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Abstract
Contraction Hierarchies are an experimentally well studied method to efficiently handle point-to-
point shortest-path queries in large graphs. In a preprocessing stage the vertices of the input graph
are iteratively removed, while the shortest-path structure of the remaining graph is preserved. This
results in a hierarchy of graphs and shortest-path queries can be answered by only considering
edges that are leading to vertices of smaller graphs in the hierarchy. The order of removal of the
vertices has great impact on performance, but by now only heuristics are known for determining
such orders. In this thesis Contraction Hierarchies are studied from a theoretical point of view. It is
shown that approximating contraction orders resulting in minimal preprocessing size is APX-hard
and the corresponding decision problem is proven to NP-complete. Furthermore, lower bounds
for the size of search space in Contraction Hierarchies of paths and trees are given. Finally an
integer linear program is used to experimentally investigate optimal contraction hierarchies on
small random graphs.
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1. Introduction

The problem of finding a shortest path between two vertices in a graph is a well-known problem
in computer science. The classic solution from 1959 for graphs with non-negative edge-lengths is
Dijsktra’s algorithm [Dij59]. In fact, Dijkstra’s algorithm computes not only a single shortest path,
but the shortest paths from one source vertex to all other vertices in the input graph. This renders
Dijkstra’s algorithm quite inefficient for applications, where one is interested in only a single
shortest path between the given vertices, as there may be many vertices that are processed during
Dijkstra’s algorithm but are irrelevant for the problem at hand. This inefficiency is negligible, if
the instances are rather small or if there are no tight requirements on the runtime, but it becomes a
crucial factor when one deals with large inputs, such as road networks of Europe or North America.

In order to address this problem many algorithms, so called speedup techniques for Dijkstra’s
algorithm have been proposed in recent years. There are Reach [GKW06], Highway Hierar-
chies [SS05], Highway Node Routing [SS07], Arc-Flags [HKMS09], SHARC [BD09], ALT [GH05]
and Contraction Hierarchies [GSSD08], the latter of which is the subject of this thesis. Further-
more some of these techniques may be combined to achieve even better results. An overview
and experimental studies may be found for example in [WW07] and [HSW04]. Generally, these
speedup techniques allow to answer shortest-path-queries in the aforementioned road-networks in
mere milliseconds.

Most of these techniques use some preprocessing stage to augment the graph with additional in-
formation that can be used to speed up point-to-point shortest-path queries. This preprocessing
often contains some degree of freedom that is currently filled heuristically. To date there are no
non-trivial guarantees for these heuristics and no approximation or fixed-parameter tractable al-
gorithms known. Moreover there is very little theoretical work on speedup techniques in general.
There are no known bounds on the searchspace size and until recently the complexity status of
optimal preprocessing for all these techniques was not known.

This thesis settles these questions at least partially for Contraction Hierarchies. In Chapter 3
finding contraction hierarchies with a minimal number of edges is shown to be APX-hard and
the associated decision problem is proven to be NP-complete. We further show that it is NP-
hard to approximate this problem within 7

6 − ε for all ε > 0. Unless P = NP, these results
render exact polynomial-time algorithms and polynomial-time approximation schemes for this
problem impossible. In Chapter 4, contraction hierarchies with minimum average searchspace are
considered. We prove tight lower bounds for the searchspace size of contraction hierarchies of
paths and provide a simple algorithm to compute these hierarchies. These lower bounds are then
generalized to trees. Moreover we give a characterization of average searchspace size in acyclic
graphs, which seems to be an interesting problem on its own. Finally, in Chapter 5, an integer
linear program for computing optimal contraction hierarchies is presented and some experimental
results using that linear program are given.
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2. Preliminaries

Notational Conventions
Z the set of integers
N the set non-negative integers
R the set of real numbers
R+ the set of positive, real numbers
log x logarithm of x to base 2
|A| the cardinality of the set A
A ⊂ B A is a subset of B, not necessarily proper
A − B set difference of A and B
order on A a reflexive, transitive, anti-symmetric and total binary relation on the set A

Graphs

A graph G = (V, E) consists of a set V of vertices and a set E ⊂ V × V of edges. We say G is
undirected, if (u, v) ∈ E implies (v, u) ∈ E. In this case we identify each edge (u, v) with its inverse
edge (v, u) and perceive the edges e ∈ E as two-element subsets of V . The number of vertices and
(undirected) edges is always denoted by n and m respectively. A subgraph of a graph G = (V, E)
is a graph G′ = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E. If G = (V, E) is a graph and V ′ ⊂ V , then
G − V ′ is the maximal subgraph of G with vertices V − V ′.

A path p between two vertices u, v ∈ V is a finite sequence (x0, . . . , xr) of vertices, such that
x0 = u, xr = v and (xi−1, xi) ∈ E for all 1 ≤ i ≤ r. The hoplength hop(p) is the number of edges on
p, i.e. hop(p) = r. A path p from u to v is hop-minimal if there is no other path p′ from u to v with
hop(p′) < hop(p). If all vertices xi on a path p are pairwise distinct, p is called simple. A cycle
is a path p = (u, . . . , v) such that u = v and hop(p) > 0. A simple cycle is a cycle p = (u, . . . , u)
where all vertices except u are pairwise distinct.

A directed graph G is acyclic, if there are no simple cycles in G. An undirected graph G is acyclic
if there are no simple cycles of hoplength greater than 2 in G. If G = (V, E) is a directed, acyclic
graph, a topological order on V is an order ≺ on V such that for each edge (u, v) ∈ E it is u ≺ v.
By the diameter ∆G of a graph G we mean the maximum hoplength of hop-minimal paths in G,
i.e. ∆G = max{hop(p) : p is a hop-minimal path}. A graph G = (V, E) is connected if for every
two vertices u, v ∈ V there is a path p = (u, . . . , v) or p = (v, . . . , u). A vertex is separating
in a connected graph G = (V, E) if G − {v} is not connected. If a graph G is not connected the
components of G are the maximal connected subgraphs of G.
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4 2. Preliminaries

A weighted graph G = (V, E, len) is a graph G = (V, E) together with edge-lengths len : E → R+. If
G is undirected, we further require that len({u, v}) is well-defined, i.e. len((u, v)) = len((v, u)). For
the sake of brevity we mostly write len(u, v) instead of len((u, v)) or len({u, v}). The length len(p) of
a path p = (x0, . . . , xr) in a weighted graph is the sum of the lengths of all edges in p, i.e. len(p) =∑r

i=1 len(xi−1, xi). The distance distG(u, v) of two vertices in a weighted graph G is the length of a
shortest path between u and v, i.e. distG(u, v) = min{len(p) : p is a path between u and v}. If there
is no path from u to v we let distG(u, v) = ∞. Instead of distG(u, v) we also write dist(u, v) if it is
clear from the context which graph G is meant.

Dijktsra’s Algorithm

Given a weighted graph G = (V, E, len) and a source vertex s ∈ V , Dijkstra’s algorithm computes
the distances dist(s, u) from s to all vertices u ∈ V . The algorithm distinguishes between unvisited,
visited and settled vertices. Initially all vertices u , s are unvisited and the tentative distance is
set to dist(s, u) = ∞. The source vertex s is marked as visited and dist(s, s) is 0. In each step
of the algorithm a visited vertex u with minimal tentative distance is marked as settled and all
its out-edges are relaxed. Relaxing an edge (u, v) thereby means setting the tentative distance of
v to min{dist(s, v), dist(s, u) + len(u, v)} and marking v as visited if it was unvisited before. The
algorithm stops as soon as all vertices are either settled or unvisited. A proof of correctness may
be found in [Dij59].

It is furthermore possible to compute not only the distances dist(s, u) but to explicitly output the
associated shortest paths. In order to achieve this, one stores for each vertex u the predecessor
of u on the shortest path from s to u. Initially all vertices u , s are unvisited and their pre-
decessor is set to be undefined (⊥). From this information the actual shortest paths are easily
reconstructible. Algorithm 1 is an implementation of Dijkstra’s Algorithm in pseudocode. Using
Fibbonacci Heaps [FT87] to find the visited vertex with the minimum tentative distance currently
gives the best known theoretical worst-case runtime of O(m + n log n) for Dijkstra’s algorithm on
graphs with arbitrary positive edge-lengths. For special edge-weights better bounds are known. If
for example all edge-weights are integral and bounded by a constant C ≥ 0, an implementation
using Radix Heaps has worst-case runtime O(m + n log C) [AMOT90].

Contraction Hierarchies

Contraction Hierarchies are a speed-up technique for Dijkstra’s algorithm that use a preprocessing
stage. For simplicity we consider only contractions hierarchies of undirected graphs. Note that
this does not impose any restrictions on the results, as one may view undirected graphs as directed
graphs with all edges being symmetric.

Let G = (V, E, len) be a graph and ≺ an order on V . The preprocessing stage of Contraction
Hierarchies iteratively contracts the ≺-least vertex until G is empty. Contraction of a vertex
v thereby works as follows: For each unique shortest path p = (u, v,w) a new edge {u,w} of
length len(p), called a shortcut is introduced to G. Afterwards v and its incident edges are
removed from G and contraction continues with the remaining graph. The output of the pre-
processing stage is a directed, acyclic, weighted graph H = (V, A, len), where A contains the
edges and shortcuts of G directed from the ≺-smaller to the ≺-larger vertex. More formally
A = {(u, v) : u ≺ v and {u, v} is an edge or a shortcut of G}. The edge-lengths in H are the edge-
lengths in G. We call the graph H the contraction hierarchy of G corresponding to the order ≺
and denote it by H(G,≺). Algorithm 2 provides an abstract pseudocode implementation of this
process and in Figure 2.1 an example for a graph and its contraction hierarchy is given.
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Algorithm 1: D(G = (V, E, len), s)
Input : Weighted graph G = (V, E, len) and a source vertex s ∈ V
Output: Distances dist(s, u) for all vertices u ∈ V

and table parent(v) encoding the shortest paths from s to v

foreach u ∈ V − {s} do
dist(s, u) = ∞
mark(u) = unvisited
parent(u) = ⊥

end
dist(s, s) = 0
mark(s) = visited
parent(s) = s

while ∃u ∈ V such that mark(u) = visited do
Choose u ∈ V with mark(u) = visited and minimal dist(s, u)
foreach (u, v) ∈ E do

if dist(s, u) + len(u, v) < dist(s, v) then
dist(s, v) = dist(s, u) + len(u, v)
mark(v) = visited
parent(v) = u

end
end

end

Algorithm 2: CH(G = (V, E, len),≺)
Input : Weighted graph G = (V, E, len) and an order ≺ on V
Output: Contraction hierarchyH(G,≺) = (V, A, len)

while G , ∅ do
Choose ≺-least vertex v ∈ V
foreach unique shortest path p = (u, v,w) do

E = E ∪ {u,w}
len(u,w) = len(p)

end
G = G − {v}

end
A = {(u, v) : u ≺ v and {u, v} ∈ E}

5



6 2. Preliminaries

(a) A weighted graph G (b) The contraction hierarchy H(G,≺), where
u ≺ v if u is drawn below v.

