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1 Introduction

A speed dating event is an event where a number of people come together to date each other for a
short period of time. As dates can only involve two persons it is not possible that everybody dates
everyone at the same time. It is usually done by scheduling dating rounds such that in each round
every person dates at most one other person.

Consider a group of six men and six women that attend such an event. To make sure that
every man dates every woman and vice versa we need six rounds. Suppose that a round lasts ten
minutes then the whole event will last at least one hour. Most likely it will last longer as people
need to change seats to get to the next date. With such a small group of people we can simply
pair everyone with everyone. However, in larger groups such as 200 men and 200 women, the event
would last about one and a half day. Hence, the organizers of such events need to make a selection
of dates in advance to limit the number of rounds.

One approach to tackle this problem is to make the participants �ll out forms about their ideal
partner before the event. Based on this information it is possible to estimate in advance how well
a certain date would work. We call this the quality of the date. We now select the pairings so
that the overall quality is maximized and no person has more dates than the maximum number of
rounds. This way we can cap the number of rounds to say twelve and the whole event will then
only last between two and three hours.

There are however a couple of problems with this approach.

• Certain persons are more attractive than others and would get all of the dates leaving none
for the less attractive ones. Distributing the dates in a fair way therefore is important.

• Generally there are more men than women on such events. The only way to manage this is
to make every man miss a couple of turns.

• Some persons, which we call VIP-persons, may be more important than others because of
certain circumstances. They might for example have paid extra money. Even though we
generally try to be fair in distributing dates these persons clearly must be preferred. We
especially want to make sure that these persons do not have to miss turns.

• People may not show up at the event even though they registered. The problem with this is
that all the people that were scheduled for this person will get one date less than planned if
the planning can not be adjusted in time. The simplest way of solving this problem is simply
not to do any calculations in advance. The plan should be generated just before the event
starts. This way the event organizers know who showed up. As one can not force the people
to show up several hours before the event takes place these calculations must be �nished
within a couple of minutes.

So far we have only described heterosexual speed dating but one may also consider homosexual
dating. In this setting we do not make a distinction between men and women. Every person
may date every other person. We can regard this as a generalization of the heterosexual dating
problem, where the dates between persons of the same sex have a very bad quality. We show that
this generalization is a lot harder to solve.

In this thesis we develop algorithms to generate the dating rounds based on the data collected
using the �lled forms. Each of these rounds consists of a list of pairings. We do not order these
rounds in time nor do we try to optimize the time the people need to change their seats.

Selecting the dates is a matching problem and distributing them among the di�erent rounds is a
scheduling problem. There are a few additional non-standard constraints on the matching to make
sure that the dates are selected in a way that is fair for every person. We investigate whether these
two subproblems may be solved separately. It turns out that this is not possible when considering
homosexual dating.

After we recalled a few basic de�nitions in Section 2 we formalize the generalized homosexual
problem setting and classify it in Section 3. It turns out that the problem is NP-hard. We
formulate the problem in graph-theoretic terms and as an integer linear program (ILP). Afterwards
we develop a polynomial-time algorithm for the heterosexual special case in Section 4. We then
try to generalize this algorithm and obtain a polynomial-time approximation algorithm with good
performance guarantees in Section 5. This done, we investigate a couple of greedy heuristics to
solve the problems in Section 6. Finally we evaluate the performances of the algorithms described
by implementing them and applying them to random test data in Section 7.
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2 De�nitions

We will use mostly standard notation for graph theory as de�ned by e.g. Diestel [5]. The most
important di�erence is that the induced subgraph of an edge set contains all nodes and not only
those that are an end of some edge. We recall the most important terms.

A graph G is a tuple (V,E) where V is a �nite set called the set of nodes and E is a subset
of
(
V
2

)
called the set of edges. We denote the number of nodes with n and the number of edges

with m. The degree d(v) of a node v is the number of incident edges, i.e. , d(v) = |{e ∈ E | v ∈ e}|.
The maximum degree over all nodes is denoted by 4G i.e. 4G = maxv∈V d(v). A subgraph
of a graph G = (V,E) is itself a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. The
degree of a node in a subgraph is denoted by d′(v). Given an edge set E′ the graph (V,E′)
is called the induced subgraph. A directed graph is a tuple (V,A) where V is a �nite node set
and A ⊆ V × V \{(v, v) | v ∈ V } is the set of arcs.

