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Abstract

Graph clustering is concerned with identifying the group structure of networks.
Existing static methods, however, are not the best choice for evolving networks
with evolving group structures. We discuss dynamic versions of existing clus-
tering algorithms which maintain and modify a clustering over time rather than
recompute it from scratch. We developed an extensible software framework for
the evaluation of these algorithms, and present experimental results on real-world
and synthetic graph instances. Our focus on clustering quality, clustering smooth-
ness, and runtime. We conclude that dynamically maintaining a clustering on an
evolving graph is superior in terms of all criteria. We demonstrate that dynamic
algorithms are able to react quickly and appropriately to changes in the cluster
structure. Our results allow us to give sound recommendations for the choice of
an algorithm.
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Chapter 1

Introduction

Graph clustering, the partition of complex networks into natural groups, is an
active area of research. A variety of static clustering algorithms allows us to ef-
ficiently identify group structures. It is a current task to extend this knowledge
in order to deal with networks that change and evolve over time. We can base
this undertaking on the assumption that the effects of a single change of the graph
on the overall group structure are necessarily local. Large, global changes may
result as the sum of smaller changes, but they do not manifest suddenly. Ideally,
dynamic clustering algorithms will react to small, local changes with small, local
modifications of their previous work. Compared to static algorithms, there is ob-
viously the opportunity for significant runtime reduction, but also the opportunity
to cluster smoothly, i.e. to avoid abrupt changes to the clustering which might be
undesirable. The question arises whether this approach entails a significant trade-
off between the runtime and the quality of the clustering. The aim of this work
is to introduce several dynamic algorithms as well as a toolkit for their evalua-
tion, and then present an assessment of the benefits and tradeoffs of the dynamic
approach.

In the course of this work, we implemented a software framework which al-
lows us to apply clustering algorithms to dynamic graph instances, measuring and
comparing their performance in many respects. These instances include both real
world graphs and synthetic graphs generated according to a probabilistic model.

Before we discuss the clustering algorithms, we will review some preliminary
definitions. It is then necessary to specify what constitutes a ‘natural’ group, and
how well a given clustering represents this natural structure of the graph, which
leads to a number of quality indices. We also need to state formally what a ‘small’
change to a clustering is, leading to several distance measures. These are the main
theoretical tools for clustering evaluation. We will then discuss our data sources,
introduce our candidate algorithms in turn, and finally present and assess our
results.
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Insights gained from this work have been integrated into the paper Modularity-
Driven Clustering of Dynamic Graphs [GMSW], to which we refer the reader for
both a summary and further information on the topic.

u

v

u

v

Figure 1.1: Clustering with optimal modularity (Paragraph 1.2) before and after
the removal of the edge {u, v}

1.1 Preliminaries

Notation.

In this work we use Iverson notation where it is convenient. This means that
Formulas may contain bracketed logical statements which evaluate to one if the
statement evaluates to true. Note that multiplication of brackets results in the
conjunction of the logical statements.

Iverson

notation

Definition 1. Let P be a logical statement. Then

[P ] :=

{
1 P = true

0 P = false
(1.1.1)

For convenience we use the a short notation for extending and reducing sets as
well as replacing elements of the set.

Definition 2. Given a set A and elements e and e′, the following definitions hold:

A+ e := A ∪ {e} (1.1.2)

A− e := A \ {e} (1.1.3)

(1.1.4)
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Dynamic Graphs

A graph represents a network of entities (as nodes) and connections (as edges).
Throughout this work, the conventional notation for graphs is used.

GraphDefinition 3. A graph is a tuple G = (V,E) where V is the set of vertices. An
edge in E connects two vertices. The graph is a directed graph if the edges are
ordered pairs E ⊆ V × V or an undirected graph if the edges are unordered pairs
E ⊆

(
V
2

)
.

We use n = |V | and m = |E| as shorthand for the number of nodes and edges
in a graph. All graphs considered in this work are undirected. All graphs used for
the evaluation are simple graphs, excluding self-loops and multiple edges between
a pair of nodes. If there is an edge {u, v}, it is called incident to u and v, and the
nodes u and v are called adjacent. We will also occasionally refer to the set Ē of
non-adjacent nodes which is induced by E.

Ē := {{u, v} ∈
(
V
2

)
: {u, v} 6∈ E} (1.1.5)

degree
Definition 4. The degree of a node is the number of its incident edges.

deg(u) := |{{u, v}, v ∈ V }| (1.1.6)

weighted

graph

Definition 5. Let ω be a weight function

ω :

{
E → R
{u, v} 7→ x

(1.1.7)

Then G = (V,E, ω) is called a weighted graph.

Edges can carry a weight, which expresses the strength of the tie they represent;
for readability, the weight of an edge {u, v} as is written as ω(u, v) instead of
ω({u, v}). We consider both weighted and unweighted graphs. Although we make
the effort to distinguish weighted and unweighted case in following definitions,
note that the unweighted case can also be seen as a special weighted case where
∀{u, v} ∈ E : ω(u, v) = 1. If nothing else is said, the weight function is non-
negative by definition.

By extension, we also define a weight function for a set of edges (1.1.8), as well
as a single node, giving the total weight of its incident edges (1.1.9). This is a
generalization of a node’s degree. We use ωmax(E) to denote the maximum weight
of a set of edges.

ω(E) :=
∑
{u,v}∈E

ω(u, v) (1.1.8)

5



ω(u) :=
∑
{u,v}∈E

ω(u, v) (1.1.9)

In order to model the development of a network over time, a sequence of graphs
can be regarded as a dynamic graph.

dynamic

graph

Definition 6. A dynamic graph G = (G0, . . . , Gtmax) is a sequence of graphs, with
Gt = (Vt, Et) being the state of the dynamic graph at time step t.

The difference between two states of the graph can be represented as a sequence
of changes, which we call graph events. They are atomic in the sense that they
cannot be subdivided into smaller changes. One could think of events on a larger
scale, for instance because the removal of a node implies the removal of its incident
edges. Nevertheless, our framework is agnostic in this respect. Such a larger-scale
event would be presented to the algorithms as a sequence of unrelated atomic
events in which all incident edges are removed in turn and finally the node itself.

graph

event

Definition 7. A graph event is one of the following atomic changes to the graph:

• creation of a node: Vt ← Vt−1 + u

• removal of an isolated node: Vt ← Vt−1 − u

• creation of an edge: Et ← Et−1 + {u, v}

• removal of an edge: Et ← Et−1 − {u, v}

• weight increase: ωt(u, v)← ωt−1(u, v) + x x > 0

• weight decrease: ωt(u, v)← ωt−1(u, v)− x x > 0

u u u u

t t + 1

u

t− 1

Figure 1.2: One time step — one node deletion — a sequence of graph events

pathDefinition 8. A path P from u to v is a sequence of edges

P (u,w) := ({u, v1}, {v1, v2}, . . . , {vk−1, w})
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Clustering

Clustering is the subdivision of a graph’s node set into groups, which we formalize
as follows:

clusteringDefinition 9. A clustering ζ(G) of a graph G = (V,E) is a partition of V into
disjoint, non-empty subsets {C1, . . . , Ck}. Each subset is a cluster Ci ∈ ζ.

ζ is written instead of ζ(G) when there is no danger of ambiguity. We abbre-
viate the number of clusters in a clustering with k = |ζ|. If a cluster contains
only one node, it is called a singleton; accordingly, a singleton clustering consist-
ing only of singletons. The other trivial clustering is the 1-clustering, a cluster
which contains all nodes. An alternative view is that of a clustering as a function
which assigns nodes to clusters. It is convenient to denote the cluster to which u
currently belongs by ζ(u).

ζ :

{
V → ζ

v 7→ C
(1.1.10)

With a given clustering, we can also distinguish two categories of edges, namely
intra-cluster edges and inter-cluster edges. We will refer to the set of intra-cluster
edges of a cluster C as defined in Equation 1.1.11 and the set of inter-cluster edges
between clusters Ci and Cj as defined in Equation 1.1.12.

E(C) := {{u, v} ∈ E : u ∈ C ∧ v ∈ C} (1.1.11)

E(Ci, Cj) := {{u, v} ∈ E : u ∈ Ci ∧ v ∈ Cj} i 6= j (1.1.12)

If we consider the clustering as a whole, the set of all intra-cluster edges (Equa-
tion 1.1.13) and the set of all inter-cluster edges (Equation 1.1.14) are also relevant.

inter/intra-

cluster

edgesE(ζ) :=
⋃
C∈ζ

E(C) (1.1.13)

E(ζ)c =
⋃

Ci 6=Cj

E(Ci, Cj) = E \ E(ζ) (1.1.14)

Additionally, we can divide the non-adjacent node pairs into intra-cluster pairs
and inter-cluster pairs.

Ē(ζ) := {{u, v} ∈ Ē : ζ(u) = ζ(v)} (1.1.15)

Ē(ζ)c = {{u, v} ∈ Ē : ζ(u) 6= ζ(v)} = Ē \ Ē(ζ) (1.1.16)
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Contracted Graphs

Some algorithms operate by contracting the original graph, combining several
nodes and edges into one. This produces a weighted graph, possibly with self-
loops.

graph

contrac-

tion

Definition 10. A graph Ĝ = (V̂ , Ê, ω̂) is a contraction of a graph G = (V,E) if
the nodes in V̂ are pairwise disjoint subsets of V .

