand it by connecting t to vertices in the
k-core until it is in the k-core as well. In the following, we prove that this does not change
the viability.
Let G be a graph and t a target vertex in G that should be lifted to the k-core. Further-
more, let F be an augmentation for G that does not lift t to the k-core and let F2 be an
augmentation obtained by connecting t to neighbors in the k-core in G + F until t is in
the k-core as well. Since we have k = min{k, neighk

G+F+F2
(t)} and k > neighk

G+F (t), we
obtain

viability(F ∪ F2) = min{k, neighk
G+F+F2

(t)} − neighk
G(t)− (|F |+ |F2|)

= neighk
G+F (t)− neighk

G+F (t) + min{k, neighk
G+F+F2

(t)}
−neighk

G(t)− |F | − |F2|
= neighk

G+F (t)− neighk
G(t)− |F |

+ min{k, neighk
G+F+F2

(t)} − neighk
G+F (t)− |F2|

= min{k, neighk
G+F (t)} − neighk

G(t)− |F |
+ min{k, neighk

G+F+F2
(t)} − neighk

G+F (t)− |F2|
= viability(F) + viability(F2)
= viability(F).

Thus, if we manage to find an augmentation with maximal viability, then even if it does
not lift t to the k-core, we can expand it to an augmentation with maximal viability that

22

4.1. Non-empty k-core

does lift t to the k-core. The resulting augmentation F ∪F2 is clearly optimal among those
which lift t to the k-core, since it has maximal viability.
Note that although the calculation above may suggest it, viability is not a homomorphism
between every augmentation for a graph and whole numbers.

In our search for an augmentation with maximum viability, we first focus on excluding
augmentations that have negative viability and are thus worse than the augmentation
obtained by connecting t to vertices in the k-core.
First, we show that if t only has neigbors in the k-core in G, then we can only find
augmentations that are at most 0-viable. For this, consider that for any graph G, we
clearly have neighk

G(t) ≤ degG(t). Thus, for an augmentation F , we obtain

viability(F) = neighk
G+F (t)− neighk

G(t)− |F |
= neighk

G+F (t)− degG(t)− |F |
≤ degG+F (t)− degG(t)− |F |.

But since every edge in F can only increase the degree of t by at most 1, we have |F | ≥
degG+F (t) − degG(t) and obtain the maximum viability(F) ≤ 0. Hence, the 0-viable
augmentation obtained by connecting t to vertices in the k-core is always an optimal
solution if t only has neighbors in the k-core in G.
To decrease the running time of the algorithm presented later, we aim to exclude edges
that can never lead to an optimal solution. For this, we show that an augmentation F that
lifts t to the k-core must be less than 0-viable, if it lifts a vertex v ∈ V with corenessG(v) <
neighk

G(t) to the k-core. This implies that connecting t to vertices in the k-core always
returns a solution that is better than F . For this, we refer to Lemma 3.3, which states
that F must contain |F | ≥ k− corenessG(v) > k− neighk

G(t) edges in order for v to be in
the k-core in G+F . This yields the following formula for the viability of F , which proves
our claim.

viability(F) = min{k, neighk
G+F (t)} − neighk

G(t)− |F |
= k − neighk

G(t)− |F |
< |F | − |F |
= 0

We now discuss how an augmentation with high viability can be obtained for the input
graph. For this, we refer to Theorem 2.8, which shows that for a fixed d ∈ N, we can scan
all possible augmentations of size at most d in a running time of d · |V |2·d ·f(G). Here, f(G)
denotes the (polynomial) running time for computing the k-core of the input graph and
possible augmented graphs. We use this result by trying each possible augmentation of size
at most d and choosing the augmentation with the highest viability. If this augmentation
lifts t to the k-core, then we have found the optimal solution. If, however, the most viable
augmentation does not lift t to the k-core, then we further augment the resulting graph
by connecting t to vertices in the k-core until t is in the k-core as well. We have already
proven above that this retains the viability of the solution.
We have also proven above that an augmentation that lifts vertices of coreness less than
neighk(t) to the k-core is less than 0-viable. Lemma 4.1 shows that edges incident to
those vertices can not influence the coreness of vertices which already are in a higher core,
thus we can omit any edges incident to these vertices when searching for augmentations
with positive viability. We define S = {v ∈ V | coreness(v) < neighk(t)} and obtain a
running time of O(d · (|V | − |S|)2·d). The parameter d must be chosen depending on the