A matching is an edge subset such that each node has at most degree one in the induced graph.
A perfect matching is a matching where each node has a degree of exactly one. A matching is
maximum if no matching exists that contains more edges.

An edge coloring is a function that maps E onto a set of colors C such that all edges incident
to the same node are colored di�erently. We identify the colors with the numbers {1, 2, . . . , |C|}.
A node misses a color if it has no incident edge of that color. The set of natural numbers N starts
with zero, i.e., N = {0, 1, 2, . . .}.

3 Problem description

This section formalizes the homosexual dating problem and its heterosexual special case described
in the introduction. We �rst provide a problem statement in graph-theoretic terms. Then we model
this problem as an ILP and we show that the general Speed Dating problem is NP-complete.

3.1 Formal Speci�cation

The people are represented using nodes and the potential dates as edges. We discard potential
dates with a very bad quality leading to a graph that is not necessarily complete. We refer to dates
with such a bad quality as bad dates. The graph G = (V,E) obtained in this way is simple and
undirected. It does not have to be connected. The heterosexual special case provides a bipartite
graph structure since no woman dates any woman and no man dates any man.

We formalize the quality of a potential date using a non-zero natural number. A high value
describes a high quality whereas a value close to 1 means a second-rate date. This makes the graph
weighted. VIP-persons can be given a boost by augmenting the weight on their outgoing edges.
One goal is to maximize the sum of the weights of the selected dates. Another goal is to distribute
the dates in a fair way.

To make sure that no person gets no dates just because he or she is unattractive, we set a
lower and an upper bound called ` and h for the number of dates that each person gets. Each
person v has at most h(v) dates and if possible at least `(v) dates. In most situations one would
set h(v) = `(v) but di�erentiating between both allows for more �exibility. Consider for example
a dating event with w women, m men, σ rounds and heterosexual dating. Let us recall that there
are less women than men. Then one could set `(v) = h(v) = σ for each woman resulting in a total
of wt dates. As this number can not always evenly be divided between all the men it therefore
makes sense to set `(v) = bwt/mc and h(v) = dwt/me. Figure 1 shows an example. VIP-persons
may be given a higher value for `(v) than other people. As one can see it makes sense to choose
di�erent bounds for di�erent people and in some cases even h(v) 6= `(v) makes sense.

Our primary objective is to select the dates in such a way that the ` and h bounds are met.
This is however not always possible. If this is not the case then we lower ` for each person by 1e
until a solution exists. We call the value by which we have to lower ` the fairness violation δ. In
the following ` always refers to the �xed optimal lower bound given as input and `− δ is the actual
lower bound used. The smaller the violation δ is the better.

Each person v has d(v) potential dates and d′(v) dates that actually take place. As a conse-
quence the following inequality holds:

0 ≤ `(v)− δ ≤ d′(v) ≤ h(v) ≤ d(v)

2
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Figure 1: A possible selection of dates for two women, three men and two rounds. The solid lines
are the selected dates. No matter what dates we select there will always be one man with two
dates and two men with one date.

We can interpret d(v) as the degree of v in the given graph and d′(v) as the degree in the graph
induced by the selected dates. We can regard the search for these dates as a search for a sub-
graph G′ = (V,E′) of G that ful�lls the given requirements on the node degrees.

A further restriction is that it must be possible to distribute the selected dates onto the di�erent
rounds. In graph-theoretic terms this means that we must be able to color the selected dates using
at most σ colors, where σ is the number of turns. It turns out that this is the requirement that
causes the homosexual version to be NP-hard.

Among the solutions that satisfy the conditions formulated and that have an optimal fairness
violation we choose the solution with the maximum total weight. Now that we have formalized the
di�erent parts of the problem we are ready to state the speed dating problem.

Problem 1. Given a graph G = (V,E) with edge weights w : E → N\{0} and lower and upper
node capacities `, h : V → N such that for each vertex v the inequality `(v) ≤ h(v) ≤ d(v) holds,
determine an edge subset colored with at most σ = maxv∈V h(v) colors. The degree d′(v) of each
vertex v in the induced subgraph should be smaller than h(v). The subgraph should be optimal
with regard to the following two criteria:

• Maximize the sum of the weights of the edges in the subgraph. We refer to this as the weight
criterion.