Figure 2.1: An example of a contraction hierarchy

To answer shortest-path queries in G, two Dijkstra’s searches in H(G,≺) are run from the source
and target vertex respectively. For simplicity we consider no special stopping criterion, i.e. the
algorithm stops as soon as there are only unvisited and settled vertices in both directions. There is
experimental evidence, that the searchspace size of more sophisticated queries on contraction hier-
archies only differs by a constant factor from this simple query algorithm. For a detailed descrip-
tion of contraction hierarchies and more sophisticated queries the reader may refer to [GSSD08],
where directed graphs are treated as well and a proof of correctness is provided.

Complexity Classes and Reductions

If Σ is a finite alphabet, then a decision problem A over Σ is a subset A ⊂ Σ∗, where Σ∗ is the
set of all finite strings over Σ. The complexity classes of deterministic and non-deterministic
polynomial-time acceptable decision problems are denoted by P and NP respectively. If A and B
are two decision problems over alphabets Σ and Π, a reduction from A to B is a polynomial-time
many-one reduction, i.e. a polynomial-time computable function f : Σ∗ → Π∗, where f (x) ∈ B if
and only if x ∈ A. If there exists such a reduction, we also say A reduces to B.

A problem A is called NP-hard, if every problem B ∈ NP reduces to A. If additionally A ∈ NP, A is
called NP-complete. Polynomial-time many-one reductions compose, i.e. if f and g are reductions
from A to B and from B to C respectively, then g ◦ f is a reduction from A to C. In order to prove
the problem A to be NP-hard, it therefore suffices to give a reduction from a problem, which is
already known to be NP-hard. We state decision problems A informally as a set of inputs together
with a yes/no question and assume that A is the set of inputs with answer “yes”. The reader may
refer to [GJ79] for an overview of the theory of NP-completeness.
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The concept of decision problems is not expressive enough to study approximate solutions, thus
we further investigate optimization problems. An optimization problem A over an alphabet Σ is
given by a set IA ⊂ Σ∗ of inputs, a set FA(x) ⊂ Σ∗ of feasible solutions for every input x ∈ IA

and a cost function cA : IA × FA(·) → N, that assigns to each pair (x, y) ∈ IA × FA(x) a cost value
cA(x, y). In this thesis only minimization problems are considered, i.e. problems where, given
some x ∈ IA, one wants to compute a y ∈ FA(x) that minimizes the cost cA(x, y). An optimization
problem A is said to be an NP optimization problem or NPO problem for short, if IA ∈ P, cA is
computable in polynomial-time and if the size of feasible solutions y ∈ FA(x) is bounded above
by a polynomial in the size of x. An algorithm A is said to approximate a minimization problem
A within a constant ρ ≥ 1, if for all x ∈ IA,A computes a y ∈ FA(x) such that cA(x, y)/ opt(x) ≤ ρ,
where opt(x) = min{cA(x, y) : y ∈ FA(x)}. In this case A is called a ρ-approximation and A is
said to be approximable within ρ. By APX we denote the class of all NPO problems that are
approximable within some constant ρ. A polynomial-time approximation scheme (PTAS) for an
NPO problem A is an algorithm A that takes as input a pair (x, ε) ∈ IA × R+ and approximates A
within ε in time polynomial in the size of x.

If A and B are two NPO minimization problems, a P-reduction from A to B consists of three
functions f , g and e subject to the following constraints:

(i) f : IA → IB and g : IB × FB(·)→ FA(·) are polynomial-time computable.

(ii) e : R+ → R+ is a computable function.

(iii) For all x ∈ IA and all y ∈ FB( f (x)) it is

cB( f (x), y)
opt( f (x))

≤ e(ε)⇒ cA(x, g(x, y))
opt(x)

≤ ε

If there is a P-reduction from A to B we also say that A P-reduces to B. It is easy to see that if A
P-reduces to B and there is a PTAS for B, then there is also a PTAS for A. A problem A is called
APX-hard, if all problems B ∈ APX P-reduce to A. As it was the case with polynomial-time
many-one reductions, P-reductions compose and to prove A APX-hard, it thus suffices to give a
P-reduction from a problem already known to be APX-hard. An in-depth study of NPO problems
and approximibality can be found in [Kan92].
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3. Preprocessing Size

Speedup techniques for Dijkstra’s algorithm are, as already mentioned in the introduction, an
attempt to make fast shortest-path queries in large graphs feasible. In route planning, for example,
one has to deal with graphs that represent the road networks of whole continents. Naturally these
graphs have millions of vertices and edges and it is desirable that the preprocessing stages of
speedup techniques keep the amount of data as small as possible, for otherwise mobile devices
with limited ressources would not be capable of handling the preprocessed graphs.

Therefore it is a natural question to ask for contraction hierarchies with a minimal number of
shortcuts, as those are the only additional data that accumulates in the preprocessing stage of this
speedup technique. In this chapter we thus deal with the following decision problem.

Problem (CH Preprocessing Size)
Input: A weighted graph G = (V, E, len) and a number K ∈ N.

Question: Is there an order ≺ on V , such thatH(G,≺) contains at most K shortcuts?

We refer to this problem as CHPS and denote the associated optimization problem by CHPSopt,
i.e.

Problem (Optimal CH Preprocessing Size)
Input: A weighted graph G = (V, E, len).

Solutions: Orders ≺ on V .

Cost: The number of shortcuts inH(G,≺).

In what follows, it will be shown that for arbitrary graphs CHPS is NP-complete and CHPSopt is
APX-hard. Before we turn to the proof, we consider some easy special cases where CHPS and
CHPSopt can be solved in polynomial time. These considerations already give a hint where the
difficulty in solving CHPS lies.

3.1 Restricted Graph Classes and Examples

Lemma 1: If G = (V, E) is a directed, acyclic graph and ≺ a topological order on V , then there
are no shortcuts inH(G,≺).

P
Assume for the sake of contradiction that (u, v) is a shortcut inH(G,≺). Then there is a vertex w,
whose contraction resulted in the insertion of that shortcut, i.e. w ≺ u, w ≺ v and there are edges
(u,w) and (w, v) in G. This contradicts the assumption that ≺ is a topological order on V . �

9



10 3. Preprocessing Size

1

1

1

1

u

v

Figure 3.1: An optimal solution of CHPSopt for a pentagon, where the dashed shortcut is only
present, if len(v, u) < 2.

Corollary: If G = (V, E) is a directed, acyclic graph, then CHPSopt can be solved in timeO(n+m).

P
A topological order ≺ can be computed in time O(n + m), as described in [Tar76]. �

A statement similar to Lemma 1 also holds for acyclic, undirected graphs. The crucial property of
≺ in the above proof is that there are no three vertices u, v,w in G with w ≺ u, w ≺ v and edges
(u,w) and (w, v). In the undirected case this property is resembled by the notion of bottom-up
orders. We call an order ≺ on the vertices of a rooted tree T a bottom-up order, if whenever u is a
child of v in T , then it follows that u ≺ v.

Lemma 2: If T = (V, E) is a rooted tree and ≺ a bottom-up order on V , then there are no shortcuts
inH(T,≺).

P
Suppose (u, v) is a shortcut inH(G,≺). Then there is a vertex w, such that w ≺ u, w ≺ v and there
are edges {u,w} and {v,w} in T . In particular this implies that w is a child vertex of u and v, which
is a contradiction. �

Corollary: If G = (V, E) is an undirected, acyclic graph, then CHPSopt can be solved in time
O(n).

P
An undirected, acyclic graph G is a disjoint union of unrooted trees. A bottom-up order on V may
be computed by depth-first search with arbitrary roots in time O(n). �

The preceeding two lemmas show that – regardless of edge-lengths and concrete structure – graphs
without cycles always admit contraction hierarchies with no shortcuts at all and simple, linear-time
algorithms to obtain such optimal contraction hierarchies were provided. This already suggests
that the claimed hardness of CHPS has its source in the difficulty to find optimal contraction
orders on cycles and especially intersecting cycles. In contrast to acyclic graphs, the insertion
of shortcuts in cyclic graphs furthermore depends largely on the edge-lengths, as one can see in
Figure 3.1.

10



3.2. Hardness Results 11

3.2 Hardness Results
This whole paragraph is devoted to the proof of the following two theorems.

Theorem 1: CHPS is NP-complete.

Theorem 2: CHPSopt is APX-hard and for all ε > 0 it is NP-hard to approximate CHPSopt
within 7

6 − ε.

We will first concentrate on proving Theorem 1 and it will emerge afterwards, that actually both
results follow from the same reduction. A first, simple step in proving Theorem 1 is to assure that
CHPS ∈ NP.

Lemma 3: CHPS ∈ NP.

P
A contraction hierarchy corresponding to a given order ≺ can be computed in polynomial time by
Algorithm 2. Furthermore it can be checked in polynomial time, if the number of shortcuts in that
hierarchy is less or equal than some constant K. �

For Theorem 1 it remains to show that CHPS is NP-hard. To this end we give a reduction from
Vertex Cover:

Problem (Vertex Cover)
Input: An undirected graph G = (V, E) and an integer K ∈ N.