situation. We show in Theorem 3.4 that our algorithm is a k−neighk(t)
k−coreness(t) -approximation for

every parameter d, since the approximation it returns is at least 0-viable. This is because
scanning every possible augmentation of size d includes in particular those augmentations

23

4. Heuristic approaches

connecting t to vertices in the k-core.
Theorem 2.8 implies that for d = k− neighk(t)− 1, we always obtain an optimal augmen-
tation. For values 0 < d < k−neighk(t)−1, we return an optimal augmentation, if its size
is smaller than or equal to d. This means that if our algorithm does not find an optimal
solution and needs to further augment the graph by connecting t to vertices in the k-core,
then we can safely assume OPT > d. We thus obtain a relative performance guarantee of

|F |
OPT

<
k − neighk(t)

d
.

In absolute terms, we obtain a performance guarantee of

|F | −OPT ≤ k − neighk(t)− d.

4.2 Empty k-core

In the following, we discuss how our results from the previous section can be used for input
graphs with an empty k-core. We show that in some cases, our algorithm still yields a
solution for which we can even prove a performance guarantee, while in other cases, we
need another algorithm to solve the instance. Therefore, we conclude this section after
the following discussion by giving an efficient heuristic algorithm that solves every possible
instance of Single Vertex k-CoreAug, but for which we unfortunately cannot prove a
performance guarantee.

If the k-core of the input graph G is empty, then, obviously, we cannot simply connect t
to vertices which are in the k-core. We can, however, still select a fixed parameter d ∈ N
and scan every possible augmentation of size d. We re-use the previous definition for the
viability of an augmentation, but note that for an empty k-core in the input graph, we
can no longer guarantee that there is an augmentation that is 0-viable. Thus, we can no
longer restrict the search to only add edges between vertices with sufficient coreness and
are left with the full runtime of d · |V |2·d · f(G). Additionally, there is a higher range for

the parameter d, because augmentations now can contain up to k2+k
2 edges. There are

three possible outcomes of scanning every solution of size smaller than or equal to d.
If we find an augmentation that lifts t to the k-core, then since we scan the solutions in
ascending order of size, we have found an optimal solution. We can return this solution
without performing any further calculations.
If we find an augmentation F such that the k-core of G + F is not empty, then we can
execute our heuristic algorithm for input graphs with non-empty k-core on the graph G+F .
We choose another parameter d2 ∈ N such that 1 ≤ d2 < k − neighk

G+F (t) and calculate
the set S = {v ∈ V | coreness(v) < neighk

G+F (t)}. This way, we obtain a total running
time of f(G) · (d · |V |2·d + d2 · (|V | − |S|)2·d2) for both algorithms. We denote by F2 the
augmentation returned by the second algorithm. Obviously, the augmentation F∪F2 lifts t
to the k-core.
We adjust the performance guarantees of the heuristic algorithm for input graphs with
non-empty k-core to match this scenario. For this, note that we can only prove that
OPT > d, since otherwise we would have found an augmentation F that lifts t to the
k-core in G+F . Unfortunately, we can not make such a connection between d2 and OPT.
We obtain a relative performance guarantee of

|F |+ |F2|
OPT

≤
d+ k − neighk

G+F (t)

d
= 1 +

k − neighk
G+F (t)

d
≤ 1 +

k

d
.