• Minimize the maximum di�erence δ between `(v) and d′(v). We call this di�erence fairness
violation. More formally

δ = max(0,max
v∈V

`(v)− d′(v))

We refer to this criterion as the fairness criterion.

It is possible to look at this problem as a bicriterial one. However we �rst minimize the fairness
violation δ. Among the smallest δ we choose the solution that maximizes the weight. It is therefore
always possible to determine whether a solution is better, worse or just as good as another one.

3.2 Integer Linear Program

The speed dating problem can be formulated as an integer linear program (ILP). We introduce
binary decision variables xe,c ∈ {0, 1} that model the question if an edge e is colored using the
color c. If xe,c = 1 then the edge e is colored using c. Further, we introduce two variables δ and s
representing how well the fairness and weight criteria are met. Let us recall that C denotes the set
of colors. The constraints of the program are:

3



∑
{u,v}∈E

x{u,v},c ≤ 1 ∀u ∈ V, c ∈ C (1)

∑
c∈C

xe,c ≤ 1 ∀e ∈ E (2)∑
{u, v} ∈ E
c ∈ C

x{u,v},c ≤ h(u) ∀u ∈ V (3)

∑
{u, v} ∈ E
c ∈ C

x{u,v},c ≥ `(u)− δ ∀u ∈ V (4)

δ ≥ 0 (5)

s =
∑
e ∈ E
c ∈ C

w(e)xe,c (6)

The constraint (1) ensures that all edges incident to the same node are colored di�erently. The
equation (2) makes sure that every edge is colored using at most one color, i.e., that no date takes
place more than once. An edge may be uncolored meaning that it is not selected. Inequality (3)
ensures that the upper degree bound requirement is met for every node.

The constraints (4) and (5) measure how well the fairness criterion is met. Equation (6) does the
same for the weight criterion. These three last constraints are only needed to be able to formulate
the objective function. They do not in�uence which edge subsets are considered to be valid.

We can formulate the objective function using a large constant ŝ.

s− δŝ = max!

Since ŝ is needed to make sure that the fairness criterion dominates the weight criterion it must
be at least as big as any value that s can possibly take. The total weight s is maximum if the
subgraph is the whole graph G, which leads us to a su�cient lower bound for ŝ, namely

ŝ ≥ 1 +
∑

{u,v}∈E

w({u, v}) .

In Section 7 we evaluate the speed of a speed dating solver that is composed of this ILP problem
formulation and an o�-the-shelf ILP solver. It is largerly outperformed by the solvers described in
Sections 4 and 5 which make use of combinatorial approachs.

3.3 Classi�cation

We have formalized the speed dating problem. A natural question to ask before trying to solve it
is how hard it is. In this Section we prove that it is NP-complete.

Lemma 2. The speed dating problem is NP -hard.

Proof. Determining whether a graph G = (V,E) can be colored with exactly 4G colors is NP -
hard [7]. Given an instance of this graph coloring problem we set w(e) = 1, `(v) = 0 and h(v) = d(v)
for all e ∈ E and v ∈ V and obtain an instance of the speed dating problem with the property
that σ = 4G. This transformation can be computed in polynomial time. Solving it yields a
colored edge subset E′. As `(u) = 0 the fairness criterion is always satis�ed optimally and can be
ignored. As all edges have the same weight the speed dating problem tries to color as many edges
as possible. This means it determines a largest edge subset E′ that can be colored using 4G colors.
A valid coloring of G exists if and only if E = E′. This implies that the speed dating problem is
NP -hard.

Another natural question to ask is how hard the problem is.
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Lemma 3. The decision problem corresponding to the speed dating problem is in NP .

Proof. We have to show that given two positive integers δ, s and an instance of the speed dating
problem one can determine whether a solution exists that is at least as good as δ with regard to
the fairness criterion and as s with regard to the weight criterion using only a deterministic Turing
machine with an oracle. First, the oracle guesses the solution and then the machine veri�es in
polynomial time whether it meets the requirements. Given a solution we can determine how good
the fairness criterion is met by calculating the solution's δ using the formula given in the de�nition
of the problem and comparing it to the given δ. The weight criterion can be tested in a similar
way by summing up the weights of the edges in the subgraph.