Question: Is there a vertex cover C′ ⊂ V of G, of at most K nodes, i.e. a subset C′ ⊂ V such that
|C′| ≤ K and for all edges {u, v} ∈ E, u ∈ C′ or v ∈ C′?

Throughout this paragraph (G,K) denotes an instance of Vertex Cover, where G = (V, E) is an
undirected graph with n = |V | vertices and m = |E| edges and where K is a natural number, less
or equal than n. Given this instance (G,K), we construct a weighted graph G′ = (V ′, E′), which
admits a contraction hierarchy H with at most K shortcuts, if and only if G has a vertex cover of
size at most K.

The set V ∪ E is a subset of the vertices V ′ of G′. The vertices E ⊂ V ′ are henceforth referred
to as edge-vertices. For each such edge-vertex e = {u, v} ∈ V ′ the graph G′ contains two edges
{e, u} ∈ E′ and {e, v} ∈ E′. This construction can be thought of as putting one vertex on each
edge e of G. Furthermore V ′ contains two special vertices s, t ∈ V ′, where s is connected to all
edge-vertices e ∈ E and t is connected to all vertices v ∈ V . That is {{s, e} : e ∈ E} ⊂ E′ and
{{t, v} : v ∈ V} ⊂ E′.

Now we fix an arbitrary order e1, . . . , em on the edges of G and connect each ei to ei+1 by a
honeycomb gadget Hi that enforces the contraction order ei ≺ ei+1. The gadget Hi can be seen
in Figure 3.2a. Additionally there is a final gadget F connecting s and t, which is depicted in
Figure 3.2b. Finally we have to choose the edge-lengths in G′. We let len(t, v) = 1

2 m, len(ei, v) =

2m and len(s, ei) = m + i for edge-vertices ei and vertices v ∈ V . The edge-lengths in the gadgets
are chosen according to Figure 3.2a and Figure 3.2b. The whole construction is summarized in
Figure 3.3. Note that G′ can be computed in polynomial time and is independent of K.

11



12 3. Preprocessing Size
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(a) The honeycomb gadget Hi enforcing contraction
order ei ≺ ei+1.
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(b) The final gadget F connecting s and t. The
weights σ and τ are chosen as σ = 5m + 1

8 and
τ = 5m.

Figure 3.2: The gadgets used in the reduction from Vertex Cover to CHPS

e1 e2 em−1 em

s

t

v1 v2 vn−1 vn

2m 2m 2m 2m 2m

2m
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2m − 1m + 2m + 1

H1 Hm−1

F

F

1
2 m 1

2 m 1
2 m1

2 m

Figure 3.3: Schematic picture of G′. The honeycomb gadgets Hi are depicted by small hexagons
between ei and ei+1. For readability reasons the final gadget F is only shown as half hexagons at s
and t.
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3.2. Hardness Results 13

Lemma 4: If G contains a vertex cover of size K, then G′ admits a contraction hierarchy with K
shortcuts.

P
Let C ⊆ V be a vertex cover with at most K vertices. Consider the following contraction order of
the vertices of G′:

1. Contract all v ∈ V −C.
First recall that adjacency of a vertex v ∈ V and an edge-vertex e ∈ E in G′ is equivalent
to v being incident to e in G. Every v ∈ V − C lies on paths (t, v, e) of length 5

2 m from t to
the edge-vertices e adjacent to v. As C is a vertex cover there is for each such edge-vertex e
another u ∈ C, which is also adjacent to e and thus lies on another path (t, u, e) from t to e of
equal length.

Note that paths (ei, v, e j) have length 4m and thus are no shortest paths as the path (ei, s, e j)
has length 2m + i + j < 4m.

As the considered paths (t, v, e) and (ei, v, e j) are the only paths via v and shortcuts are only
inserted if necessary, contraction of v does not insert any shortcuts into the hierarchy.

2. Contract all edge-vertices e ∈ E in the chosen order e1, . . . , em. Note that by contraction of
ei the contraction of the gadget connecting ei to its successor ei+1 is implicitly included.
Further note that contraction of ei inserts an additional shortcut {a, b} if and only if there is
a unique shortest path (a, ei, b) for some vertices a, b ∈ V ′. Thus all paths (a, ei, b) have to
be considered to prove the claim. For this purpose we use the notation from Figure 3.4a.

a) The path p = (xr, ei, xs) between the vertices xr and xs of Hi has length 2m + 4i and
thus is no shortest path, as the path (xr, yr, ei+1, ys, xs) has length 2.

b) The path p = (xr, ei, s) has length 2m + 3i, while the path (xr, yr, ei+1, s) has length
m + i + 2, which is, for all i ≥ 1, less than 2m + 3i. Therefore p is no shortest path.

c) The path p = (xr, ei, v) has length 3m + 2i. Again p is no shortest path, as the path
(xr, yr, ei+1, v′, t, v) has length 3m + 1, which is less than 3m + 2i for all i ≥ 1.

d) The path p = (s, ei, v) has length 3m + i.

Note that if ei is the first edge-vertex adjacent to v in our fixed order e1, . . . , em, then
p is a unique shortest path. In this case contraction of ei results in an edge {ei, v} of
length 3m+ i being inserted into the hierarchy. To see that p is indeed a unique shortest
path consider the following paths p′ between s and v in G′:

(i) p′ = (s, e j, v) for some edge-vertex e j distinct from ei. Then p′ has length 3m + j,
which is greater than 3m + i as ei is the first edge in e1, . . . , em that is adjacent to
v.

(ii) p′ = (s, e j, u, t, v) for some edge-vertex e j , ei and some vertex u ∈ V . Then p′
has length 4m + j, which is greater than 3m + i.

(iii) p′ = (s, xr, t, v) for some vertex xr in the final gadget F. Then p′ has length at
least 10m, which is greater than 3m + i, too.

As these are all relevant types of simple paths between s and v, p is a unique shortest
path in G′ and thus also in this contraction step.

After contraction of ei the remaining part of the gadget Hi consists only of the vertex ei+1
and simple paths (xr, yr, ei+1). Thus it can be contracted without introducing any shortcuts.
The only shortcuts being inserted into the hierarchy are between s and some vertex v ∈ C.
The size of C is assumed to be K and thus exactly K shortcuts get inserted.

13
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(a) Contraction of edge-vertex ei ∈ E.
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(b) Contraction of the special vertex s.
The edges of weight m+i and m+ j orig-
inate in the contraction of edge-vertices
ei and e j. The vertices xi on the right
hand side of the figure are those from
the final gadget F. The weights σ and
τ were initially chosen as σ = 5m + 1

8
and τ = 5m.

Figure 3.4: Important steps during contraction of G′ given a vertex cover C ⊆ V

3. Contract the special vertex s.
Since all vertices v ∈ V − C, all edge-vertices e ∈ E and all gadgets Hi were already
contracted in Step 1 or Step 2, the remaining vertices are {s, t}∪C and the vertices of the final
gadget F. The set of shortcuts that were inserted in the preceding steps is {{s, v} : v ∈ C},
where the edge {s, v} has weight 3m + i, if ei is the first edge-vertex in the order e1, . . . , em

that is adjacent to v. Altogether we conclude that the remaining graph consists of the final
gadget F including the special vertices s and t and the vertices v ∈ C, where each v ∈ C is
connected to s and to t.

The remaining graph hence looks like the one shown in Figure 3.4b, from which we borrow
notation for the following considerations. As one can see in the aforementioned figure, we
have to take the following paths into account:

a) The path p = (v, s, v′) between two vertices v, v′ ∈ C has length greater than 6m. As
the path (v, t, v′) has length m the path p is clearly no shortest path.

b) The path p = (xr, s, xs) between two vertices xr and xs of the final gadget F has length
10m + 1

4 , while the path (xr, t, xs) has length 10m. Therefore p is no shortest path.

c) The path p = (xr, s, v) has length 8m + i + 1
8 . Again, p is no shortest path as the path

(xr, t, v) has length 5m + 1
2 m.

There are no other paths (a, s, b) via s and none of the considered paths is a shortest path.
Therefore contraction of s does not insert any additional shortcuts into the hierarchy.

4. Contract all v ∈ C.
After Step 3 all v ∈ C have degree one, thus it appears that their contraction does not insert
any additional shortcuts into the hierarchy.

14



3.2. Hardness Results 15

5. After Step 4 the remaining graph consists only of the final gadget F without s and its incident
edges.

For each two distinct vertices xr, xs in the final gadget F the path (xr, t, xs) has length 10m.
Hence it is no shortest path as (xr, yr, ω, ys, xs) has length 4. Thus t can be contracted without
introducing any additional shortcuts. After contraction of t the remaining part of F is the
vertex ω with paths (xr, yr, ω) attached to it. This, too, can be contracted without inserting
any new shortcuts into the hierarchy.

Overall contraction resulted in at most K shortcuts in the contraction hierarchy H of G′. �

On the other hand we have to assure that there is a vertex cover in G of size at most K, if there is an
order ≺ on V ′, such that H(G′,≺) contains at most K shortcuts. We will first show some simpler
properties that the contraction order ≺ must possess and then construct a vertex cover in G using
these properties and the contraction order.

Lemma 5: Suppose ≺ is an order on V ′, such that H(G′,≺) contains at most K shortcuts. Then
each edge-vertex ei gets contracted before its successor ei+1 in the fixed order e1, . . . , em.