V̂ = {Ui :
⋃

Ui = V ∧ Ui ∩ Uj = ∅, i 6= j} (1.1.17)

Ê = {{Ui, Uj} ∈
(
V̂

2

)
: ∃{u ∈ Ui, v ∈ Uj} ∈ E} (1.1.18)

ω̂(Ui, Uj) =
∑
{u,v}∈E

[u ∈ Ui ∧ v ∈ Uj] · ω(u, v) (1.1.19)

1.2 Quality Indices

Quality indices can be used to measure how well a given clustering fits the ‘natu-
ral’ group structure of the underlying graph. All indices discussed in this work are
based on the paradigm of intra-cluster density versus inter-cluster sparsity. This
means that a high quality clustering should identify densely connected groups of
nodes which are only sparsely connected with other groups. Several indices follow-
ing this paradigm will be reviewed in short. Note that the unweighted formulations
are equal to the weighted ones if all edge weights are 1.

Coverage Coverage is a simple quality index which divides the number (or
weight) of edges contained within clusters to the total number (or weight). Max-
imizing coverage means minimizing the number of inter-cluster edges. Coverage
maps onto [0, 1], with the singleton clustering and the 1-clustering occupying the
two extremes.

coverageDefinition 11. For a graph G = (V,E), an optional weight function ω and a
clustering ζ of G, coverage is defined as

C(G, ζ) :=
∑
C∈ζ

|E(C)|
|E| (1.2.1)

Cω(G, ζ) :=
∑
C∈ζ

ω(E(C))

ω(E)
(1.2.2)
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Modularity. The fact that the 1-clustering achieves optimal coverage but rarely
constitutes a meaningful result is an obvious shortcoming of the coverage index.
Modularity remedies this by looking at the statistical significance of the clustering.
We obtain modularity by subtracting from coverage its expected value. This is,
roughly speaking, the expected coverage the clustering would achieve if the graph
had the same degree distribution but was randomly connected. Note that now the
1-clustering is bound to have an index value of 0, because it achieves the same
coverage for the actual edge structure of the graph as can be expected by chance.
Modularity maps onto [−1, 1].

Despite some drawbacks such as nonlocal effects possibly leading to counter-
intuitive results, modularity agrees with human intuition in many instances. Mod-
ularity optimization has become one of the primary methods for graph clustering.
Therefore, we focus on modularity in this work. The index can be computed in
linear time, but the problem of finding a clustering with maximum modularity,
ModOpt, is NP-hard. The problem of optimally updating a given clustering
following graph events, DynModOpt, is also NP-hard: Since any graph can be
constructed from a sequence of graph events, solving a linear number of DynMod-

Opt instances would yield a solution for ModOpt.

modularityDefinition 12. For a graph G = (V,E), an optional weight function ω and a
clustering ζ of G, modularity is defined as

M(G, ζ) := C(G, ζ(G))− E[C(G, ζ(G)] (1.2.3)

=
∑
C∈ζ

|E(C)|
|E| −

∑
C∈ζ

(∑
v∈C deg(v)

)2
(2 · |E|)2

Mω(G, ζ) := C(G, ζ, ω)− E[C(G, ζ, ω)] (1.2.4)

=
∑
C∈ζ

ω(E(C))

ω(E)
−
∑
C∈ζ

(∑
v∈C ω(v)

)2
(2 · ω(E))2

Performance. According to this index, clustering quality means that two con-
nected nodes should belong to the same cluster while two unconnected nodes
should reside in different clusters. Each pair which is in this sense correctly clas-
sified contributes positively to performance. In the weighted version, the factor
ωmax(E) stems from the need to assign weights to non-existent edges, although
other normalizations are possible (compare [Gae05]).

performanceDefinition 13. For a graph G = (V,E) and a clustering ζ(G), performance is
defined as
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P(G, ζ) :=
|E(ζ)|+ |Ē(ζ)c|

1
2
· n · (n− 1)

(1.2.5)

Pω(G, ζ) :=
ω(E(ζ) + ωmax(E) · |Ē(ζ)c| −

(
ωmax(E) · |Ē(ζ)| − ω(Ē(ζ))

)
1
2
· n · (n− 1) · ωmax(E)

(1.2.6)

Significance-Performance. This index relates to performance in the same way
modularity relates to coverage. Significance-performance and modularity are in
fact instances of a general class of significance indices. We refer to [GHWG09]
for details on the significance paradigm. It has been shown that modularity and
significance-performance are equivalent in the sense that

SP(G, ζ1) > SP(G, ζ2)⇐⇒M(G, ζ1) >M(G, ζ2) (1.2.7)

significance-

performance

Definition 14. For a graph G = (V,E) and a clustering ζ(G), significance-
performance is defined as

SP(G, ζ) := P(G, ζ)− E[P(G, ζ)] (1.2.8)

=
|E(ζ)|+ |Ē(ζ)c|

1
2
· n · (n− 1)

−
∑

C∈ζ
(
(
∑

v∈C deg(v))2 1
m
− |C|2

)
+ n2 − 2m

n(n− 1)

SPω(G, ζ) := Pω(G, ζ)− E[Pω(G, ζ)] (1.2.9)

=
|E(ζ)|+ |Ē(ζ)c|

1
2
· n · (n− 1)

−
∑

C∈ζ
(
(
∑

v∈C deg(v))2 1
m
− |C|2

)
+ n2 − 2m

n(n− 1)

Inter-Cluster-Conductance. The inter-cluster-conductance index is based on
the relationship between clusterings and cuts. Technically, a cut corresponds to
a clustering with two clusters. The conductance of a cut is low if its weight is
small compared to the density of the induced subgraphs. Clearly, a high-quality
clustering implies low-weight cuts between clusters and high-weight cuts within
clusters. Inter-cluster conductance measures clustering quality this way and maps
it onto the interval [0, 1].
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cut

weight

Definition 15. For a graph G = (V,E), a cut θ = (U, V \U) is a partition of the
node set into two subsets. For a weighted graph G = (V,E, ω), the weight ω(θ) of
the cut is defined as

ω(θ) :=
∑

{u,v}∈E(U,V \U)

ω({u, v}) (1.2.10)

The conductance-weight of one side of the the cut is

a(U) :=
∑

{u,v}∈E(U,V )

ω({u, v}) (1.2.11)

conductance
Definition 16. For a graph G = (V,E, ω) and a clustering ζ, the conductance for
the cut θ = (C, V \ C) is defined as

φ(C) :=


1 if C ∈ {∅, V }
0 if C 6∈ {∅, V } ∧ ω(E(ζ)) = 0

ω(E(ζ))
min(a(C),a(V \C))

else

(1.2.12)

ICC
Definition 17. For a graph G = (V,E) and a clustering ζ(G), inter-cluster-
conductance is defined as

ICC (ζ) := 1−
∑
Ci∈ζ

φ(Ci)

|ζ| (1.2.13)

1.3 Distance Measures

Several measures have been introduced to formalize the notion of (dis)similarity
between two clusterings of a graph. They can be broadly categorized into node-
structural measures, which depend only on the partition of the node set, and
graph-structural measures, which take into account the edge structure of the graph.
These categories can be further divided into measures relying on pair-counting,
cluster overlap or entropy. Each of the measures considered here maps two clus-
terings into the interval [0, 1] with 0 indicating equality and 1 indicating maximum
dissimilarity, which is of course a matter of definition. The following and additional
distance measures are discussed in depth in [Del06] and [DGGW07].

Node-Structural Measures

Basics on Pair Counting. Several node-structural measures count pairs of
nodes noting whether they are clustered together or not. The sets defined in
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Equation (1.3.1) are frequently used. Definitions of some node-structural pair
counting measures follow.

S11 := {{u, v} ∈
(
V
2

)
: ζ(u) = ζ(v) ∧ ζ ′(u) = ζ ′(v)} (1.3.1)

S00 := {{u, v} ∈
(
V
2

)
: ζ(u) 6= ζ(v) ∧ ζ ′(u) 6= ζ ′(v)}

S10 := {{u, v} ∈
(
V
2

)
: ζ(u) = ζ(v) ∧ ζ ′(u) 6= ζ ′(v)}

S01 := {{u, v} ∈
(
V
2

)
: ζ(u) 6= ζ(v) ∧ ζ ′(u) = ζ ′(v)}

Rand. Introduced by Rand (1971), this measure counts S11 and S00 and nor-
malizes their sum by the total number of node pairs. It is obvious that R has the
minimum value of 0 if ζ and ζ ′ are identical.

randDefinition 18. For a pair of clusterings {ζ, ζ ′} of a graph G, the Rand measure
is defined as

R(ζ, ζ ′) := 1− 2 · (|S11|+ |S00|)
n · (n− 1)

(1.3.2)

Jaccard. The Jaccard measure J relies on the same pair counting sets as R.
The singleton clustering and any other clustering compare with a distance of 1.

jaccardDefinition 19. For a pair of clusterings {ζ, ζ ′} of a graph G, the Jaccard measure
is defined as

J (ζ, ζ ′) :=

{
1− 2·|S11|

n·(n−1)−2·|S00| if n · (n− 1)− 2 · |S00| > 0

0 else
(1.3.3)

Fowlkes-Mallows. Likewise, the Fowlkes-Mallows measure FM has the prop-
erty that the singleton clustering achieves the maximum distance of 1 to any other
clustering.