Combining Lemmas 2 and 3 shows that the speed dating problem is NP-complete. A con-
sequence of this is that unless P = NP it is not possible to formulate the problem as a linear
program.

4 Algorithm for Heterosexual Speed Dating

Before trying to solve the complete problem formulated in the previous section we �rst solve the
heterosexual special case. Let us recall that in graph-theoretic terms this means that the input
graph is bipartite. Our algorithm works in three phases.

1. Determine the minimum fairness violation δ using a binary search.

2. Determine the maximum weight uncolored edge subset E′ for a �xed δ. Denote with G′ the
induced graph.

3. Color the edge set determined in the second phase using 4G′ colors.

A key observation is that every bipartite graph can be edge colored e�ciently using 4G′ colors.
We describe in Section 4.3 an algorithm that achieves this. As a consequence we can compute the
Phases 1 and 2 completely independently from Phase 3. This degree of independence is however
not given between the �rst two phases. Phase 1 makes use of the algorithm developed in Phase 2
to check whether a solution exists given a �xed δ. Note that the solution is valid because 4G′ ≤
maxv∈V h(v) = σ

4.1 Phase 1: Determine the Minimum fairness violation

Given a �xed fairness violation δ we can transform the problem instance into one where the lower
node capacities are tight bounds meaning that `(v) ≤ d′(v) must hold for each node v. The
transformation is

`(v)← max{0, `(v)− δ}
Once transformed the problem of �nding an uncolored edge set boils down to the weighted

degree constrained edge subset problem (WDCES), which can be stated as follows.

Problem 4 (WDCES). Given a graph G = (V,E) with edge weights w : E → N\{0}, lower and
upper node capacities `, h : V → N such that for each node v the inequality `(v) ≤ h(v) ≤ d(v)
holds, determine an edge set E′ with maximum weight such that `(v) ≤ d′(v) ≤ h(v) holds
where d′(v) is the degree of the node v in the induced subgraph.

This problem is also known as b-matching with unit edge capacities. In Phase 2 we describe
an algorithm to solve this problem. Further a straightforward variation is described that tests
whether any feasible uncolored edge subset exists. As the third phase can never fail it is su�cient
to determine whether the speed dating problem with a �xed fairness violation δ has a solution. It
is important to note that at this point we exchange the variable δ in the original problem setting
with a �xed constant.

We make use of this variation to determine the minimum δ using a binary search. We know
that δ is in the interval [0,maxv∈V `(v)] and that it is integral. Further, if no feasible solution
exists for a certain δ then none exists for smaller values either. If a solution exists then it is also a
solution for all bigger values of δ. These are all the ingredients needed to determine the optimal δ
using a binary search. We guess a δ and apply the feasibility test from Phase 2 to determine if it is
too small or big enough and adjust δ accordingly. See Algorithm 1 for some pseudo code showing
the details of this algorithm.
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Algorithm 1 Algorithm to determine the optimal δ using a binary search

δmin ← 0;
δmax ← maxv∈V `(v);
while δmin 6= δmax do

δ ←
⌊
δmin+δmax

2

⌋
;

for every vertex v do
`′(v)← max(`(v)− δ, 0);

end

if phase 2 is feasible using `′ then
δmax ← δ;

else
δmin ← δ + 1;

end

end

The optimal δ is δmin

4.2 Phase 2: Determine the Maximum Weight Subgraph

This phase basically consists of solving the WDCES problem that was formulated in Section 4.1.
Since we only consider bipartite graphs we can reduce it to the min cost �ow problem (MCF).
Several versions of this problem exist. We will use the one described in the Lemon library [2] as
we want to make use of its implementation.

Problem 5 (MCF). Given a directed graph D = (VD, A) with arc costs c : A → R, lower
and upper arc capacities `D, hD : A → R such that `D(a) ≤ hD(a) for each arc a and a node
supply q : VD → R �nd a �ow f : A→ R such that∑

a∈A
c(a)f(a) = min! (7)∑

(u,v)∈A

f(u, v)−
∑

(v,u)∈A

f(v, u) ≥ q(u) ∀u ∈ V (8)

`D(a) ≤ f(a) ∀a ∈ A (9)

hD(a) ≥ f(a) ∀a ∈ A (10)

It has been shown that if a solution exists and `D, hD and q only take integral values then an
optimal solution exists where f also only takes integral values [3]. Lemon provides an algorithm
that solves this problem optimally. This algorithm �nds an integral �ow when c, `D and hD are
integral.