P
Assume the contrary and consider the honeycomb gadget Hi between ei and ei+1. Without loss of
generality let (x1, y1), . . . , (xL, yL) be the pairs of vertices (xr, yr) in Hi, such that one of xr, yr gets
contracted after ei+1. Then there are n+2−L pairs (xL+1, yL+1), . . . , (xn+2, yn+2), where both xr and
yr get contracted before ei+1. By assumption ei+1 gets contracted before ei and for r ≥ L + 1 all
xr, yr therefore get contracted before ei+1 and ei. Now consider the following contraction orders:

1. yr ≺ xr, ei, ei+1
The path p = (xr, yr, ei+1) is a path of length 1 between xr and ei+1. Apart from p there are
the following other, relevant simple paths from xr to ei+1:

a) The paths (xr, ei, xs, ys, ei+1), where s , r, have length 2m + 4i + 1.

b) The paths (xr, ei, v, ei+1), where v is some vertex v ∈ V incident to e have length 5m+2i.

c) The path (xr, ei, s, ei+1) has length 3m + 4i + 1.

The path p therefore is a unique shortest path and contraction of yr before ei, ei+1 and xr

inserts an additional edge {xr, ei+1} into the hierarchy.

2. xr ≺ yr, ei, ei+1
The path p = (ei, xr, yr) is a path of length m + 2i + 1

2 between ei and yr. There are the
following other paths in G′ between ei and yr:

a) The paths (ei, xs, ys, ei+1, yr), where s , r, have length m + 2i + 3
2 .

b) The path (ei, s, ei+1, yr) has length 2m + 2i + 3
2 .

c) The path (ei, v, ei+1, yr) has length 4m + 1
2 .

Hence, p is a unique shortest path and contraction of xr before ei, ei+1 and yr results in an
additional edge {ei, yr}.

Therefore contraction of xr and yr before ei and ei+1 results in at least one additional edge being
inserted into the hierarchy. For there are n + 2 − L pairs (xr, yr) that get both contracted before ei

and ei+1, these contractions insert at least n + 2 − L shortcuts into the hierarchy.

Now consider the pairs (x1, y1), . . . , (xL, yL), where at least one of xr, yr gets contracted after ei+1.
For 1 ≤ s ≤ L let zs be the vertex zs ∈ {xs, ys} that is a neighbour of ei+1 when ei+1 gets contracted.
For distinct zr, zs the path p = (zs, ei+1, zr) has length at most 2, while paths (zr, . . . , ei, . . . , zs) have
length at least m + 2i, as they include the edge {xr, ei} of length m + 2i or the shortcut {yr, ei} of

15
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length m + 2i + 1
2 . Hence p is a unique shortest path and contraction of ei+1 before zs, zr and ei

inserts an additional shortcut {zr, zs}. As there are 1
2 L(L − 1) such pairs {zr, zs}, contraction of ei+1

leads to the insertion of 1
2 L(L − 1) shortcuts.

Altogether, contraction of ei+1 before ei results in at least

n + 2 − L +
1
2

L(L − 1) ≥ n + 1 > K

additional shortcuts being inserted. This is a contradiction and thus ei+1 cannot be contracted
before ei. �

Lemma 6: Suppose ≺ is an order on V ′, such that H(G′,≺) contains at most K shortcuts. Then
the special vertices s and t get contracted before the vertex ω in the final gadget F.

P
Assume the contrary, i.e. that α ∈ {s, t} gets contracted after ω. Further let α′ ∈ {s, t} with α′ , α.
Partition the pairs (xr, yr) of vertices in F, such that ω ≺ xr or ω ≺ yr for all 1 ≤ r ≤ L and such
that xr, yr ≺ ω for all L + 1 ≤ r ≤ n + 2. Now consider the following contraction orders:

1. yr ≺ xr, ω, α

(xr, yr, ω) is a unique shortest path of length 2 between xr and ω. Contraction of yr before
xr, ω and α therefore inserts an additional edge {xr, ω} into the hierarchy.

2. xr ≺ yr, ω, α

(α, xr, yr) is a unique shortest path and thus contraction of xr before yr, ω and α results in an
additional edge {α, yr}.
Note that (α′, xr, yr) is also a unique shortest path, but we made no assumptions whether α′
is already contracted or not and hence do not consider possible further edge insertions.

Contraction of xr and yr before α and ω inserts in any case at least one additional edge into the
hierarchy. Since there are n+2−L pairs (xr, yr) that get both contracted beforeω, these contractions
insert at least n + 2 − L additional edges into the hierarchy.

Let zs for 1 ≤ s ≤ L be the vertex zs ∈ {xs, ys} that is a neighbour of ω when ω gets contracted.
For distinct zs, zr the path p = (zs, ω, zr) has length at most 4. As any path (zs, α, zr) or (zs, α

′, zr)
has length at least 10m, p is a unique shortest path. Contraction of ω before zs, zr therefore inserts
an additional shortcut {zs, zr}. As there are 1

2 L(L − 1) such pairs {zs, zr}, contraction of ω inserts at
least 1

2 L(L − 1) shortcuts.

Altogether, contraction of ω before α results in at least

n + 2 − L +
1
2

L(L − 1) > K

additional shortcuts being inserted. This is a contradiction and thus α ≺ ω. �

Lemma 7: Suppose ≺ is an order on V ′, such that H(G′,≺) contains at most K shortcuts. Then
the special vertex t gets contracted after all v ∈ V .

P
Assume the contrary and let v0 ∈ V be a vertex with t ≺ v0. By Lemma 6 the vertex t gets
contracted beforeω and thus we may assume thatω is still present when t gets contracted. Consider
the final gadget F and partition the pairs (xr, yr) of vertices in F, such that t ≺ xr or t ≺ yr for all
1 ≤ r ≤ L and such that xr, yr ≺ t for all L ≤ r ≤ n + 2. Now consider the following contraction
orders:

1. yr ≺ xr, t, ω
(xr, yr, ω) is a unique shortest path of length 2 between xr and ω. Contraction of yr before
t, ω and xr therefore inserts an additional edge {xr, ω} into the hierarchy.

16



3.2. Hardness Results 17

2. xr ≺ yr, t, ω
(t, xr, yr) is a unique shortest path of length 5m + 1 and thus contraction of xr before t, ω and
yr results in an additional edge {t, yr}.

Contraction of xr and yr before t hence inserts at least one additional edge into the hierarchy. As
there are n + 2 − L pairs (xr, yr), such that both xr and yr get contracted before t, the contractions
of these pairs inserts at least n + 2 − L additional edges into the hierarchy.

For 1 ≤ r ≤ L now let zr be the vertex zr ∈ {xr, yr} that is adjacent to t, when t gets contracted. Now
let p be p = (v0, t, xr) if zr = xr and p = (v0, t, xr, yr) otherwise. We consider possible shortest
paths in G′ between v0 and zr.

1. If zr = xr there is the path pr = (v0, t, xr) and if zr = yr there is the path p′r = (v0, t, xr, yr).
The paths pr and p′r have length at most 11

2 m + 1.

2. If zr = xr there may additionally exist the path qr = (v0, ei, s, xr) for some edge-vertex ei and
if zr = yr there may exist the path q′r = (v0, ei, s, xr, yr). The paths qr and q′r have length at
least 8m + i which is greater than 11

2 m + 1.

Hence we may conclude that p has length at most 5m + 1
2 m + 1 and is a unique shortest path. Since

contraction only preserves distances and does not create new shortest paths, p = (v0, t, zr) is a
unique shortest path when t gets contracted, too. Contraction of t therefore results in the insertion
of an additional shortcut {v0, zr}. As there are L such neighbours zr of t, contraction of t inserts at
least L additional edges.

Altogether contraction of v after t results in n + 2 − L + L > K additional shortcuts, which is a
contradiction. �

Lemma 8: Suppose ≺ is an order on V ′, such that H(G′,≺) contains at most K shortcuts. Then
all edge-vertices ei ∈ E get contracted before s.

P
Assume the contrary, i.e. that there is some edge-vertex ei ∈ E that gets contracted after s. Con-
sider the final gadget F and partition the pairs (xr, yr) of vertices in F, such that for all 1 ≤ r ≤ L
it is s ≺ xr or s ≺ yr and such that for all L + 1 ≤ r ≤ n + 2 it is xr, yr ≺ s. By Lemma 6 s
gets contracted before ω and thus xr ≺ s and yr ≺ s imply xr ≺ ω and yr ≺ ω respectively. Now
consider the following contraction orders.

1. yr ≺ xr, s, ω
(xr, yr, ω) is a unique shortest path of length 2 between xr and ω. Contraction of yr before
s, ω and xr therefore inserts an additional edge {xr, ω} into the hierarchy.

2. xr ≺ yr, s, ω
(s, xr, yr) is a unique shortest path of length 5m + 1

8 + 1 and thus contraction of xr before s, ω
and yr results in an additional edge {s, yr}.

Contraction of xr and yr before s hence inserts at least one additional edge into the hierarchy. As
there are n + 2 − L pairs (xr, yr), such that both xr and yr get contracted before s, the contractions
of these pairs inserts at least n + 2 − L additional edges into the hierarchy.

For 1 ≤ r ≤ L let zr be the vertex zr ∈ {xr, yr} that is adjacent to s, when s gets contracted. The
path p = (ei, s, zr) has length at most 6m + i + 1

8 + 1, while the path p′ = (ei, u, t, zr) in G′, where
u is some vertex u ∈ V , has length at least 7m + 1

2 m. For p is a unique shortest path in G′, p is
a unique shortest path, when s gets contracted, too. Contraction of s therefore inserts a shortcut
{ei, zr} into the hierarchy. As there are L such vertices zr contraction of s results in the insertion of
at least L such shortcuts.

Altogether contraction of ei after s resulted in n + 2 − L + L > K additional shortcuts, which is a
contradiction. �
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18 3. Preprocessing Size

The above lemmas may be summarized by the following two simple observations:

(I) E gets contracted in our chosen order e1, . . . , em.

(II) V ≺ t and E ≺ s, that is whenever we encounter vertices v ∈ V or edge-vertices e ∈ E, we
may assume that the vertex t or the vertex s respectively are not contracted yet.

In the final step of this proof we will construct a vertex cover for the original graph G and prove
that it contains K vertices, if the contraction hierarchy of G′ contains K shortcuts. Furthermore we
will see that the vertex cover may be computed in polynomial time.