Fowlkes-

Mallows

Definition 20. For a pair of {ζ, ζ ′} of a graph G, the Fowlkes-Mallows measure
is defined as

FM(ζ, ζ ′) :=


1− |S11|√

(|S11|+|S10|)·(|S11|+|S01|)
if |S01|, |S10| > 0 ∨ |S11| > 0

1 if |S11|, |S10| = 0 ∨ |S11|, |S01| = 0

0 else.

(1.3.4)

12



Basics on Entropy. Some measures are based on node entropy, which we ex-
plain here briefly: The probability that a cluster C contains a node v chosen at
random is

P (C) := P [v ∈ C] =
|C|
n

(1.3.5)

Using this probability, we can assign an entropy value to a clustering. The
entropy can be interpreted as the uncertainty measured in bits for the result of
ζ(v) if we select v at random:

node

entropy

Definition 21. The node entropy of a clustering ζ is defined as

H(ζ) := −
∑
C∈ζ

P (C) · log2(P (C)) (1.3.6)

= −
∑
C∈ζ

|C|
n
· log2

( |C|
n

)
The value of H(ζ) ranges from 0 for the 1-clustering to log2(n) for the singleton

clustering. Closely related is mutual node information which measures the change
in uncertainty for one clustering if the other clustering is known. Mutual node
information is bounded by 0 ≤ I(ζ, ζ ′) ≤ min{H(ζ),H(ζ ′)}.

node cor-

relation

informa-

tion

Definition 22. Let {ζ, ζ ′} be a pair of clusterings defined on the same node set
V . Then their mutual node information is

I(ζ, ζ ′) :=
∑
C∈ζ

∑
C′∈ζ′

|C ∩ C ′|
n

· log2

( |C ∩ C ′| · n
|C| · |C ′|

)
(1.3.7)

Fred-Jain. This entropy based measure incorporates both node entropy and
node correlation information.

Fred-JainDefinition 23.

FJ (ζ, ζ ′) :=

{
1− 2·I(ζ,ζ′)

H(ζ)+H(ζ′)
H(ζ) +H(ζ ′) 6= 0

0
(1.3.8)

Maximum-Match. The basis of this measure is a confusion matrix M(ζ, ζ ′) ∈
N|ζ|×|ζ′| where each entry holds the number of nodes in the intersection of two
clusters from the different clusterings.

maximum

match

Definition 24. For a pair of clusterings {ζ, ζ ′} of a graph G, the maximum match
measure is defined as
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mij := |Ci ∈ ζ ∩ Cj ∈ ζ ′| (1.3.9)

MM(ζ, ζ ′) := 1− 1

n
·MaxMatch(ζ, ζ ′) (1.3.10)

Algorithm 1: MaxMatch

Input: M(ζ, ζ ′) ∈ N|ζ|×|ζ′|: confusion matrix
Σ← 01

while |M | > 0 do2

mab ← maxmij ∈M3

Σ← Σ +mab4

M ← [[mij]]i 6=a,j 6=b5

return Σ6

Graph-Structural Measures

All of the measures described so far ignore the edges of the underlying graph.
However, they can be easily modified to take the edges into account. We can
define pair counting sets which are analogous to (1.3.1) with the difference that
only pairs connected with an edge are considered. For each of the measures based
on pair counting (R, J and FM) , substituting these sets for their counterparts
yields their graph-structural variants (Rg, Jg and FMg)

E11 := {{u, v} ∈ E : ζ(u) = ζ(v) ∧ ζ ′(u) = ζ ′(v)} (1.3.11)

E00 := {{u, v} ∈ E : ζ(u) 6= ζ(v) ∧ ζ ′(u) 6= ζ ′(v)}
E10 := {{u, v} ∈ E : ζ(u) = ζ(v) ∧ ζ ′(u) 6= ζ ′(v)}
E01 := {{u, v} ∈ E : ζ(u) 6= ζ(v) ∧ ζ ′(u) = ζ ′(v)}

Likewise, there are graph-structural versions of entropy-based and overlap-
based measures.

Distance Measures on Dynamic Graphs

The introduced measures generally assume that the clusterings to compare are
defined on the same graph. It is not completely obvious how the dissimilarity of
two consecutive clusterings on a dynamic graph should be defined. We chose to
consider the intersection of the two graph states - a node or edge which is not
present in both of them is ignored.
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Chapter 2

Data Sources

2.1 Generator for

Dynamic Clustered Random Graphs

In the run-up to this work we implemented a versatile generator for dynamic
clustered graphs. We keep the following description short and refer the reader
to the technical report [GS09] for a thorough documentation. The aim of our
implementation was to include features not present in existing generators. It allows
us to generate graphs which are

• dynamic, i.e. representing the change of a network in the course of discrete
time

• clustered, i.e. exhibiting a clustered structure based on intra-cluster densitiy
versus inter-cluster sparsity of edges

• random, i.e. generated according to a probabilistic model

The generator creates edges with certain probabilities - called pin and pout -
depending on whether they reside in the same cluster or not. The resulting graph
has a group structure with a significance that can be controlled by parameters.
We use the term ground-truth clustering for the clustering that is used for the
assignment of edge probabilities. In order to simulate clustering evolution, this
ground-truth clustering can change over time. Its clusters can merge or split,
controlled by probabilistic parameters. Edge probabilities are updated accordingly.
Since the actual edge distribution is gradually adjusted, the de-facto clustering
(the clustering observable by clustering algorithms) lags behind the ground-truth.
However, a good clustering algorithm should quickly recognize the new ground-
truth as soon as the merger or split becomes apparent.
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The actions of the generator during one iteration through the main loop can
involve several atomic changes (as described in Definition 7). More precisely, the
generator can produce one of the following events affecting elements of the graph
per iteration:

• an edge {u, v} is created with probability p(u, v)

• an edge {u, v} is removed with probability 1− p(u, v)

• a node u is created, then edges ∀v ∈ V − u : {u, v} are created with proba-
bility p(u, v)

• a node u is removed following the removal of all incident edges {u, v}

When a threshold number η of edge events is exceeded, a time step in the
dynamic graph is triggered (recall Definition 6). This parameter controls the
amount of change from one time step to the next and can be used to balance the
impact of node events.

In addition to the clustering ζgen(Gt) determining the edge probabilities, the
generator maintains a separate clustering ζref(Gt) which serves as a reference to
which we can compare the results of our candidate algorithms. ζgen(Gt) is not
suitable for this purpose, because the edge density in the early stages of an ongoing
cluster event does not yet reflect the aspired clustering. The generator therefore
inspects the ongoing cluster events and judges whether they are complete. If an
event is considered complete, it is incorporated into ζref(Gt).

2.2 E-Mail Graph

The e-mail graph (Ge) is the real world data set used in this evaluation. It
was obtained by logging the e-mail communication between members of the
faculty of computer science at Universität Karlsruhe (KIT). A node represents
an anonymized e-mail address, generally corresponding to a person. An edge
represents a communication link with its weight being the number of e-mails
sent. The graph has already served as real world data for clustering experiments
in [DGGW08]. Each e-mail contributes to the weight only for a limited amount of
time so that edge weights can also decrease again. Similar to the generated graph,
the development of the graph is subdivided into time steps. However, a single
time step involves the creation of at most two nodes (sender and recipient, if not
already there) or the creation or weight update of exactly one edge. Edge weights
can be incremented by one due to an email sent or decremented by one due to a
timeout. A node is immediately excluded from the graph if it becomes isolated in
the process.
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Figure 2.1: Rendering of a generated graph instance with n = 100, k = 10,
pin = 0.5 and pout = 0.005
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Chapter 3

Evaluation Framework

3.1 Framework Components

Evaluation framework and algorithms are written in the Java programming lan-
guage. Some pre-existing and newly implemented software components are de-
scribed in this section.

Static Graphs A basic component of our framework is the yFiles framework,
which provides a versatile graph data structure. The documentation can be ob-
tained at http://www.yworks.com/products/yfiles/doc/.

Dynamic Graphs We extended the yFiles graph with a class which incremen-
tally reads from a data source, and modifies the graph. The data source is a file
which stores either a generated graph or a real world data set such as the email
graph. To the outside world this class presents itself as a dynamic graph over
whose states can be iterated in ascending order, yielding a static graph at each
timestep.

Clustering Framework Thanks to the work of our colleagues Bastian Katz
and Daniel Delling we could build on an existing graph clustering framework.
At the core of the this framework is a data structure Clustering which maintains
a mapping between the nodes of a graph and the clusters of possibly multiple
clusterings. It is implemented as a listener (or observer as described in [GHJ+])
to a yFiles graph, which is automatically notified of graph events and will react
to them. By default, newly added nodes are not yet assigned to a cluster (e.g. by
creating their own singleton cluster) but kept in a “pool” of unclustered nodes. The
framework provides a ClusteringListener. Instances of classes inheriting from
ClusteringListener will be notified of cluster events as well as forwarded graph
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events. We based our dynamic clustering algorithms on this class as described in
the following subsection. The framework also includes implementations for all of
the quality indices and distance measures described.