The supply model used here is more general than we will need. In our case we will have q(v) 6= 0
only for two special nodes in D called the source node s and the target node t. We set q(s) = −q(t).
The �ow has an amount of q(s), which we will denote by p. This self-imposed restriction allows us
to rewrite (8) as the better known �ow conservation equation.

∀u ∈ VD\{s, t} :
∑

(u,v)∈A

f(u, v) =
∑

(v,u)∈A

f(v, u) (11)

It basically means that �ow can only be created or destroyed at the source and at the target,
respectively. Equation (7) minimizes the cost the �ow causes along its way. The capacity con-
straints (9) and (10) re�ect the node capacities of the weighted degree constrained subgraph prob-
lem.

Min Cost Flow Reduction

Given a WDCES instance we can construct an equivalent MCF instance based on it. Let D be a
directed graph whose nodes are the same as G and additionally two new special nodes called s and t.
As G is bipartite we can partition V into two disjoint node sets L and R such that each edge is
incident to one node in L and one in R. For each edge {u, v} in G with u ∈ L and v ∈ R we
introduce an arc from u to v with c(u, v) = −w({u, v}), `D(u, v) = 0 and hD(u, v) = 1. We refer
to these arcs as the main arcs all other arcs are helper arcs. We will identify the arc (u, v) with
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Figure 2: A bipartite weighted constrained subgraph instance G and its transformation to a min
cost �ow instance D. The labels of the nodes in G represent its capacity in the form l(v)/h(v) .
The labels at the edges in G are their weight. The labels at the arcs of G′ represent c(e), l′(e)/h′(e).
The solid edges in G represent the edges included in the subgraph. The dotted ones are not. In D
the line style the amount of �ow on that arc. Dotted means no �ow. Solid means a �ow of 1 and
a double line means a �ow of 2.

edge {u, v}. We add an arc from s to each node v in L, the helper arc of v, and set `D(s, v) = `(v)
and hD(s, v) = h(v). For each v in R we add an arc, the helper arc of v, and set `D(v, t) = `(v)
and hD(v, t) = h(v). All helper arcs have cost 0.

We set the desired �ow value p to the number of edges in G. Further, we introduce an arc a
from s to t with with `D(a) = 0 and hD(a) = p. The idea is to make sure that the source can
produce enough �ow and that super�uous �ow can be piped along the (s, t)-arc with no costs. We
could therefore also choose any value for p that is bigger as long as we make sure that hD(a) ≥ p
holds. The transformed graph contains n+ 2 nodes and m+ n+ 1 arcs and thus has size linear in
the size of G.

We apply an MCF algorithm to D. If a solution exists it consists of an optimal integral �ow f .
To obtain a solution of the WDCES problem we construct an edge subset E′ that includes an
edge e if f(a) is 1, where a is the main arc that corresponds to e. Figure 2 shows an example of
such a transformation. It remains to show that E′ is valid and optimal and that when no feasible
�ow f exists then the WDCES instance is unsolvable.

Lemma 6. If a feasible �ow exists the corresponding edge set E′ satis�es `(v) ≤ d′(v) ≤ h(v) for
each node v.

Proof. For each v ∈ L consider the corresponding helper arc a ∈ A. By construction `(v) = `D(a)
and h(v) = hD(a) hold. As a is the only in-arc of v in D the �ow conservation equality (11) boils
down to f(a) =

∑
(v,u)∈A f(v, u). The �ow capacity constraint on a dictates that `D(a) ≤ f(a) ≤

hD(a). Further, we constructed D in such a way that all out-arcs are main arcs. Let b be one of
them then 0 ≤ f(b) ≤ 1 must hold. As we know that f only takes integral values this forces f(b)
to be 0 or 1. This implies that

∑
(v,u)∈A f(v, u) is the number of main arcs that carry a �ow of 1

starting at v. Because of the way we constructed D this is also the degree of v in D. To sum up
the following holds

`(v) = `D(a) ≤ f(a) =
∑

(v,u)∈A

f(v, u) = d′(v) ≤ hD(a) = h(v) .