Lemma 9: Suppose ≺ is an order on V ′, such that the corresponding contraction hierarchy has K
shortcuts. Then there is a vertex cover C ⊂ V in G of size K, which can be computed in polynomial
time.

P
For each vertex v ∈ V that is incident to at least one edge in G let emin(v) be the first edge-
vertex in the fixed order e1, . . . , em that is incident to v, that is emin(v) = eM, where M = min{i :
ei is incident to v}. We partition the edges E of G in two disjouint sets E1 and E2 as follows:

E = {{u, v} ∈ E : emin(u) ≺ u or emin(v) ≺ v}︸                                             ︷︷                                             ︸
=E1

∪ {{u, v} ∈ E : u ≺ emin(u) and v ≺ emin(v)}︸                                               ︷︷                                               ︸
=E2

Note that in the contraction order described in Lemma 4, all edges of G were contained in E1. The
vertices v, such that emin(v) ≺ v were exactly those vertices that were in the given vertex cover
C ⊂ V . Now we define for each edge e ∈ E the cover vertex v(e) of e as follows:

v(e) =

u ∈ V incident to e in G, such that emin(u) ≺ u e ∈ E1

≺-maximal u ∈ V incident to e in G e ∈ E2

Note that, given the order ≺ and an edge e ∈ E, it is possible to compute v(e) in polynomial time.

Claim 1: C = {v(e) : e ∈ E} is a vertex cover in G.

Let e = {u, v} ∈ E. Then v(e) = u or v(e) = v by definition of the cover vertex v(e).

Claim 2: C = {v(e) : e ∈ E} has size at most K.

As there are at most K shortcuts in the contraction hierarchy, it suffices to show that there is an
injective mapping M : C → S , where S is the set of shortcuts. We will construct this mapping M
on v(E1) by assigning to each vertex v = v(e) ∈ v(E1) a shortcut {s, v}. Furthermore M on v(E2)
will be given by assigning a shortcut {t, e} to each vertex v = v(e) ∈ v(E2).

Observe that v(E1) and v(E2) are disjoint, as u ∈ v(E1)∩ v(E2) would imply emin(u) ≺ u ≺ emin(u).
Since the shortcuts assigned to v ∈ v(E1) and v ∈ v(E2) are of different kind, it is clear that
M : C → S is well-defined and injective on C = v(E1) ∪ v(E2), if it is well-defined and injective
on v(E1) and v(E2).

First consider a vertex v = v(e) ∈ C with e ∈ E1. Then e = {u, v} for some other vertex u ∈ V . The
vertex v gets, by definition of E1, contracted after ei = emin (v). As v and ei are not contracted yet,
the vertices s and t are – by Observation (II) – also present, when ei gets contracted. Now consider
possible paths between s and v in G′.

1. The path p = (s, ei, v) has length 3m + i. For any other e j the path (s, e j, v) has length 3m + j
and since ei = emin (v) the path p is a unique shortest path among the paths (s, e j, v).

2. For some vertex u , v and some edge-vertex e j , ei the path p = (s, e j, u, t, v) has length
4m + j, which is greater than 3m + i.

18



3.2. Hardness Results 19

3. The path p = (s, xr, t, v), where xr is a vertex of the final gadget F, has length 10m + 5
8 .

As these paths are all relevant paths between s and v in G′, p is a unique shortest path in G′
between s and v and therefore a unique shortest path, when ei gets contracted. Thus contraction
of ei inserts an additional edge {s, v} into the hierarchy and we let M(v) = {s, v}. Note that for
v, v′ ∈ v(E1), M(v) = M(v′) implies v = v′, i.e. M is injective on v(E1).

Finally we have to account for the vertices v(e) with edges e ∈ E2. Let u, v be the vertices incident
to e in G – or equivalently adjacent to e in G′. By definition of E2, the vertices u and v get
contracted before emin(u) and emin(v) respectively. In particular both of them get contracted before
e itself. By Observation (II) the vertices s and t are not contracted, when u or v get contracted.
Consider the paths pu = (t, u, e) and pv = (t, v, e), each of length 3m. Apart from pu and pv the
only relevant path between t and e is p′ = (t, xr, s, e), where xr is some vertex of the final gadget
F. The length of p′ is greater than 10m and thus pu and pv are shortest paths.

Without loss of generality let u ≺ v. In particular this implies v(e) = v. When v gets contracted,
u and the path pu are already contracted and pv is a unique shortest path. Contraction of v hence
inserts a shortcut {t, e} into the hierarchy. In this case we let M(v) = {t, e}. Observe that M is
injective on v(E2), as M(v(e)) = M(v(e′)) implies e = e′ and thus v = v′.

Furthermore, given the order ≺ the set C = {v(e) : e ∈ E} is computable in polynomial time, as
each v(e) is computable in polynomial time. �

This finishes the proof of Theorem 1, as G′ is constructible from G in polynomial time and
Lemma 4 and Lemma 9 imply that G has a vertex cover of size at most K if and only if G′ admits a
contraction hierarchy with at most K shortcuts. Additionally, there is, by Lemma 9, a polynomial-
time computable function g that maps a graph G and an order ≺ on V ′ to a vertex cover C of G,
such that ifH(G′,≺) contains K shortcuts, then |C| ≤ K. Thus it appears that the above reduction
is actually a P-reduction from Vertex Cover to CHPS. Furthermore, for any ρ-approximation A
of CHPS, g(G,A(G′)) is a ρ-approximation for Vertex Cover. Hence, Theorem 2 follows from
the below-mentioned results.

Theorem (Papadimitriou and Yannakakis [PY88]): Vertex Cover on graphs with bounded de-
gree is APX-complete.

This theorem implies that CHPS is APX-hard. Furthermore there is a tight bound on approxima-
tion ratios for Vertex Cover due to Håstad.

Theorem (Håstad [Hås01]): For any ε > 0 it is NP-hard to approximate Vertex Cover within
7
6 − ε.

Theorem 2 implies, that there can be no PTAS for CHPS in the general case, unless P = NP.
However, the graphs occuring in applications are often of very special kind and it is not clear
whether the lower bound of 7

6 holds also for these restricted graph classes. In road networks, for
example, the vertex degree is bounded by some small constant, but the above reduction works only
with vertices of very high degree. In particular there might even exist a PTAS for these restricted
cases.
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4. Searchspace Size

In this chapter we investigate the searchspace size of contraction hierarchies, i.e. the number of
vertices that get settled during a shortest-path query on a contraction hierarchy H. For brevity
and simplicity we consider only unidirectional Dijkstra’s search, that is only one direction of the
bidirectional query in contraction hierarchies. Observe that, if u ≺ v and there is a directed path
from u to v in H, then v will eventually get settled in Dijkstra’s algorithm with source vertex u. As
distH(u, v) = ∞, if and only if there is no directed path from u to v in H,

−−→VH(u) = {v ∈ V : u ≺ v and distH(u, v) < ∞}
is the set of settled vertices during Dijkstra’s algorithm with source vertex u in the hierarchy H.
Consequently VH(u) = |−−→VH(u)| will be regarded as a measure for the number of settled vertices
during that search and

V(H) =
∑
u∈V
VH(u)

as a measure for the average searchspace size. If it is clear from the context, which hierarchy H
is meant, we also write

−→V and V instead of
−−→VH and VH . The following lemma is an important

observation and the key result for all lower bounds that will be shown below.

Lemma 10: Let G = (V, E) be a connected, undirected graph, ≺ an order on V and H = H(G,≺).
Further let v be ≺-maximal and assume v to be separating in G. Denote by Gi = (Vi, Ei) the
components of G − {v}.

(i) Then v is separating in H and for each Gi there is a component Hi of H − {v} with vertices
Vi.

(ii) If there is only a single edge {u, v} ∈ E such that u ∈ Vi, then Hi = H(Gi,≺).

(iii) If all Gi fulfill the requirements of (ii), then

V(H) = n +

d∑
i=1

V(Hi)

P
(i) Assume that there is an edge (x, y) in H, where x ∈ Vi and y ∈ V j for i , j. We may choose

(x, y) such that x is ≺-minimal with the property that there are edges (x, a), (x, b) in H with
a ∈ Vi, b ∈ V j, i , j. Note that (x, y) has to be a shortcut, since otherwise x and y are
vertices of the same Gi. Hence there is a vertex z, whose contraction led to the insertion of
(x, y). That means z ≺ x, z ≺ y and there are edges (z, x) and (z, y) in H. As x was chosen
≺-minimal it follows that (z, x), (z, y) have their endpoints in the same Vi, thus x and y belong
to the same Gi, which is a contradiction.
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v

G′

x

y

Figure 4.1: A counterexample for Lemma 10 (ii) in the general case. If all edge-lengths are chosen
to be 1, then the shortcut (x, y) gets inserted intoH(G′,≺) but not into the hierarchyH(G,≺).

(ii) If there is only a single edge {u, v} ∈ E such that u ∈ Vi, then there are no simple paths
(u, v,w) with both u,w ∈ Vi. In particular this implies that there is no difference between
contraction of Gi as a separate graph and contraction of Gi as a component of G, as there are
no paths via v between vertices of Gi. Hence Hi = H(Gi,≺).

(iii) Suppose there is a vertex u ∈ V with v <
−−→VH(u). Without loss of generality let u be the ≺-

maximal such vertex. Then there are no edges (u,w) in H, as otherwise v ∈ −−→VH(w) ⊂ −−→VH(u).
G is connected and hence we may choose a path p = (u = x0, . . . , xr = v) in G. Then p
is also contained in H, but xi ≺ u for all 1 ≤ i < r. A simple inductive argument over the
hoplength of p now shows that there is a shortcut (u, v) in H, which contradicts v <

−−→VH(u).