The absolute performance guarantee evaluates to

|F |+ |F2| −OPT ≤ d+ k − neighk
G+F (t)− d = k − neighk

G+F (t) ≤ k.

24

4.2. Empty k-core

If we do not find an augmentation that lifts any vertices in the input graph to the k-core,
then we clearly can not invoke our previous heuristic algorithm. Lemma 3.3 proves that if
we choose d < k −max{coreness(v)|v ∈ V }, then the none of the scanned augmentations
can lift vertices to the k-core.

Thus, we need a more general approach which works for every instance. In Theorem 3.1,
we give a k2+k

2 -approximation which works for every possible instance of Single Vertex
k-CoreAug. This approximation selects k arbitrary vertices except t and then connects
those vertices and t such that they form a (k + 1)-clique. It is obvious that the perfor-
mance of this solution depends heavily on the selected vertices. Clearly, the best selection
of vertices would be a set such that the subgraph induced by the selected vertices and t
contains a maximal amount of edges. But such a set of vertices is hard to find.
Ultimately, every strategy for selecting vertices heavily depends on the structural param-
eters of the input graph. Instead of trying to guess those beforehand, it seems reasonable
to implement an algorithm that greedily selects vertices by assessing how many edges they
add to the subgraph induced by all selected vertices. Additionally, such an algorithm does
not need to be constrained to selecting only k+1 vertices including t, since it can calculate
if selecting a larger amount of vertices will decrease the solution size.

Algorithm 1 constitutes a simple greedy algorithm for selecting vertices. It is parameterized
by the search depth c ∈ N for c ≥ 1. In every iteration, it calculates for every possible
combination T ∈ V of at most c unselected vertices, how many edges the subgraph induced
by T and the previously selected vertices would contain. Based on this, it chooses to select
that combination T such that after every iteration, the subgraph induced by all selected
vertices contains a maximal amount of edges. It continues to do so until it has selected at
least k + 1 vertices including t and it can not find any combination T such that selecting
each vertex in T would lower the amount of edges needed to lift every selected vertex to
the k-core.
Let S ⊆ V be the set of vertices that our algorithm selects. We create an augmentation
F that lifts t to the k-core by iteratively choosing two selected vertices u, v ∈ S such that
their degree in S + F is as low as possible and {u, v} 6∈ E ∪ F . We add the edge {u, v} to
F and repeat this procedure as long as there are vertices w ∈ S such that degS+F (w) < k.
Obviously, every vertex v ∈ S has degS+F ≥ k once we are done and is thus in the k-core.
This holds in particular for t. Thus, our algorithm calculates a correct solution.

In the following, we calculate the running time for our algorithm. Calculating the internal
edges in the subgraph induced by any subset of vertices takes |E| ≤ |V |2 time, since an
implementation only needs to iterate over every edge and check whether it is in the induced
subgraph or not. In every iteration, the for-loop is executed one time for each possible
subset T of V with size |T | ≤ c. This amounts to |V |c executions of the for-loop in every
iteration. Clearly, the amount of iterations is limited by the number of vertices, since
the algorithm can only select every vertex once. This amounts to a total running time in
O(|V | · |V |c · |V |2) ⊆ O(|V |c+3) for selecting the vertices.
Creating the edges between selected vertices is possible in O(k · |V |3 · log |V |) ⊆ O(|V |4),
since an implementation can simply sort the selected vertices by degree for every edge that
it needs to add. Then it can choose the vertex with the lowest degree and iterate through
the remaining vertices in ascending order of degree until it finds another vertex such that
no edge exists between them. This amounts to a total running time in O(|V |c+3 + |V |3) ⊆
O(|V |c+3).