We can make a similar argument for the nodes in R. As `(v) ≤ d′(v) ≤ h(v) is the only constraint
of the WDCES problem E′ is a valid solution.

We have shown that E′ is valid. It remains to show that it is optimal and that when no feasible
�ow f exists, then the WDCES instance is unsolvable.
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Lemma 7. If no feasible �ow exists then G does not have an edge subset E′ whose induced subgraph
satis�es `(v) ≤ d′(v) ≤ h(v) for each node v.

Proof. Suppose that no �ow but a valid solution E′ to the WDCES problem exists. We can then
construct a �ow f as follows. For each edge e ∈ E we set f(e) = 1 if e ∈ E′ and f(e) = 0
otherwise. It is clear that the capacity constraint for main arcs 0 ≤ f(e) ≤ 1 holds. For each
node v ∈ V and the corresponding helper arc a ∈ A we set f(a) = d′(v). As `(v) ≤ d′(v) ≤ h(v),
`D(a) = `(v) and hD(a) = h(v) hold the capacity constraint `D(a) ≤ f(a) ≤ hD(a) also holds. We
set f(s, t) = |E| − |E′|. This is obviously within its capacity constraint `D(s, t) = 0 ≤ f(s, t) =
|E| − |E′| ≤ |E| = hD(s, t). It remains to show that the �ow is conserved, meaning that (11) holds
and that the total �ow amount is equal to p.

The total �ow amount t can be measured at the source.

t =
∑

(s,v)∈A

f(s, v)

= f(s, t) +
∑
v∈L

d′(v)

= |E| − |E′|+ |E′|
= p

Each node v ∈ L has d′(v) out-arcs with a �ow of 1 and one in-arc with a �ow of d′(v). Therefore
the �ow is conserved. A similar argument works for the nodes in R. Hence the �ow f is valid,
which is a contradiction to the assumption that no feasible �ow exists.

Lemma 8. An edge set E′ constructed using the MCF reduction is optimal meaning that
∑
e∈E′ w(e)

is maximum.

Proof. The equality
∑
a∈A c(a)f(a) = −

∑
e∈E′ w(e) holds because −w(e) = c(a) and f(a) = 1 if

the corresponding edge is in E′ and 0 otherwise. If
∑
a∈A c(a)f(a) is minimum then

∑
e∈E′ w(e)

must be maximum since otherwise a WDCES solution would exists with a bigger value. We could
construct the corresponding MCF solution and obtain a better solution than the minimum value.
This is of course not possible.

The �Lemon� library also includes a faster algorithm that only �nds a feasible solution to the
min cost �ow problem [2]. This means it basically does not care about the costs and ignores the
objective function (7). We can therefore perform the feasibility test of the �rst phase using this
faster algorithm.

4.3 Phase 3: Coloring the Edges

In the third phase we are given a bipartite graph G = (V,E) with a maximum node degree of σ.
Our goal is to color it using at most σ colors. We will describe an algorithm that uses a few ideas
from Vizing's algorithm [9, 10] but manages to always color the graph. We iteratively color the
edges and make sure that after each step the colored subgraph has a valid coloring. In order to
Prove this we introduce the notion of coloralternating paths.

De�nition 9. An a-b-coloralternating path starting at a node u is a path

u = v0
a−→ v1

b−→ v2
a−→ . . .

such that the edge {vi, vi+1} is colored using a if i is even and colored using b if i is odd.

Lemma 10. Each a-b-coloralternating path is either a simple path or a cycle.

Proof. The graph induced by the edges in the path is colored with only two colors namely a and b.
As no node has more than one incident edge of a certain color each node in this graph has a
maximum degree of 2. This means that this graph is a union of simple paths and simple cycles.
As the graph is induced by a single path it is also connected. This means that it is either a simple
path or a simple cycle.
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Algorithm 2 Edge coloring a bipartite graph

for {u, v} ∈ E do
c0 ← color missed by u;
c1 ← color missed by v;
i← 0;
while v does not miss ci do

Let {v, w} be the edge incident to v colored using ci;
Color {u, v} using ci;
i← 1− i;
u← v;
v ← w;

end

Color {u, v} using ci;
end

Lemma 11. Given an edge subset E′, an uncolored edge e ∈ E\E′ and a valid coloring for (V,E′)
we can construct a valid coloring for (V,E′ ∪ {e}).