In particular, this implies that VH(u) = VHi(u) + 1 for all u ∈ Vi, as Hi is a component of
H − {v}. Let ni = |Vi|, then

V(H) = VH(v) +
∑

i

∑
u∈Vi

VH1(u) + 1

= 1 +
∑

i

V(Hi) + ni

= n +
∑

i

V(Hi)

which finishes this proof. �

Remark: Statement (ii) in the above lemma is not true in general, as one may see in Figure 4.1.
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4.1. Sorting Numbers 23

4.1 Sorting Numbers
Our analysis of average searchspace makes use of sorting numbers [Slo09], which are given by
the maximum number of comparisons for sorting n elements by binary insertion. In this paragraph
we recall the definition and some properties of sorting numbers before we return to Contraction
Hierarchies.

Definition 1 (Sorting numbers): For n ∈ N the sorting number B(n) is given by

B(n) =

n∑
i=1

dlog ie

Lemma 11: Let n ∈ N, then

B(n) = B
(⌊n

2

⌋)
+ B

(⌈n
2

⌉)
+ n − 1

P
We do induction on n.

n = 1

B(1) = B (0) + B (1) + 1 − 1 = B
(⌊

1
2

⌋)
+ B

(⌈
1
2

⌉)
+ 1 − 1

n > 1 By induction hypothesis we get

B(n) = B(n − 1) + dlog ne = B
(⌊

n − 1
2

⌋)
+ B

(⌈
n − 1

2

⌉)
+ dlog ne + n − 2

If n is even, then
⌊

n−1
2

⌋
= n

2 − 1 and
⌈

n−1
2

⌉
= n

2 . Furthermore dlog ne = dlog n
2e + 1 and thus

we get

B(n) = B
(n
2
− 1

)
+ B

(n
2

)
+ dlog ne + n − 2

= B
(n
2

)
+ B

(n
2

)
+ n − 1

If n is odd, then
⌈

n−1
2

⌉
= n−1

2 =
⌊

n−1
2

⌋
. Additionally dlog ne = dlog n+1

2 e + 1 and we get

B(n) = B
(
n − 1

2

)
+ B

(
n − 1

2

)
+

⌈
log

n + 1
2

⌉
+ n − 1

= B
(
n − 1

2

)
+ B

(
n + 1

2

)
+ n − 1

This finishes the proof. �
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24 4. Searchspace Size

Lemma 12: Let n, n1, n2 ∈ N such that n1 + n2 = n, then

B(n1) + B(n2) ≥ B
(⌊n

2

⌋)
+ B

(⌈n
2

⌉)
P
Without loss of generality let n1 ≥ n2. As n1 + n2 = n this implies in particular n1 ≥

⌈
n
2

⌉
and⌊

n
2

⌋
≥ n2. Now this lemma follows directly from the monotonicity of log and the definition of

sorting numbers:

B(n1) + B(n2) =

n1∑
i=1

⌈
log i

⌉
+

n2∑
i=1

⌈
log i

⌉
=

d n
2e∑

i=1

⌈
log i

⌉
+

n1∑
i=d n

2e+1

⌈
log i

⌉
+

n2∑
i=1

⌈
log i

⌉

≥ B
(⌈n

2

⌉)
+

n2+n1−d n
2e∑

i=n2+1

⌈
log i

⌉
+

n2∑
i=1

⌈
log i

⌉
= B

(⌈n
2

⌉)
+ B

(⌊n
2

⌋)
which was to show. �

There is also a nice closed formula for B(n). In particular, it implies B(n) = O(n log n), which is of
interest for our analysis of average searchspace size.

Lemma 13: Let n ∈ N, then

B(n) = n
⌈
log n

⌉ − 2dlog ne + 1

P
We do induction on n. If n = 1, the equality may be easily checked.
If n > 1, then

B(n) = B(n − 1) +
⌈
log n

⌉
= (n − 1)

⌈
log n − 1

⌉ − 2dlog n−1e + 1 +
⌈
log n

⌉
If

⌈
log n − 1

⌉
=

⌈
log n

⌉
, the claimed equality follows immediately. Now

⌈
log n − 1

⌉
<

⌈
log n

⌉
if

and only if n = 2k + 1 for some k ∈ N. In that case it is

B(n) = (n − 1)
⌈
log n − 1

⌉ − 2dlog n−1e + 1 +
⌈
log n

⌉
= (n − 1) · k − 2k︸︷︷︸

=(n−1)

+1 + k + 1

= nk − (n − 1) + 2

= nk + n − 2(n − 1)︸   ︷︷   ︸
=2·2k

+1

= n(k + 1) − 2k+1 + 1

= n
⌈
log n

⌉ − 2dlog ne + 1

That finishes the proof. �
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4.2. Searchspace Size of Paths 25

4.2 Searchspace Size of Paths
In this paragraph we account contraction hierarchies with optimal searchspace size for paths.
While these results may not seem relevant for practical purposes, they provide insight into some
theoretical aspects, though. It will turn out that the average searchspace size in a contraction hi-
erarchy of a path is closely linked to the sequence of sorting numbers. We will show that for an
optimal contraction hierarchy H of a path of n vertices,V(H) = O(n log n). More specifically, the
minimum average searchspaceV(pn) of a path pn with n vertices is exactly B(n + 1), which is by
Lemma 13 O(n log n).

Lemma 14: Let pn be the path consisting of n vertices. ThenV(pn) ≥ B(n + 1), where B(n) is the
n-th sorting number as defined above.

P
We proof this lemma by induction on the number n of vertices. If n = 1, there is nothing to show,
as B(2) = 1

Now let n > 1. Furthermore let ≺ be an order on the vertices V(pn) of pn and let H = H(pn,≺).
Finally let v be the ≺-largest vertex in H. Removal of v splits H into two graphs H1 and H2
of n1 and n2 vertices. These graphs Hi are by Lemma 10 contraction hierarchies of pn1 and pn2

respectively. FurthermoreVHi(v) = VH(v) − 1 for all v ∈ V(Hi) and thus

V(H) = V(H1) + n1 +V(H2) + n2 + 1

By induction hypothesis we have V(Hi) ≥ B(ni + 1). Hence we may apply Lemma 12 and
Lemma 11 to obtain

V(H) ≥ B
(⌊

n + 1
2

⌋)
+ B

(⌈
n + 1

2

⌉)
+ n

= B(n + 1)

which was to show. �

Furthermore it is clear from the above proof that the lower bound B(n + 1) is tight. Hence we can
derive the recursive Algorithm 3 to compute a searchspace-optimal contraction hierarchy of pn.

Algorithm 3: OPO(p)
Input : Path p = (V, E) of n vertices
Output: Order on V , such that the corresponding contraction hierarchy H has average

searchspaceV(H) = B(n + 1)
if n = 0 then

return 〈 〉
else

Pick vertex v ∈ V separating p into paths p1 and p2 of length
⌊

n−1
2

⌋
and

⌈
n−1

2

⌉
return OPO(p1) ◦ OPO(p2) ◦ 〈v〉

end

Note that the algorithm has runtime O(n), if we can pick the vertex v and compute the paths p1
and p2 in constant time. If the path pn is encoded by the number of vertices n and for all 1 ≤ i < n
vertex i is implicitly connected to vertex i + 1, it is clearly possible to choose the vertex v and
compute p1 and p2 in constant time. But as n can be encoded in dlog ne bits, the algorithm then
has exponential runtime in the input size. However, if pn is represented by a standard graph data
structure like adjacency lists, we may precompute such an assignment of integers to vertices in
time O(n) and the algorithm has linear runtime in the input size.
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26 4. Searchspace Size

If one considers the algorithm again, one can even guess what searchspace size has in common
with binary insertion, where the sequence B(n) has its origin. For each vertex u ∈ pn the vertices
w such that u ≺ w and distH(u,w) < ∞ are exactly those vertices that u would be compared with,
when being inserted into the sequence by binary insertion. The central vertex v is the ≺-largest
vertex in every searchspace and binary insertion always starts with this vertex. Furthermore if u
occurs in the first half of pn the next comparison in binary insertion would be with the central
vertex of the first half of pn, which is actually the second ≺-largest vertex in the searchspace of u.

Eventually we turn to the minimization of maximal searchspace in contraction hierarchies of paths.

Lemma 15: Let pn be the path consisting of n vertices. Then

max
v∈V V(v) ≥ dlog n + 1e

Furthermore this bound is tight, i.e. there is a contraction hierarchy of pn, such that
maxv∈V V(v) = dlog n + 1e.
P
We do induction on n. If n = 1, pn consists of a single vertex v only and V(v) = 1. Thus
maxV(v) =

⌈
log n + 1

⌉
.

If n > 1, let ≺ be an order on the vertices V(pn) of pn and let H = H(pn,≺). Further let v be the
≺-maximal vertex in H and let H1 and H2 be the two components of H − {v}. As in the proof of
Lemma 14 denote by n1 and n2 the number of vertices of H1 and H2, respectively. By Lemma 10
H1 and H2 are contraction hierarchies of pn1 and pn2 and the induction hypothesis implies

max
v∈V(Hi)

VHi(v) ≥ ⌈
log ni + 1

⌉
AsVH(v) = VHi(v) + 1 and since max{n1, n2} ≥

⌈
n−1

2

⌉
we get

max
v∈V VH(v) = max

{
max

v∈V(H1)
VH(v), max

v∈V(H2)
VH(v),VH(v)

}
≥ max

{
1 +

⌈
log

(⌈
n − 1

2

⌉
+ 1

)⌉
, 1

}
≥

⌈
log 2 + log

n + 1
2

⌉
=

⌈
log n + 1

⌉
Furthermore, by induction hypothesis, the lower bound is tight for H1 and H2 and we may assume
that

max
v∈V(Hi)

VHi(v) =
⌈
log ni + 1

⌉
If we choose the ≺-largest vertex v in a such a way that n1 =

⌈
n−1

2

⌉
and n2 =

⌊
n−1

2

⌋
, we get

max
v∈V VH(v) = 1 +

⌈
log

⌈
n − 1

2

⌉
+ 1

⌉
= 1 +

⌈
log

⌈
n + 1

2

⌉⌉
Now

1 +

⌈
log

⌈
n + 1

2

⌉⌉
>

⌈
log n + 1

⌉
⇔ 2

⌈
n + 1

2

⌉
> n + 1 and 2

⌈
n + 1

2

⌉
> 2k and n + 1 ≤ 2k for some k ∈ N

⇔ n even and n + 2 > 2k and n + 1 ≤ 2k for some k ∈ N

This can obviously not happen, since n > 2k − 2 and n ≤ 2k − 1 which implies n = 2k − 1, but n
has to be even. Therefore the bound is tight for n, which finishes the proof. �
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4.3. Searchspace Size of Trees 27

The proof already shows that Algorithm 3 returns an order on the vertices of pn for which the
corresponding contraction hierarchy has maximal searchspace size maxv∈V V(v) = dlog n + 1e.
In particular this implies that both the optimum average and the optimum maximal searchspace
size are reached in the same contraction hierarchy, which makes the comparison of these two
values quite interesting. On the one hand the searchspace size of no vertex exceeds dlog n + 1e
and on the other hand the sum of all searchspace sizes is by Lemma 13 (n + 1)

⌈
log n + 1

⌉ − O(n).
Thus it appears, that in the optimal contraction hierarchy, the searchspace size of most vertices is
approximately log n + 1.