3.2 Dynamic Clustering Algorithms

The abstract base class DynamicClusteringAlgorithm extends the class
ClusteringListener. All algorithm implementations can therefore register as
a listener to their respective clustering, and indirectly receive graph events and
clustering events. Additionally, they receive a time step event after each time
step. Remeber that a time step may comprise more than one graph event. It is
up to the concrete algorithm implementation whether to perform the main work
directly after each graph event or delay it until the time step event.

Figure 3.1 is a class diagram in UML syntax detailing the type hierarchy of
DynamicClusteringAlgorithm as well as its relations to other classes of the frame-
work. Arrows represent inheritance, dashed arrows represent interface extension,
lines represent associations with certain cardinalities.

3.3 Experimental Setup and Visualization

A graphical frontend and plotting environment written for Mathematica com-
plements our suite. It allows us to compose an experimental setup quickly and
conveniently and plot its results. After algorithms, measures and a graph instance
have been selected, an evaluation run can be started. After each run, result data is
available for plotting. The plots show both attributes of the graph and its cluster-
ing evolution or data concerning the performance of the algorithms. The following
measures are plotted by default. Time is charted on the x-axis. Examples of these
plots follow in Chapter 5 .

• number of nodes and edges in Gt

• number of ongoing cluster split events and cluster merge events (only for
generated graphs)

• runtime in milliseconds per time step for all selected algorithms

• number of clusters for all selected algorithms

• quality values for all selected quality indices and algorithms

• distance values for all selected distance measures and algorithms
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Chapter 4

Strategies and Algorithms

Formally, a dynamic clustering algorithm is a procedure which, given the previous
state of a dynamic graph Gt−1, a sequence of graph events ∆(Gt−1, Gt) and a
clustering ζ(Gt−1) of the previous state, returns a clustering ζ(Gt) of the current
state. While the algorithm may discard ζ(Gt−1) and simply start from scratch, a
good dynamic algorithm will harness the results of its previous work and revise
them according to the changes.

Deciding which part of the clustering is up for discussion and what remains
fixed is the task of a prep strategy. The strategy prepares a partially finished
clustering in response to changes, and passes it on to the algorithm for completion.
We consider several strategies which can be combined with different algorithms as
described later.

This chapter also contains descriptions of our algorithm candidates. Among
them are fully dynamic algorithms, but it is also possible to incorporate static
clustering algorithms into the framework by letting them pose as dynamic ones.
The candidates can also be categorized into heuristics (dGlobal and dLocal including
their static counterparts) and exact optimizers (pILP and EOO).

4.1 Prep Strategies

As mentioned before, a dynamic clustering algorithm will draw upon a previous
clustering and react to changes with local modifications. An prep strategy de-
termines the problem that the algorithm has to solve after changes have occured,
which is generally a part of the static problem. Our dynamic algorithms can
employ one of several strategies: Both the breakup strategy (BU) and the two
traversal strategies designate a subset Ṽ of V needing reassessment. How to deal
with the nodes marked by the strategy is up to the algorithm. We will refer to this
class of prep strategies as subset strategies. In contrast, the backtrack strategy
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operates on the clustering history of agglomerative algorithms.

Breakup Strategy (BU). A simple reaction to an edge event {u, v} is to mark
the clusters ζ(u) and ζ(v) entirely. These nodes can then be handled by the
algorithm, for example by breaking up the clusters into singletons. The breakup
strategy is applicable to all of the algorithms described. The strategy itself requires
very little computation. Figure 4.1 illustrates an example.

Name Event Reaction

edge creation E + {u, v} Ṽ + (ζ(u) ∪ ζ(v))

edge removal E − {u, v} Ṽ + (ζ(u) ∪ ζ(v))

weight increase ω(u, v) + x Ṽ + (ζ(u) ∪ ζ(v))

weight decrease ω(u, v)− x Ṽ + (ζ(u) ∪ ζ(v))

Table 4.1: BU Strategy

u

v

u

v

Figure 4.1: The clusters affected by the edge event {u, v} freed by the BU strategy

Traversal Strategies. All of the dynamic algorithms we discuss here are built on
the assumption that the effect graph events have regarding an optimal clustering
are local, i.e., that nodes in the vicinity of the event are more likely to need
reassessment than remote nodes. However, the nodes in the affected clusters are
not necessarily the nodes closest to the event, and too many nodes might be freed
by the breakup strategy. Instead, graph traversal (e.g. breadth first search) can
be used to quickly obtain a suitable neighborhood of the event. For definitions
of neighborhoods and descriptions of possible traversal algorithms, we refer the
reader to Appendix A. Suffice it to say that: a) these strategies free nodes up
to a certain distance d from the event (neighborhood strategy Nd) or a certain
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number k of nodes near the event (bounded neighborhood strategy BNk); b) they
can easily be implemented as BFS-like algorithms. Figure 4.1 shows an example
neighborhood.

Name Event Reaction

edge creation E + {u, v} Ṽ +N({u, v})
edge removal E − {u, v} Ṽ +N({u, v})
weight increase ω(u, v) + x Ṽ +N({u, v})
weight decrease ω(u, v)− x Ṽ +N({u, v})

Table 4.2: Traversal strategy (N or BN)

u

v

u

v

Figure 4.2: The 1-neighborhood of the edge event {u, v} freed by the N1 strategy

Backtrack Strategy (BT). This strategy is applicable to greedy agglomerative
algorithms, such as dGlobal. It maintains a history of the merge operations that
led to the current clustering. Triggered by a graph event, it can backtrack up
to a certain point, giving the algorithm a chance to incorporate changes. The
strategy is based on a data structure U which stores the agglomeration history,
comparable to a traditional union-find-backtrack data structure. Such a data
structure allows for several different reactions to a graph event. It supports the
operation backtrack(v), which steps back in the agglomeration history and splits
the cluster containing v into the two subsets it resulted from (see Algorithm 2).
This operation can be used to formulate the operations isolate(v) and separate(u, v)
as specified in Algorithms 3 and 4. The given pseudocode is a high level description
of the operations. See Appendix B for the specifics of a possible implementation.
The strategy reacts to a graph according to Table 4.3. After each time step, the
algorithm is applied to the resulting clustering.
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Name Event Reaction
node creation V + u U.add(v)
node removal V − u U.remove(v)

edge creation E + {u, v}
{
U.separate(u, v) ζ(u) = ζ(v)

U.isolate(u), U.isolate(v) ζ(u) 6= ζ(v)

edge removal E − {u, v}
{
U.isolate(u), U.isolate(v) ζ(u) = ζ(v)

− ζ(u) 6= ζ(v)

weight increase ω(u, v) + x

{
U.separate(u, v) ζ(u) = ζ(v)

U.isolate(u), U.isolate(v) ζ(u) 6= ζ(v)

weight decrease ω(u, v)− x
{
U.isolate(u), U.isolate(v) ζ(u) = ζ(v)

− ζ(u) 6= ζ(v)

cluster merge Ci ∪ Cj → Ck U.union(u ∈ Ci, v ∈ Cj)

Table 4.3: BT strategy

Algorithm 2: backtrack splits a cluster containing v into the two parts it
resulted from

Input: v: a node
ζ(v)→ ζ ′(v) ∪ ζ(v) \ ζ ′(v)1

Algorithm 3: isolate backtracks until v is contained in a singleton

Input: v ∈ V
while |ζ(v)| 6= 1 do1

backtrack(v)2

Algorithm 4: separate backtracks until u and v are in different clusters

Input: u, v ∈ V
while ζ(u) = ζ(v) do1

backtrack(u)2
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4.2 Algorithms

In the following we describe our algorithm candidates: Two heuristic approaches,
dGlobal and dLocal, including their static precursors sGlobal and sLocal; one ap-
proach performing local exact optimization via integer linear programming, pILP;
and one approach aiming at optimization through a number of elemental opera-
tions, EOO.

4.2.1 sGlobal

sGlobal implements the widely known clustering method introduced by Newman
et al. in [CNM04], a globally greedy agglomerative algorithm. For the static ver-
sion, the clustering is reset to singletons after each time step. The clustering is
then passed to the procedure run sGlobal (Algorithm 5). For each pair of clus-
ters, it determines the increase ∆M(Ci, Cj) in modularity that can be achieved by
merging the pair, and merges the pair for which the increase is maximal. This is
repeated until no more improvement is possible.