Proof. Let u and v be the end nodes of e. As e is uncolored and incident to both u and v we can
conclude that colors cu and cv must exist such that u misses cu and v misses cv. If cu = cv then
we simply color e using that color and we have found a valid coloring. If this is not the case then
we consider the longest unique cu-cv-coloralternating path P starting at v. The previous lemma
tells us that this is either a simple path or a simple cycle. If it was a simple cycle then v would be
an inner node and therefore have an incident edge colored with cv. It is therefore a simple path
that ends in a node we denote by w. This node must miss either cu or cv as otherwise the path
could be enlarged. Further we can show that u 6= w using a contradiction with the bipartite graph
structure. Suppose that u = w. In that case the �rst edge in the path must be colored using cu and
the last one using cv. This is only possible if P contains an even number of edges. Adding e to P
yields a cycle of odd length. In a bipartite graph this is however not possible. We may therefore
swap all the colors along P without destroying the coloring or in�uencing u. After performing this
operation v misses cu and u still misses cu. We can therefore color e using cu.

Using this algorithm we can iteratively color every edge of the bipartite graph. Algorithm 2
shows this. It remains to analyze how fast it is. The maximal length of a simple path is n. If it
was necessary to construct such a path at each iteration we would touch nm nodes and therefore
the running time of the algorithm is in O(nm). Consider the graph that consists of only one long
path. By coloring the edges from one end to the other we can at each iteration trigger a recoloring
of every edge colored so far. The worst case running time is therefore in Θ(nm). A speed up can
be achieved by �rst coloring the edges greedly and only once this is no longer possible to enlarge
the colored edge subset using the method described above.

An algorithm with a worst case running time of O(m log n) exists [4]. We chose not to use it
because that algorithm would have been more work to implement. Further, it will turn out that
the edge coloring is not a bottleneck of the speed dating solver. The achieved speed up would
therefore have been unnoticeable.

4.4 Analysis

In this section we derive an upper bound for the running time of the algorithm developed in the
previous sections. As the heart of it is a MCF reduction and a multitude of algorithms exists for
solving that problem, the running time of our algorithm depends on the underlying MCF algorithm.

Most descriptions of MCF solvers do not consider edge capacities. This is however not a
restriction as one can get rid of the capacities using a linear graph transformation as Ahuja,
Magnanti and Orlin describe in their book on network �ows [3]. They further describe a cost
scaling algorithm whose running time is in O(n2m log(nC)) where C is the maximum absolute cost
value. The feasibility test makes use of an algorithm that has a worst case running time of O(n2m).

Let n and m be the node and edge counts of the input graph G and let n′ and m′ be the node
and edge counts of the directed �ow network D we reduce to. Let further W be the maximum
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weight in the input graph and let C ′ be the maximum absolute cost value. In 4.2 we have shown
that

n′ = n+ 2 ,

m′ = m+ n+ 1 , and

C ′ = W .

The reduction itself has a running time of O(n+m). The second phase therefore has a running
time of

O(n+m+ n2m log(nW )) = O(n2m log(nW )) .

The �rst phase determines δ using a binary search over {1, . . . ,maxv∈V `(v)}. As maxv∈V `(v) ≤ σ
its running time is in

O((n+m+ n2m) log σ) = O(n2m log(σ))

⊆ O(n2m log n) .

The third phase has a running time in O(mn). The overall running time therefore is

O((n2m log n) + n2m log(nW ) +mn) = O(n2m log(nW )) .

In our experiments we used a simplex based algorithm to solve the MCF. No polynomial upper
bound for its running time is known but the author of the implementation used claims that in most
cases it is faster than his cost scaling algorithm [1]. The actual running time observed in our test
series is far below this upper bound. See Section 7 for a detailed evaluation of this algorithm.