4.3 Searchspace Size of Trees

In order to study the searchspace of contraction hierarchies for cycle-free graphs it is convenient
to change the perspective. Instead of counting the vertices V(u) that get settled during Dijkstra’s
algorithm with start vertex u, we count for each vertex u the number of vertices v with u ∈ −→V(v).
This change of perspective does of course not alter the overall measure of searchspace

V(H) =
∑
u∈V
V(u) =

∑
u∈V
|−→V(u)| =

∑
u∈V
|{v ∈ V : v ∈ −→V(u)}| =

∑
v∈V
|{u ∈ V : v ∈ −→V(u)}|

If one studies this characterization of searchspace on cycle-free graphs, one naturally deals with a
family T of trees, the definition of which is given here.

Definition 2: Let T = (V, E) be an unrooted tree and ≺ be an order on V . The set T (T,≺) is
defined recursively:

(i) If T consists of one single vertex, then T (T,≺) = {T }.
(ii) If T has more than one vertex let v be the ≺-largest vertex and let d = d(v) be the degree of

v in T . Then v separates T into d subtrees T1, . . . ,Td of T . In this case we let

T (T,≺) = {T } ∪
d⋃

i=1

T (Ti,≺i)

where ≺i is the order ≺ restricted to V .

If it is clear from the context, which order ≺ or which tree T is meant, we simply write T ,T (T ) or
T (≺).

As each vertex v of T is the root of one tree in T there are exactly n elements in T . The following
lemma shows that T stands in very close relation to our model of searchspace size.

Lemma 16: Let T = (V, E) be an unrooted tree, ≺ an order on V and H = H(T,≺). Then

V(H) =
∑

t∈T (T,≺)

|V(t)|

where V(t) denotes the set of vertices of the tree t.

P
The equality can easily be shown by induction on n = |V |. If n = 1, there is nothing to show. If
n > 1 let v be the ≺-largest vertex and d = deg(v) be the degree of v in T . The vertex v separates
T into trees T1, . . . ,Td, for which we denote the restriction of ≺ on V(Ti) by ≺i and the induced
hierarchies by H1, . . . ,Hd.
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28 4. Searchspace Size

As v occurs in
−→V(u) for all u ∈ V(T ), we getV(H) = 1 +

∑d
i=1V(Hi) + |V(Hi)| and thus

V(H) = 1 +

d∑
i=1

V(Hi) + |V(Hi)|

= n +
∑

t∈T (Ti,≺i)

|V(t)|

=
∑

t∈T (T,≺)

|V(t)|

which finishes the proof. �

The problem of minimizing the sum
∑ |V(t)| is an interesting problem on its own, which might

for example have applications in tree layout algorithms. Unfortunately neither polynomial-time
algorithms nor hardness results are known to the author and attempts to obtain such failed. Thus
we do not further pursue this track but prove a lower bound for average searchspace size, which is
a straight-forward generalization of the lower bounds for paths.

Intuition suggests, that if a tree T contains a simple path p of length l, then the searchspace size
is at least B(l + 1). Furthermore, all n − l vertices that are not in p have searchspace at least one
which results in a lower bound of B(l + 1) + n − l.

Lemma 17: Let T = (V, E) be an unrooted tree with diameter ∆T and let H be a contraction
hierarchy of T . Then

V(H) ≥ B(∆T + 2) + n − 1 − ∆T

P
The inductive proof works completely analogous to the one of Lemma 14. If n = 1, there is
nothing to show, as B(2) + 1 − 1 − 0 = 1

Now let n > 1. If T = (V, E) has diameter ∆T , there is a simple path pk consisting of k = ∆T + 1
vertices in T . Let ≺ be an order on V and v ∈ V be ≺-maximal. As T is acyclic, v is separating in
G and H. We now distinguish the cases v ∈ pk and v < pk.

1. If v < pk, pk is contained in a component of H − {v} and a component of G − {v}. Let H1 and
G1 be these particular components and denote the further components of H by H2, . . . ,Hd.
Further let ni denote the number of vertices in Hi. Then the component G1 of G − {v} has
diameter at least ∆T and by induction hypothesis and Lemma 10 we get

V(H1) ≥ B(∆T + 2) + n1 − 1 − ∆T

For i , 1 we have the trivial inequalityV(Hi) ≥ ni. Moreover, as T is connected, Lemma 10
impliesVH(u) = VHi(u) + 1 and thus

V(H) = VH(v) +V(H1) + n1 +

d∑
i=2

V(Hi) + ni

≥ B(∆T + 2) − 1 − ∆T + 1 +

d∑
i=1

2ni

= B(∆T + 2) − 1 − ∆T + n + (n − 1)

≥ B(∆T + 2) + n − 1 − ∆T

2. If on the other hand, v ∈ pk, removal of v splits pk into two paths p1, p2 of lengths k1, k2
such that k1 + k2 = k − 1 = ∆T . For i = 1, 2 let pi be contained in the components Hi of
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4.3. Searchspace Size of Trees 29

H − {v} and Gi of G − {v}. As above denote by H3, . . . ,Hd the further components of H − {v}
and by ni the number of vertices in Hi. For i = 1, 2, Gi has diameter at least ki − 1 and by
Lemma 10 and the induction hypothesis we get

V(Hi) ≥ B(ki + 1) + ni − ki

For i > 2 we use again the inequalityV(Hi) ≥ ni. Using Lemma 12 and Lemma 11 we get

V(H) = VH(v) +V(H1) + n1 +V(H2) + n2 +

d∑
i=3

V(Hi) + ni

≥ B(k1 + 1) + B(k2 + 1) − k1 − k2 + 1 +

d∑
i=1

2ni

≥ B
(⌈

k1 + k2 + 2
2

⌉)
+ B

(⌊
k1 + k2 + 2

2

⌋)
− ∆T + n + (n − 1)

=

(
B

(⌈
∆T + 2

2

⌉)
+ B

(⌊
∆T + 2

2

⌋)
+ ∆T + 1

)
− ∆T − 1 − ∆T + n + (n − 1)

= B (∆T + 2) + n − 1 − ∆T + (n − ∆T − 1)︸         ︷︷         ︸
≥0

This finishes the proof. �

Corollary: Let T = (V, E) be a connected, acyclic graph. There is a contraction hierarchy H of
T , such thatV(H) = B(∆T + 2) if and only if T is a path.

P
IfV(H) = B(∆T + 2) we get B(∆T + 2) ≥ B(∆T + 2) + n − 1 − ∆T and thus ∆T + 1 ≥ n, which is
only possible if T is a path. �

By Lemma 13 it is B(∆T + 2) + n − 1 − ∆T = O(∆T log ∆T + n). This lower bound for searchspace
size in trees is not that tight as one might wish. In the proof no assumptions about the components
Hi for i ≥ 2 are made and effectively, all vertices that are not on the path pk of hoplength ∆T

are completely ignored. Thus there remains room for improvement. One might use stronger
assumptions on the structure of T or provide a better analysis of the vertices not on pk to get better
lower bounds.

Furthermore it seems straightforward to generalize these lower bounds to arbitrary graphs. How-
ever, the author was not successful with this attempt and it seems that another proof technique or a
generalization of Lemma 10 is necessary to obtain such lower bounds. The difficulty with arbitrary
graphs, is that edges or vertices cannot be removed as easy as in acyclic graphs, for the removal of
an edge or vertex may introduce shortcuts, which let the searchspace grow in an uncontrolled way,
even if the vertex or edge in question is at the top or bottom of the hierarchy.

29





5. Integer Linear Programs for Optimal
Contraction Hierarchies

It is possible to compute hierarchies with optimal searchspace by 0/1-integer linear programs. This
section provides one such 0/1-integer linear program.

The first attempt to obtain a linear program for optimal search space in contraction hierarchies
was to abstract from the arcs in the hierarchy and somehow express the overall searchspace in-
dependent of the presence of single edges. However this approach was not very fruitful, as the
searchspace seems to be intimately connected to the presence of single arcs. Instead of further
pursuing that strategy we explicitly model the process of vertex contraction and shortcut insertion.
Given an order ≺ on the vertices V we decide for each possible arc (u, v) whether (u, v) is present
in the hierarchy corresponding to ≺ or not. From this information the searchspace

−→V(u) is easily
reconstructible.

The variables of the linear program can be subdivided into four different kinds. For each two
vertices u, v ∈ V our 0/1-integer linear program has the following variables. There are two order-
variables xuv and xvu modeling an order ≺ on the vertices, where xuv = 1, if and only if u ≺ v.
Furthermore there are two edge-variables euv and evu, where euv = 1, if and only if there is an arc
(u, v) in the hierarchy H corresponding to the order ≺. Finally there are searchspace-variables suv

and svu, where suv = 1, if and only if v is in the searchspace of u in the hierarchy H.