Name Event Reaction
node creation V + u ζ + {u}
node removal V − u ζ(u)− u
edge creation E + {u, v} −
edge removal E − {u, v} −
weight increase ω(u, v) + x −
weight decrease ω(u, v)− x −
time step t+ 1 run sGlobal(G, singletons(V ))

Table 4.4: sGlobal behavior
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4.2.2 dGlobal

sGlobal can be made dynamic by not resetting the clustering completely, but re-
vising it according to a prep strategy. Starting from the revised clustering ζ̃, the
dynamic dGlobal performs greedy agglomerations just like the static version. The
main factor is the choice of the prep strategy (see Section 4.1). If a subset strat-
egy is employed, all marked nodes are turned into singletons. When using the
backtrack strategy, the clustering is set to the clustering induced by the backtrack
data structure U .

revise(S, ζ) :=

{
ζ̃ ← ζ.singletons(Ṽ ) S is a subset strategy

ζ̃ ← U.getClustering() S is the backtrack strategy
(4.2.1)

parameter domain
prep strategy BT, N, BU, BN

Table 4.5: dGlobal parameters

Name Event Reaction
node creation V + u ζ + {u}
node removal V − u ζ(u)− u
edge creation E + {u, v} → S
edge removal E − {u, v} → S
weight increase ω(u, v) + x → S
weight decrease ω(u, v)− x → S

time step t+ 1 revise(S, ζ), run sGlobal(G, ζ̃)

Table 4.6: dGlobal behavior

Algorithm 5: run sGlobal

Input: graph G, clustering ζ(G)
Output: clustering ζ(G)
while ∃(Ci, Cj) ∈

(
ζ
2

)
: ∆M(Ci, Cj) > 0 do1

(Ca, Cb)← arg max
(Ci,Cj)∈

(
ζ
2

)∆M(Ci, Cj)
2

ζ.merge(Ca, Cb)3

return ζ(G)4
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4.2.3 sLocal

Blondel et al. propose a locally greedy algorithm based on modularity
in [BGLL08]. Rather than performing the globally best merger, sLocal consid-
ers the nodes in turn, moves them to the best neighboring cluster and contracts
the graph for the next iteration. In the following description, ∆M(u, v) denotes
the improvement in modularity which can be achieved by move(u, v), i.e. moving u
to the cluster of v. The operation contract(G, ζ) returns a contracted graph where
V̂ = ζ. N(u) is the direct neighborhood of a node.

Algorithm 6 is a description of the core procedure. The inner loop contains an
iteration over all u ∈ V , where ∆M(u, v) is evaluated for all v in N(u). If a positive
improvement can be achieved, u is moved to the cluster of the neighbor with the
maximum improvement. The inner loop breaks if the last pass over V yields
no changes to the clustering. Then, the outer loop continues by contracting the
graph according to ζ, and starts again with a singleton clustering on the contracted
graph. This is repeated until a pass through the outer loop body yields no more
changes. At this point the hierarchy of contracted graphs induces a clustering of
the original graph, which is obtained via the unfurl operation.

The exact outcome of the algorithm depends on the order in which nodes
are visited (hence the parameter node order strategy) but Blondel et al. claim
in [BGLL08] that this does not have a significant effect on the resulting clustering
quality. A stopping criterion can be specified, although the only option so far is
to stop when the first peak in modularity is reached. This is a reasonable choice,
since no agglomeration will improve the result any further at this point.

parameter domain
node order strategy Array, InverseArray,Random
stopping criterion FirstPeak
update policy Affected, Neighbors

Table 4.7: sLocal parameters
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Name Event Reaction
node creation V + u ζ + {u}
node removal V − u ζ(u)− u
edge creation E + {u, v} −
edge removal E − {u, v} −
weight increase ω(u, v) + x −
weight decrease ω(u, v)− x −
time step t+ 1 run sLocal(G)

Table 4.8: sLocal behavior

Algorithm 6: run sLocal

Input: graph G
Output: clustering ζ(G)
Ĝ0 ← G1

repeat2

ζ ← {{u} : u ∈ V }3

repeat4

for u in V do5

if maxv∈N(u) ∆M(u, v) ≥ 0 then6

w ← arg maxv∈N(u) ∆M(u, v)7

move(u, ζ(w))8

until no more changes9

Ĝh+1 ← contract(Ĝh, ζ)10

until no more changes11

ζ(G)← unfurl(Ĝhmax)12

return ζ(G)13
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4.2.4 dLocal

We present a dynamic version of the sLocal algorithm. Like its static counterpart,
dLocal creates a hierarchy of contracted graphs from Ĝ0 = G to Ĝh. Like other
dynamic algorithms, it first forwards a graph event to the prep strategy, which
yields a set Ṽ of nodes needing reassessment. In the first iteration, these nodes
are considered in a certain order. If a quality improvement is possible, nodes are
moved, changing the clustering on the lowest level. This in turn induces graph
events in the contracted graph of the next higher level. We do not apply the same
prep strategy at the higher levels of the hierarchy, since the number of affected
elementary nodes could heavily vary and easily become to large. Instead, the
parameter update policy determines which nodes are revisited in this level - either
only the nodes directly affected (policy Affected), or also their direct neighbors
(policy Neighbors). From there the procedure continues - creating new hierarchy
levels if necessary - until a stable singleton cluster arises at the highest level.

parameter domain
node order strategy Array, InverseArray,Random
stopping criterion FirstPeak
update policy Affected,Neighbors

Table 4.9: dLocal parameters

Name Event Reaction
node creation V + u ζ + {u}
node removal V − u ζ(u)− u
edge creation E + {u, v} → S
edge removal E − {u, v} → S
weight increase ω(u, v) + x → S
weight decrease ω(u, v)− x → S

time step t+ 1 run dLocal(Ṽ )

Table 4.10: dLocal behavior
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4.2.5 EOO

The EOO (Elemental Operations Optimizer) performs a limited number of elemen-
tal operations at each time step, trying to optimize the clustering quality according
to a given measure. The elemental operations available are listed in Table 4.2.5.
Although rather limited in its options, the EOO is often used as a post-processing
tool ([NR09]).

parameter domain
optimization strategy Optimizer, SimulatedAnnealing, Minimizer
quality index M, C, P , . . .
max. number of operations N
allow merge Boolean
allow shift Boolean
allow split Boolean

Table 4.11: EOO parameters

Name Event Reaction
node creation V + u ζ + {u}
node removal V − u ζ(u)− u
edge creation E + {u, v} −
edge removal E − {u, v} −
weight increase ω(u, v) + x −
weight decrease ω(u, v)− x −
time step t+ 1 run EOO(Gt+1, ζ)

Table 4.12: EOO behavior

Operation Effect
merge(u,v) ζ(u) ∪ ζ(v)
shift(u,v) ζ(u)− u, ζ(v) + u
split(u) ({u}, ζ(u) \ u)← ζ(u)

Table 4.13: EOO operations
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Algorithm 7: runEOO

Input: graph G, clustering ζ, maximum number of operations max , quality
index Q

Output: clustering ζ
for u ∈ randomOrder(V ) do1

if i < max then2

if merge allowed then3

v ∈ N(u)4

if Q(ζ.merge(u, v)) > Q(ζ) then5

ζ.merge(u, v)6

i← i+ 17

if shift allowed then8

v ∈ N(u)9

if Q(ζ.shift(u, v)) > Q(ζ) then10

ζ.shift(u, v)11

i← i+ 112

if split allowed then13

if Q(ζ.split(u)) > Q(ζ) then14

ζ.split(u)15

i← i+ 116
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4.2.6 pILP

When looking for an optimal clustering, one approach is to formulate the clustering
problem as an Integer Linear Program (ILP) in order to give an instance of the
problem to a solver (such as the free lp solve or the commercial CPLEX). The solver
performs an optimization of an objective function subject to a set of constraints,
yielding an optimal solution. In this case the objective function expresses a quality
index while the constraint set ensures that the result is a valid clustering. In
practive, this is very costly in terms of computing time, and becomes infeasible for
more than a few hundred nodes.

However, ILP optimization could still be a feasible approach in a dynamic
setting. Using a prep strategy, one could let the solver work out a part of the
problem small enough to be completed in time. Within our framework, we imple-
mented the partial ILP clustering algorithm as presented by Hübner in [Hüb08].
A description of the ILP follows.

parameter domain
subset strategy BU, N, BN
objective function P ,Pω,M,Mω

solver CPLEX, lp solve

variant NM, M

Table 4.14: pILP parameters

Name Event Reaction
node creation V + u ζ + {u}
node removal V − u ζ(u)− u
edge creation E + {u, v} → S, run pILP(Ṽ )

edge removal E − {u, v} → S, run pILP(Ṽ )

weight increase ω(u, v) + x → S, run pILP(Ṽ )

weight decrease ω(u, v)− x → S, run pILP(Ṽ )
time step t+ 1 −

Table 4.15: pILP behavior

ILP Formulation of the Clustering Problem. A clustering can be under-
stood as an equivalence relation on V :

u ∼ v ⇔ ζ(u) = ζ(v) (4.2.2)
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Algorithm 8: run pILP

Input: Ṽ : subset of V
Output: ζ: a clustering of G
freeNodes(Ṽ )1

ilp ← createILP(Ṽ , ζ̃)2

solution ← solve(ilp, obj )3

ζ ← readClustering(solution)4

This view is suited for an ILP formulation of the clustering problem. Let V be
a set of nodes. Then we can define a decision variable Xuv for each pair of nodes,
which yields the set

X (V ) := {Xuv : {u, v} ∈
(
V

2

)
} (4.2.3)

The value of this variable will be 0 if both nodes belong to the same cluster,
and 1 otherwise.

Xuv =

{
0 ζ(u) = ζ(v)

1 ζ(u) 6= ζ(v)
(4.2.4)

Since this corresponds to a notion of distance, we call it the metric model (as
opposed to the equivalence model, which is the inverse case). Both models are
equivalent, but the metric model is preferred for reasons of much better perfor-
mance with lp solve.