Concluding this chapter, we discuss how our heuristic algorithm behaves for different
parameters c. Clearly, choosing c = 1 will not lead to consistently good results, because
the first selected vertex is either a random neighbor of t or a completely random vertex
in G, if t does not have any neighbors. After selecting the first vertex, the algorithm

25

4. Heuristic approaches

will preferredly traverse edges between already selected and unselected vertices such that
the number of edges between already selected vertices and the newly selected vertex is
maximal. We reason that the performance of our algorithm for c = 1 depends largely
on chance as well as the structural parameters of the input graph. Note that for c = 1,
in order for our algorithm to select more than k + 1 vertices overall, each vertex that is
selected above that amount must be connected to k already selected vertices. For c = 2,
our algorithm is already able to detect if two neighbors of t are connected to each other.
Consequently, we expect our algorithm to continuously perform better, the larger c gets.

Algorithm 4.1: Greedily select vertices, try to maximize internal edges in the
subgraph that they induce.

S0 := {t};
i := 0;
repeat

w :=∞;
A := ∅;
forall the possible T ⊆ V \ Si with 1 ≤ |T | ≤ c do

weight := |T | · k
−#{{u, v} ∈ E|u ∈ T ∧ v ∈ T}
−#{{u, v} ∈ E|u ∈ T ∧ v ∈ Si ∨ u ∈ Si ∧ v ∈ T}

if weight < w then
w := weight;
A := T ;

Si+1 := Si;
if |Si| ≤ k ∨ w < 0 then

Si+1 := Si ∪A;

i := i+ 1;

until |Si| = |Si−1|;

26

5. Conclusion

In this thesis we have studied the problem of lifting a single vertex in a graph to the k-core
by adding as few edges as possible. We proposed an algorithm that solves this problem in
polynomial time for a fixed k and proved that if k is part of the input, then the problem
is NP-hard to solve optimally and to approximate within a factor that is logarithmic
in both k and the number of vertices in the graph. On the positive side, we gave an
efficient algorithm that approximates the problem within a factor that is quadratic in k
and showed that depending on the structure of the graph, there are efficient algorithms
that approximate the best possible result for some families of graphs within a factor that
is linear in k or better. Furthermore, we discussed efficient heuristic algorithms which
may provide better results than our theoretically sound approximation algorithms at the
expense of increased running time.
Our most important question is how to generate realistic instances of the problem such that
our heuristic algorithms can be evaluated against the optimal solution and the theoretically
sound approximation algorithms. Another interesting question is whether there exists an
efficient algorithm that approximates the best possible result within a factor of k for every
possible instance, or if there exist efficient algorithms that provide a relative performance
guarantee that is logarithmic in the input size for some or even all instances of the problem.

27

Bibliography

[AFG+06] Vinay Aggarwal, Anja Feldmann, Marco Gaertler, Robert Görke, and Dorothea
Wagner. Analysis of overlay-underlay topology correlation using visualization.
In Proc. 5th IADIS International Conference WWW/Internet, pages 385–392,
Murcia, Spain, October 2006. Outstanding Paper Award.

[BYM84] Reuven Bar-Yehuda and Shlomo Moran. On approximation problems related to
the independent set and vertex cover problems. Discrete Applied Mathematics,
9:1–10, 1984.

[CF10] Nicholas A Christakis and James H Fowler. Social network sensors for early
detection of contagious outbreaks. PloS one, 5(9):e12948, 2010.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. 45:634–652, 1998.

[GGR12] Robert Görke, Roland Gröll, and Ignaz Rutter. Efficient algorithms for core
augmentation problems. 2012.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences).
W. H. Freeman, first edition edition, 1979.

[WA05] Stefan Wuchty and Eivind Almaas. Peeling the yeast protein network. Pro-
teomics, 5(2):444–449, 2005.

29

	Contents
	1 Introduction
	2 Complexity
	2.1 NP-completeness
	2.2 Non-Approximability
	2.3 Fixed parameter k

	3 Approximation
	4 Heuristic approaches
	4.1 Non-empty k-core
	4.2 Empty k-core

	5 Conclusion
	Bibliography