Formally the set of variables of our linear program is given by

{xuv : u, v ∈ V} ∪ {euv : u, v ∈ V} ∪ {suv : u, v ∈ V}

The constraints can again be divided into three different types. To enforce that each order ≺ on
V induced by the order-variables is well-defined, there is a set of order-constraints. Additionally
there are edge-constraints that relate the edge-variables with the order ≺ induced by the order-
variables. Finally there are searchspace-constraints that guarantee that suv is 1 if and only if
v ∈ −→V(u).

The order ≺ on the vertices V expressed by the order-variables xuv has to be reflexive, antisymmet-
ric, transitive and total. These requirements can be expressed by the following constraints:

xuu = 1 for all u ∈ V Reflexivity

xuv + xvu ≤ 1 for all distinct u, v ∈ V Antisymmetry

xuv + xvw − xuw ≤ 1 for all u, v,w ∈ V Transitivity

xuv + xvu ≥ 1 for all u, v ∈ V Totality
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32 5. Integer Linear Programs for Optimal Contraction Hierarchies

Assume for now, that for any solution of the linear program euv = 1 if and only if (u, v) is an arc in
the hierarchy corresponding to ≺. Then we can formulate the search-constraints as follows:

suu = 1 for all u ∈ V Each vertex u is contained in−→V(u)

suw + ewv − suv ≤ 1 for all u, v,w ∈ V v ∈ −→V(u) if there is some w ∈−→V(u) and an arc (w, v)

In order to express, whether the hierarchy corresponding to ≺ contains a specific arc (u, v) we
define for each three vertices u, v,w ∈ V an auxiliary shortcut-constant cuv(w), which indicates
whether w lies on a shortest path between u and v.

cuv(w) =

1 if w < {u, v} and w lies on a shortest path between u and v
0 otherwise

All values cuv(w) can obviously be precomputed in polynomial time. Finally we turn to the edge-
constraints, which are the most complicated part of the linear program. Recall that euv should be
1, if (u, v) is an arc in the hierarchy corresponding to ≺. This requirement can be expressed by the
following constraints:

euu = 0 for all u ∈ V No self-loops

euv + evu ≥ 1 for all edges {u, v} ∈ E Insert all edges of G

euv − xuv ≤ 0 for all distinct u, v ∈ V Do not insert arcs (u, v),
where u � v

euv + xvu +
∑
w∈V

cuv(w) · xuw ≥ 1 for all distinct u, v ∈ V Insert arc (u, v) if u ≺ v
and there is no shortest path
(u,w, v), such that u ≺ w

euv + cuv(w) · xuw ≤ 1 for all distinct u, v ∈ V and all w ∈ V Do not insert arc (u, v) if
there is some shortest path
(u,w, v), such that u ≺ w

Now we only have to specify the target function of this linear program. There are two possibil-
ities. If we optimize for minimal searchspace, the target function can be chosen as

∑
suv, while

minimization of
∑

euv solves the problem CHPS, as considered in Chapter 3. In the latter case
one could drop the searchspace-variables and searchspace-constraints, as they stand in no relation
to the target function. By construction it is clear that any optimal solution to the linear program
induces an optimal contraction hierarchy.

Lemma 18: Let G = (V, E) be an undirected graph with n = |V | vertices.

(i) There is a 0/1-integer linear program AV · x ≤ b with target function cT x = min, such
that the matrix AV has O(n2) columns and O(n3) rows and such that each minimal solution x
corresponds to a contraction hierarchy H of G with minimal average searchspace sizeV(H).

(ii) There is a 0/1-integer linear program AE · x ≤ b with target function cT x = min, such that
the matrix AE has O(n2) columns and O(n3) rows and such that each minimal solution x
corresponds to a contraction hierarchy H of G with a minimal number of shortcuts.
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6. Experiments

The above integer linear programs were implemented in Java using CPLEX [cpl] as black-box
solver for linear programs. Despite the power of today’s integer linear program solvers, there were
instances with only 50 vertices that took hours to solve. Especially highly symmetric graphs, i.e.
rectangular grid graphs or regular trees turned out to be hard. Thus, systematic experiments were
only carried out for very small instances, which hinders the interpretation of results, as it is hardly
possible to reason about asymptotic behaviour or impact of parameters. In particular, experiments
were conducted with two different types of random graphs.

1. Waxman graphs W were generated by choosing uniformly at random n ∈ {10, . . . , 20} points
in the unit square and inserting an edge {u, v} between the points u and v with probability
α · e−d(u,v)/β, where d(u, v) denotes the euclidean distance of the points u and v. Finally, to
make the graph connected, the largest component of the resulting graph was chosen. The
parameters α and β were chosen as α ∈ {0.1, 0.2, 0.3, 0.4} and β ∈ {1.0, 1.1, 1.2, . . . , 3.0}.

2. Trees T with n ∈ {10, . . . , 20} vertices were generated by the following procedure. Initially
T consists of n vertices and no edges. In each step two components of T and a vertex in each
component are chosen uniformly at random and an edge is inserted between those vertices.
This procedure is carried out, until the graph is connected.

In the following paragraphs we denote byV(G) always the minimum average searchspace size of
contraction hierarchies of the graph G.

Waxman Graphs

Waxman graphs are of geometric nature, in the sense that the parameter β governs the probability
of long edges. The behaviour of minimum average searchspace size on geometric graphs is of
special interest for most real-world applications, as many graphs are of geometric origin and fur-
thermore searchspace size is the main performance factor. Unfortunately our experiments indicate
little impact of the geometric structure of Waxman graphs on V. In particular, V seems to be
independent of the parameter β, as may be seen in Figure 6.1a. The author thinks, that the impact
of β should grow for large n, as the underlying geometry of the graph gains importance when the
graphs get larger. The parameter α however, has impact on the average searchspace size as can be
seen in Figure 6.1b. This seems quite natural, as higher values of α increase the overall probability
of edges in Waxman graphs and thus searchspace size grows.
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(a) Scatter plot of V(W) for Waxman graphs W with arbitrary α, β = 1 (blue dataset)
and β = 3 (red dataset)
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and α = 0.4 (red dataset)

Figure 6.1: Impact of parameters α and β onV(W) for Waxman graphs W.
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Figure 6.2: V(T ) for random trees T with increasing number of vertices.

Trees

Of special interest, with respect to this thesis, are experiments evaluating the lower bounds of
minimum searchspace size. In this paragraph we denote by B(T ) the lower bound for V(T ) of
Lemma 17. Recall that B(T ) = O(∆T log ∆T + n), where ∆T is the diameter of T . In order
to understand the quality of the lower bound B(T ) we consider two measures of deviation of
V(T ) from B(T ). The absolute deviation V(T ) − B(T ) of V(T ) from B(T ), the relative deviation
(V(T ) − B(T )) /B(T ) = V(T )/B(T )−1 ofV(T ) from B(T ). For simplicity we chooseV(T )/B(T )
as a measure of relative deviation.

Generally it appears thatV(T ) is growing linearly in n, as can be seen in Figure 6.2, which agrees
with the lower bound of O(∆T log ∆T + n). Furthermore the absolute deviationV(T )−B(T ) seems
to grow linearly in the number n of vertices in T . As B(T ) is also linear in n, this suggests that
V(T ) = O(B(T )). By contrast, the relative deviationV(T )/B(T ) depicted in Figure 6.3b indicates
that V(T )/B(T ) grows at least logarithmically with the number of vertices, which would imply
V(T ) = O(B(T ) · log n). The latter bound ofV(T ) = O(B(T ) · log n) seems more plausible, as we
already observed in the proof of Lemma 17 that there are n−∆T vertices of T that do not contribute
at all to B(T ).

Altogether these experiments suggest that there is some function f (n) < cn for some constant c,
such that V(T ) = O( f (n) · B(T )), which is a quite strong argument that the lower bound B(T ) is
nearly tight – even on arbitrary trees.
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Figure 6.3: Deviation ofV(T ) for random trees T from the lower bound B(T ) from Lemma 17.
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7. Conclusion

In this thesis contraction hierarchies are studied from a theoretical point of view. The author is
able to prove that it is NP-complete to determine, if a graph admits a contraction hierarchy with
only a given number of additional shortcuts. Additionally the corresponding optimization problem
of finding the contraction hierarchy with a minimal number of shortcuts is shown to be APX-hard.
Provided P , NP, the P-reduction used in that proof results in a lower bound of 7

6 for possible
approximation ratios, hence polynomial-time approximation schemes for this problem are very
unlikely to exist. However it remains open, whether approximation algorithms exist and even
polynomial-time approximation schemes might still exist for restricted graph classes.

Furthermore a simple model of search space in contraction hierarchies suited for theoretical work is
developed and two special cases of contraction hierarchies are examined with respect to this model.
Starting with these examinations it is then possible to derive lower bounds for the performance of
contraction hierarchies on paths and trees. It is shown that average searchspace size of O(n log n)
is optimal for paths and algorithms to compute contraction hierarchies with this searchspace size
are provided. Additionally, a lower bound of log n + 1 for maximal searchspace size in contraction
hierarchies of paths is given. The author further shows that O(∆ log ∆+n), where ∆ is the diameter,
is a lower bound for the average searchspace size in contraction hierarchies of trees. However, it is
not clear if and how these results generalize to arbitrary graphs, which seems to be an interesting
question for future work.

Theoretical investigation of contraction hierarchies is a rather young topic and thus there remain
many unanswered questions. It is still unproven – yet very likely – that computing search-space
minimal contraction hierarchies is NP-hard. The complexity of this very question for restricted
graph classes – like trees or planar graphs – remains open, too. Furthermore it is unknown whether
there are approximation or fixed parameter tractable algorithms for searchspace minimal contrac-
tion hierarchies. The challenging task of finding such algorithms has not been addressed at all in
this thesis.

Finally this work embeds in the broader framework of theoretical investigation of speedup tech-
niques for Dijkstra’s algorithm in general. There one is confronted with similar questions concern-
ing other techniques like Arc-Flags, ALT or Highway Node Routing. In [BCK+10] it is shown that
optimal preprocessing is NP-hard for these techniques, but there are neither algorithms with per-
formance guarantees nor impossibility results known to the author.
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