Reflexivity (4.2.5), symmetry (4.2.6) and transitivity (4.2.7) of the equivalence
relation can be expressed as ILP constraints. The constraints for reflexivity and
symmetry can be omitted for the implementation because they are not part of the
objective function.

∀u ∈ V : Xuu ≤ 0 (4.2.5)

∀{u, v} ∈
(
V

2

)
: Xuv −Xvu ≤ 0 (4.2.6)

∀{u, v, w} ∈
(
V

3

)
:


Xuv +Xvw −Xuw ≥ 0

Xuv +Xuw −Xvw ≥ 0

Xuw +Xvw −Xuv ≥ 0

(4.2.7)
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Partial Re-Clustering. After the prep strategy has reacted to an edge event by
marking some nodes, the algorithm turns them into a subset Ṽ ⊆ V of free nodes
not belonging to any cluster. This leaves a clustering ζ̃ restricted to the remaining
nodes. The free nodes correspond to the decision variables X (Ṽ ). Additonally, we
need a set of decision variables for pairs of free nodes and remaining clusters.

Y(Ṽ , ζ̃) := {YuC : {u,C} ∈ Ṽ × ζ̃} (4.2.8)

The value of these variables will determine the cluster to which the free node
is reassigned in the following way:

YuC =

{
0 u ∈ C
1 u 6∈ C (4.2.9)

Using these decision variables, we can formulate weighted modularity as an
objective function as follows. Because the decision variables represent a distance,
the objective function has to be minimized. It is easy to see that this is equivalent
to a maximization when using (1−Xuv) etc.

MpILP(NM)(G, ζ) =
∑

Xuv∈X (Ṽ )

(
ω(u, v)− ω(u) · ω(v)

2ω(E)

)
Xuv (4.2.10)

+
∑

YuC∈Y(Ṽ ,ζ̃)

(∑
w∈C

(
ω(u,w)− ω(u) · ω(w)

2ω(E)

))
YuC

In order to construct an instance of the ILP, a number of constraints are added.
Equation (4.2.11) expresses transitivity. The relation between a cluster and a free
node is subject to similar transitivity constraints, as expressed in Equation (4.2.12).
Additionally, the constraints in Equation (4.2.13) guarantee that a node is not
assigned to more than one cluster.

∀{u, v, w} ∈
(
Ṽ

3

)
:


Xuv +Xvw −Xuw ≥ 0

Xuv +Xuw −Xvw ≥ 0

Xuw +Xvw −Xuv ≥ 0

(4.2.11)

∀{u, v, C} ∈
(
Ṽ

2

)
× ζ̃ :


Xuv + YvC − YuC ≥ 0

Xuv + YuC − YvC ≥ 0

YuC + YvC −Xuv ≥ 0

(4.2.12)

∀u ∈ Ṽ :
∑
C∈ζ̃

YuC ≥ k − 1 (4.2.13)
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So far we have not allowed two clusters in ζ̃ to merge in order to improve the
clustering (the NM variant of pILP). But this can be achieved easily by modifying
the set of constraints, yielding the M variant of pILP. We need to introduce another
set of decision variables which determine whether two clusters should be merged.

Z(ζ) := {ZCD : {C,D} ∈
(
ζ

2

)
} (4.2.14)

ZCD =

{
0 merge(C,D)

1 − (4.2.15)

We apply two additional constraint sets (4.2.16) and (4.2.17) which ensure the
validity of the merge operations. Equation (4.2.18) shows the extended objective
function which takes the new variables into account.

∀{C,D,E} ∈
(
ζ̃

3

)
:


ZCD + ZDE − ZCE ≥ 0

ZCD + ZCE − ZDE ≥ 0

ZCE + ZDE − ZCD ≥ 0

(4.2.16)

∀{u,C,D} ∈ Ṽ ×
(
ζ̃

2

)
:


ZCD + YuD − YuC ≥ 0

ZCD + YuC − YuD ≥ 0

YuC + YuD − ZCD ≥ 0

(4.2.17)

MpILP(M)(G, ζ) =
∑

Xuv∈X (Ṽ )

(
ω(u, v)− ω(u) · ω(v)

2ω(E)

)
Xuv (4.2.18)

+
∑

YuC∈Y(Ṽ ,ζ̃)

(∑
w∈C

(
ω(u,w)− ω(u) · ω(w)

2ω(E)

))
YuC

+
∑

ZCD∈Z(ζ)

(∑
x∈C

∑
y∈D

(
ω(x, y)− ω(x) · ω(y)

2ω(E)

))
ZCD

Name Constraint Set
NM (4.2.11), (4.2.12), (4.2.13)
M (4.2.11), (4.2.12), (4.2.16), (4.2.17)

Table 4.16: pILP variants
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4.3 Reference

Since it is possible to emulate a clustering algorithm by using information pro-
vided by the dynamic graph generator (see Section 2.1), we implemented it as the
Reference algorithm. At each time step, Reference reads clustering data from the
file containing the generated graph and assigns nodes according to ζref(Gt). For
significant clusterings, the clustering delivered by the generator should be con-
sidered a good reference and present an upper bound on quality. For unclear
clusterings however, clustering algorithms should be able to find a better, hidden
cluster structure. Algorithms should also surpass Reference while cluster events
are in progress, which will be falling behind in terms of quality until the event is
considered complete by the generator. In the result plots, sudden drops in refer-
ence quality indicate changes in the ground-truth clustering. The quality catches
up again when the merge or split event is considered complete. This is a useful
feature of Reference which helped to assess the ability of the actual algorithms to
react to clustering changes.
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Chapter 5

Evaluation Results

5.1 Evaluation Criteria

Our data strongly suggests that all of the distance measures are qualitatively
equivalent for our purposes, and differ only in scale (Plot C.5 illustrates this).
Therefore we chose the graph-structural Rand measureRg as a good representative
in the following experiments. In the following, smoothness generally refers to low
values of Rg. Since maximizing modularity has become the primary method for
finding clusterings, we chose it as the main quality index. In the following, quality
generally refers to high values of M.

What follows is a summary of the relevant evaluation criteria. All of them are
functions of t.

Runtime The computation time required by prep strategy and clustering algo-
rithm combined, measured in ms, is plotted.

Cluster Count The number of clusters in a clustering produced by an algorithm
is plotted.

Quality The quality of a clustering produced by an algorithm, mainly measured
in M, is plotted.

Smoothness The distance between the current and the previous clustering pro-
duced by an algorithm, mainly measured in Rg, is plotted. Lower distance
values indicate a smoother dynamic clustering.

5.2 Plots

Plotting the raw data for many measures may produce cluttered graphics. In most
plots, we apply a central moving average function (Equation (5.2.1)) to smoothen
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the data and make our plots more readable. The function maps a raw data point
to a smoothed data point. The width w of the sliding window is an estimate
depending on the total number of time steps, namely 1

50
tmax. As a caveat, note

that a nonzero curve for the smoothed distance values should not be interpreted
as the algorithm changing its clustering in every single time step.

s[i] :=

∑i+w
i d[i]

w
(i+ w ≤ |d|) (5.2.1)

For historical reasons, the plot legends use different names for algorithms and
strategies than this paper. Table 5.2 shows the corresponding names.

Text name Plot name
sGlobal StaticNewman2
dGlobal Newman2
sLocal StaticBlondel
dLocal Blondel
pILP PartialILP
BU Breakup
BT Backtrack
N Neighborhood
BN BoundendNeighborhood

Table 5.1: Legacy names in plot legends

5.3 Results

5.3.1 Performance of Static Heuristics

To set the stage, we first give an overview of the performance of the static heuris-
tics, sGlobal and sLocal. We believe that sLocal is slower due to implementation
overhead in spite of its lower theoretical runtime. It requires a more complex im-
plementation, giving sGlobal a speed advantage for smaller graphs. It is evident
from Plots C.15 and C.16 that sLocal is superior to sGlobal both in terms of quality
and smoothness. As shown in Plot C.14, sGlobal fails to recognize a number of
clusters as high as Reference.
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5.3.2 Discarding EOO

Plots C.6, C.7 and C.8 show a run of all the candidates on a small generated
instance. We can see that the quality produced by EOO remains below those of
competitors and deteriorates. Increasing the number of elemental operations does
not seem to have a significant influence on either the quality or the runtime. Since
its runtime increases strongly with instance size, relying on EOO is infeasible for
large networks. This leads us to the conclusion that we can discard EOO as a
viable candidate for now. We pass on a thorough examination of its parameters
in favor of the other candidates.

5.3.3 Algorithm Parameters

sLocal and dLocal Blondel et. al. state that the order in which their algorithm
considers the nodes does not affect the overall quality of its result. In order to
check this assumption, we compared three different node order strategies in the
static case: Array visits the nodes in the order they are stored in the data structure,
which remains more or less constant, InvArray is the inverse order, Random visits
the nodes in a random order. Our results indicate that the assumption is generally
true. Plot C.9 shows some variation, but no overall advantage for a single strategy.
However, it becomes clear that the Random node order clusters less smoothly, as
illustrated by Plot C.10.

The question remains whether this is also true for the dynamized version of the
algorithm. Additionally, a decision has to be made whether to consider only the
Affected nodes in the contraction hierarchy or also their Neighbors. We applied all
combinations of these parameters to Ge. Although the search space is larger with
Neighbors, there seems to be no effect on the runtime. As shown by Plots ?? and ??,
there are minor variations in quality and distance, but no choice of parameters
stands out.

Variants of pILP Two different constraint sets lead to two variants of pILP
- pILP(M) allows for the merger of existing clusters, pILP(NM) does not. The
two variants differ most clearly in the number of clusters they recognize, which is
generally lower for M. As illustrated by Plot C.17, they roughly bound the cluster
count of the dynamic heuristics from above and below. Generally, M takes longer
and leads to a coarser clustering with slightly lower modularity. We therefore
reject it, and limit the discussion to the NM variant of pILP in the following.
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5.3.4 Adapting to Cluster Events

Our results show that the dynamic approaches have the ability to adapt quickly and
appropriately to cluster events. After a small decline in quality at the beginning
of the event, they usually catch up quickly (as illustrated by Plot C.18).

5.3.5 Heuristics versus Optimization

As a striking result, heuristics (dGlobal and dLocal) are consistently better than the
exact optimizer (pILP) in terms of quality (see Plot C.19). This is true regardless
of whether pILP allows the merging of clusters or not. The deficit does not improve
over time. We conjecture that this phenomenon can be explained in the following
way: pILP gets caught in local optima which it cannot easily escape, a behavior
that can be likened to overfitting. Since pILP is also the most processor-intensive
algorithm, it seems ill-suited for updates on large graphs. This leaves the heuristic
algorithms as the best candidates for dynamic scenarios.

5.3.6 Behavior of the Dynamic Heuristics

For dLocal, a gradual improvement of quality and smoothness over time could be
observed. Apparently the overall clustering benefits from repeated local distur-
bances. This effect is reminiscent of simulated annealing.

We cannot make a general statement on whether dLocal is superior to dGlobal
or vice-versa. The best choice in terms of quality may depend on the nature of
the target graph: dLocal surpasses dGlobal on almost all generated graphs, dGlobal
is superior on our real-world instance Ge. We speculate that this is due to Ge
featuring a power law degree distribution in contrast to the Erdös-Renyi-type
generated instances.

5.3.7 Prep Strategies

Many combinations of algorithms with prep strategies and strategy parameters
are possible. We evaluated as many as practical in order to determine the strat-
egy best suited for an algorithm. The strategies BU, Nd and BNs are applica-
ble to both dGlobal and dLocal. By nature, BT is only suitable for dGlobal.
For the parametrized strategies, we tried Nd for d ∈ {0, 1, 2, 3} and BNs for
s ∈ {2, 4, 8, 16, 32}. Our aim was to give a sound recommendations for the choice
of a strategy. The focus is on the trade-off between runtime on the one hand and
quality and smoothness on the other.

Considering only the nodes incident to a changing edge (i.e. N0 and BN2)
proved insufficient, and is therefore ignored in the following. For dLocal with Nd,
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increasing d has only marginal effect on quality and smoothness, while runtime
grows sublinearly (see Plot C.37). This suggests N1 as an appropriate strategy.
For dGlobal, Nd risks high runtimes for depths d > 1, depending on the density of
the graph. Depths d > 1 also seem to deteriorate quality, a strong indication that
large search spaces contain local optima. Smoothness approaches the unwanted
values of sGlobal for d > 2. Again, d = 1 is the depth of choice. For BNs, increasing
s is essentially equivalent to increasing d, only on a finer scale. Consequently, we
can report similar observations. For dLocal, BN4 turned out slightly superior.
The quality produced by dLocal benefits from increasing s in the range [2, 32]
(see Plot C.23), but at the cost of speed and smoothness. We conclude that
BN16 is a reasonable choice. The BU strategy generally falls behind the other
strategies in terms of all criteria (see Plots C.43 and C.45). BU tends to produce
overly large search spaces, which also depend on the size of the affected clusters.
Algorithms equipped with the BU strategy often mimic the behavior of their static
counterparts. We conclude that breaking up entire clusters is not an advisable
strategy. A major point for the BT strategy is its speed. dGlobal combined with
BT is by far the fastest algorithm (see Plot C.41). It also yields competitive quality,
but at the expense of smoothness, which is in the range of the static algorithms.
A speedup of up to a factor of 1k was observed at 1k nodes. For scenarios where
speed is decisive, dGlobal with BT is the best candidate.

As a general result, expanding the search space beyond a small neighborhood of
the event is not justified when trading off runtime against quality and smoothness.
In accord with the locality assumption, very small search spaces yield good results.
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Chapter 6

Conclusion

6.1 Summary of Insights

Overall, the outcomes of our evaluation are very favorable for the dynamic ap-
proach. The dynamic algorithms prove their ability to react quickly and appro-
priately to changes in the ground-truth clustering. We show that dynamically
maintaining a clustering does not only save time, but also yields higher clustering
quality and guarantees much smoother clustering dynamics than static recompu-
tation (see Plot C.8).

Interestingly, the heuristic algorithms turned out to be superior to locally exact
optimization. We assume that this is due to an effect akin to overfitting. Together
with its high runtimes, pILP is not suited for updates on large graphs. dLocal and
dGlobal turned out to be the most promising algorithms, performing strongly for
all criteria. The choice between the two may depend on the characteristics of the
target graph.

We observed that dLocal is less succeptible to an increase of the search space
than dGlobal. However, our results argue strongly for the locality assumption in
both cases - expanding the search space beyond a very limited range is not justified
when trading off runtime against quality. On the contrary, quality and smoothness
may even suffer. Surprisingly small search spaces work best, avoid trapping local
optima well and adapt quickly and aptly to changes in the ground-truth clustering.
This observation strongly argues for the assumption that changes in the graph ask
for local updates on the clustering.

Breaking up entire clusters (BU) tends to free too many nodes. Consequently,
prep strategies N and BN with a limited range are capable of producing high-quality
clusterings while excelling at smoothness. The BT strategy yields competitive
quality at unrivaled speed, but at the expense of smoothness; a constraint is that
it is only applicable to dGlobal.
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6.2 Starting Points for Follow-up Work

While designing prep strategies, the idea came up that freeing only the ’right’
nodes in the neighborhood of an event might result in speedup. One could explore
the potential benefits of prioritizing certain nodes when using a traversal strategy,
e.g. according to the degree of the node. The framework provides provides starting
points for this approach (for details see App. A), but it was not pursued further.
Since small neighborhoods yielded the best results, reducing the number of nodes
this way might not be necessary.

Since the implementation of the evaluation framework is a test-bed for ideas
rather than code fine-tuned for efficiency, even higher speedup factors might be
achieved with optimized implementations.

Trying to recognize the clustering structure of synthetic clustered graphs was
a suitable method for exploring and evaluating the dynamic approach. Applying
the insights gained in a compelling real world scenario, where useful information
can be extracted from a dynamic clustering, is something that remains to be done.
The dynamic algorithms could be suited as online algorithms, processing incoming
changes to a graph-like set data.

43



Appendix A

Mini-Framework for Graph
Traversal

With the locality assumption, the question arises how much of the previous clus-
tering should be revised, i.e. which and how many nodes should be reassesed. It
is straightforward that the nodes in the “neighborhood” of a graph event are the
most promising candidates. How we choose this neighborhood is relevant for dy-
namic clustering algorithms, since its size and composition should reflect a good
tradeoff between runtime and clustering quality. In this appendix we are going to
formalize the notion of neighborhood of a graph event, and describe algorithms for
obtaining it.

Obviously the neighboring nodes of an event should be near the nodes affected
by the event, which calls for a definition of distance:

node

distance

Definition 25. The distance d(u, v) of a pair of nodes in a graph is the length of
the shortest path connecting the nodes.

∀{u, v} ∈ V 2 : d(u, v) :=


0 u = v

∞ @P (u, v)

min{|P (u, v)|}

We can therefore define a neighborhood of a node as all nodes with at most a
certain distance to it:

d-neigh-

borhood

Definition 26. The d-neighborhood Nd of a node s is the set of nodes connected
to s by a path no longer than d.

Nd(s) := {v ∈ V : d(s, v) ≤ d}

Breadth-first search (BFS) will visit and return nodes from the neighborhood
of a source node s in the order of their distance d(s, v). Because a sequence of
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edge events affect at least two nodes, it is useful to generalize the algorithm from
the neighborhood of a single node to the joint neighborhood of multiple nodes.

node

distance

Definition 27. The distance d(S, v) of a node v ∈ V from set S ⊆ V of nodes is
defined as

∀{S, v} ∈ P(V )× V : d(S, v) :=


0 v ∈ S
∞ ∀s ∈ S : @P (s, v)

min{d(s, v) : s ∈ S}

joint

d-neigh-

borhood

Definition 28. The joint d-neighborhood of a set of nodes S is the set of nodes
v ∈ V with a distance no greater than d from S.

Nd(S) = {v ∈ V : d(S, v) ≤ d}

Proposition 1. The joint d-neighborhood is equal to the union of all d-
neighborhoods of the members of S.

Nd(S) =
⋃
s∈S

Nd(s)

s1

s2

Figure A.1: The joint 1-neighborhood of S = {s1, s2}

Nd(S) can be obtained via MultiSourceBFS (Algorithm 9). The algorithm is
initialized with a set S of source nodes and assembles an ordering O of V ′ ⊆
V according to d(S, v). Throughout the search the following invariant for O =
(u1, . . . , ul) holds:

∀v ∈ V : v 6∈ O =⇒ (d(S, v) ≥ d(s, ul)) (A.0.1)

Proof. Since MultiSourceBFS assembles O by performing O.append(Q.dequeue()),
the order O follows from the order in which nodes are enqueued. Let ul be
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the last node appended to O. All unvisited neighbors of ul are enqueued,
having the distance d(S, ul) + 1. It follows that d(S, qi) for Q = (q1, . . . , ql)
is nondecreasing. It also follows that d(S, ul) ≤ d(S, qi) ≤ d(S, ul) + 1 for
Q = (q1, . . . , ql). Consequently, if a node v is not in O, it is either in Q, therefore
d(S, ul) + 1 ≥ d(S, v) ≥ d(S, ul), or in V \ (Q∪O), therefore d(S, v) ≥ d(S, ul).

It follows for the ordering returned that

∀ui, uj ∈ O : i < j =⇒ (d(S, ui) ≤ d(S, uj)) (A.0.2)

The size of the neighborhood is exponential in d with the exact size depending
strongly on the structure of the graph. For some algorithms, a d-neighborhood
might be too small while a d + 1-neighborhood would be intractably large. It is
therefore desirable to parametrize the BFS with a maximum number of nodes that
will be visited.

k-bounded

neighbor-

hood

Definition 29. The k-bounded neighborhood of a set of source nodes S is defined
as

Nk(S) := {v1, . . . , vk} ⊆ O (A.0.3)

Algorithm 9: MultiSourceBFS

Input: S ⊂ V : a set of source nodes, condition: exit condition
Output: O: an ordering of V ′ ⊆ V
A← {}, Q← (), O ← ()1

for s in S do2

Q.enqueue(s)3

A← A+ s4

while Q 6= () do5

u← Q.dequeue()6

if condition then7

break8

else9

O.append(u)10

for v in {v ∈ V : ∃{u, v} ∈ E} do11

if v 6∈ A then12

Q.enqueue(v)13

A← A+ v14

MultiSourceBFS can be parametrized with an exit condition. Depending on the
condition, it yields either Nd(S) or Nk(S).
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condition :=

{
d(S, u) > d Nd(S)

|O|+ 1 > k Nk(S)
(A.0.4)

Using pure BFS as a traversal strategy leads to high-degree nodes having a
higher probability of being freed than low-degree nodes. At the same time though,
high-degree nodes are probably densely connected within their community - and
less likely to change their cluster as a result of an edge event in their vicinity.
Prioritizing low-degree nodes has therefore been suggested in [Hüb08].

Generally, nodes could be prioritized not only according to distance from the
source (which BFS effectively does), but according to an arbitrary priority function
ρ : V → R. This can be achieved by replacing the simple queue with a priority
queue. Since this is a min-queue, a dequeue operation will return the element with
the lowest priority. We will refer to a member of the resulting family of traversal
algorithms as priority search or priority traversal. priority

traversalA possible priority function considering both distance and degree could be

ρd,deg(S, u) = w1 · d(S, u) + w2 · deg(u) (A.0.5)

where w1 and w2 are weighting factors to be determined.

Algorithm 10: MultiSourcePrioritySearch search with distance-degree prior-
ity

Input: S ⊂ V : a set of source nodes, ρ(d(S, u), deg(u)): priority function
Output: O: an ordering of V
A← {}, O ← (), Q← ()1

for s in S do2

Q.enqueue(s, ρ(0, deg(s))3

A← A+ s4

while Q = (u1, . . . , ul) 6= () do5

u← Q.dequeue()6

if condition then7

break8

else9

O.append(u)10

for v in {v ∈ V : ∃{u1, v} ∈ E} do11

if v 6∈ A then12

Q.enqueue(v, ρ (d(S, v), deg(v)))13

A← A+ v14
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Appendix B

Data Structure for Unions and
Backtracking

The backtrack strategy for greedy agglomerative algorithms requires a data struc-
ture which keeps a history of the mergers performed and allows the algorithm to
reverse selected mergers. Short of implementing a dynamic union-find-backtrack
data structure, we chose a simplified version. In a union-find-backtrack data struc-
ture, the actual nodes of the graph would comprise all the nodes of the union forest.
Making such a structure fully dynamic, i.e. allowing for node deletions and node
insertions into specific clusters turned out to be quite complex. Our simplified data
structure maintains a binary forest instead where only the leaf nodes L contain the
actual elements while all other tree nodes U are internal union nodes. In contrast
to a proper union-find data structure, the elements themselves are not used as
representatives of their set. This simplicity is bought by needing twice as many
nodes in the union forest as a union-find structure (although a fully dynamic one
would require a memory overhead, too). The public operations union, backtrack
(Algorithm 12), separate (Algorithm 11) and isolate (Algorithm 15) are provided,
while find (Algorithm 14) and split (Algorithm 13) are private operations. Finally,
getPartition returns the partition of the element set induced by the forest. Since the
structure is a binary forest, find, backtrack and separate operation run in Θ(log n).

Figure B.1 illustrates the state of an example instance before and after the op-
eration separate(1,4). The operation starts from 1 and follows the parent pointers
until it reaches a root, marking each union node on the path. Then the path from
4 to the root is traversed and any union node that is marked is deleted.
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Figure B.1: separate(1, 4)

Algorithm 11: separate

Input: l,m ∈ L
u← parent(l)1

repeat2

mark u3

u← parent(u)4

until u is a root5

u← parent(m)6

repeat7

if u is marked then8

split(u)9

u← parent(u)10

until u is a root11

Algorithm 12: backtrack

Input: l ∈ L
r ← find(l)1

if r 6= l then2

split(r)3
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Algorithm 13: split

Input: u ∈ U
makeRoot(leftChild(u))1

makeRoot(rightChild(u))2

Algorithm 14: find

Input: s ∈ T
Output: t ∈ T , root of t or t if t is a singleton
t← s while t is not a root do1

t← parent(t)2

return t3

Algorithm 15: isolate

Input: l ∈ L
while l is not a root do1

split(find(l))2
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Appendix C

Result Plots and Tables

C.1 Graph Properties

Figure C.1: Node and edge count of the e-mail graph Ge, sampled at 100 time
steps
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Figure C.2: Node and edge count of a generated dynamic graph

Figure C.3: Cluster events of the graph above
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C.2 Measures

Figure C.4: Raw data for several distance measures

Figure C.5: Smoothed data corresponding to C.4
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C.3 Evaluation Results

C.3.1 General Results

Figure C.6: Cluster counts for different algorithms
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Figure C.7: Quality for all candidates in comparison

Figure C.8: Statics cluster less smoothly than dynamics.
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Figure C.9: Node order does not influence the overall quality of sLocal

Figure C.10: sLocal clusters less smoothly with Random node order
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Figure C.11: Quality for dLocal with different node orders and update policies

Figure C.12: Distance for dLocal with different node orders and update policies

57



C.3.2 Static Heuristics

Figure C.13: Runtime for sGlobal and sLocal

Figure C.14: sGlobal produces less clusters than sLocal
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Figure C.15: sLocal is superior to sGlobal in terms of quality

Figure C.16: sLocal is superior to sGlobal in terms of smoothness

59



Figure C.17: Cluster count for dLocal, dGlobal, pILP(M) and pILP(NM)

2000 4000 6000 8000 10 000

0.64

0.66

0.68

0.70

Newman2HBacktrackL:52 : Modularity avg 0.645054

BlondelHNeighborhoodHMSBFS,1L,Random,FirstPeak,AffectedL:643 : Modularity avg 0.684073

Reference : Modularity avg 0.669392

Newman2HBoundedNeighborhoodHMSBFS,16LL:479 : Modularity avg 0.634049

BlondelHBoundedNeighborhoodHMSBFS,4L,Random,FirstPeak,AffectedL:813 : Modularity avg 0.680884

Figure C.18: Quality: Dynamics adapt quickly to cluster events
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Figure C.19: Quality: Heuristics are superior to pILP

Figure C.20: Distance: Differences between heuristics and pILP are neglibible
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C.3.3 Prep Strategies

Figure C.21: Runtime for dLocal with BN strategy

Figure C.22: Runtime for dGlobal with BN strategy
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Figure C.23: Quality for dLocal with BN strategy

Figure C.24: Quality for dGlobal with BN strategy
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Figure C.25: Quality for dLocal with BN strategy

Figure C.26: Quality for dGlobal with BN strategy
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Figure C.27: Distance for dLocal with BN strategy

Figure C.28: Distance for dGlobal with BN strategy
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Figure C.29: Distance for dLocal with BN strategy

Figure C.30: Distance for dGlobal with BN strategy
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Figure C.31: Runtime for dLocal with N strategy

Figure C.32: Runtime for dGlobal with N strategy
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Figure C.33: Runtime for dLocal with N strategy

Figure C.34: Runtime for dGlobal with N strategy
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Figure C.35: Quality for dLocal with N strategy
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