5 Approximation Algorithm for Homosexual Speed Dating

In this section we modify the algorithm described in the previous section to approximate a so-
lution for the homosexual speed dating problem. We develop an algorithm that approximates
the general speed dating problem described in Section 3.1 without making any assumptions on the
problem instances. This especially means that the input graph no longer necessarily has a bipartite
structure.

We showed that the speed dating problem is NP-hard in Section 3.3 so, unless P = NP , it
is not possible to adapt our algorithm and retain both polynomial running time and optimality.
We sacri�ce the latter and obtain a polynomial-time approximation algorithm. In Section 5.1 we
analyze its performance. The basic top level structure of our general algorithm is very similar to
the bipartite one.

1. Determine the minimum fairness violation δ using a binary search. It is possible that the δ
calculated here is too small by one unit.

2. Determine the maximum weight uncolored edge subset E′ given a �xed δ. Denote with G′

the induced graph.

3. Color the edge set determined in the second phase using at most 4G′ + 1 colors.

4. If more than σ colors were used determine and discard the edges of the lightest color i.e. the
color whose edges have the lowest total weight.

In the bipartite case we were able to color each graph using 4G′ colors. This is however not
always possible with general graphs as for example the complete graph with three nodes can not
be edge-colored with only two colors. Figure 3 illustrates this. However he has also shown that
each graph can be edge colored with at most 4G′ + 1 colors in polynomial time. As a consequence
we can no longer treat the �rst two phases independently from the third if we want an optimal
solution. Suppose we treat them independently then it is possible that we select a too low fairness
variation in the �rst phase resulting in an uncolored edge subset in Phase 2 that can no longer be
colored using 4G′ colors in the third phase.

As we only develop an approximation algorithm, we treat the �rst two phases independently
from the third phase. This introduces a certain error in the solution with which we have to cope.
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Figure 3: The complete graph with three nodes has a maximal degree of 2 but one needs 3 colors
to color all edges. This subgraph can be produced by the �rst phase when t = l(v) = u(v) = 2 and
the complete graph with three nodes is the input graph.

General Speed Dating

Phase 1 Phase 2/WDCES

Phase 3/Vizing

Phase 4

WDCES feasibility test

WPDCES feasibility test

MM

WPDCES

WPM

Figure 4: The reductions used in the approximation solver.

In Phase 3 we color the edges using 4G′ + 1 colors and make up for this with a fourth phase where
we remove a color if necessary.

The �rst phase works in exactly the same way as in the bipartite case. See Section 4.1 for a
description. The second phase uses the same top level idea but a completely di�erent reduction.
The third phase is Vizing's algorithm. The fourth phase is pretty straight forward. Figure 4 shows
an overview of the di�erent reductions used. Some of the problem names will only be de�ned later
in this document.

5.1 Performance Guarantees

In this section we analyze the theoretical performance of the algorithm outlined in the previous
section. Let I be an instance of the speed dating problem and δOPT and sOPT the performance
of an optimal solution with regard to the fairness and weight criteria, respectively. Our algorithm
produces a solution with a performance of δ and s. We refer to the sum of the weights in the
uncolored edge subset determined in the second phase by s̄. It is important to note that at this
point we have not yet removed the edges of the lightest color.

Removing those edges may decrease the degree of a node by at most 1 because each node has
at most one incident edge of a certain color. If we remove an edge from a node that is at its
lower bound then the fairness violation δ of the solution increases by 1. This leads to an absolute
performance guarantee:

0 ≤ δ − δOPT ≤ 1

Determining a performance guarantee for the weight is a bit more complicated. In the worst
case the algorithm needs 4G′ + 1 colors and 4G′ = σ. We therefore must dispose of a color so
that only σ colors remain.

Given the optimal solution we can easily obtain an uncolored edge subset by just forgetting
about the colors. The weight of the edge subset is not altered by this operation. This subset still
satis�es all of the other requirements and therefore is a valid but maybe not optimal solution to
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the second phase, i.e., to the WDCES problem. The optimal solution to this subproblem is s̄. As
this is a maximization problem this leads to s̄ ≥ sOPT .

We show using the pigeon hole principle that the lightest color has a weight of at most s̄/(σ+1).
Suppose that the lightest color has a weight bigger than s̄/(σ + 1) such as s̄/(σ + 1) + ε for some
ε > 0. The remaining σ colors must have a weight that is at least as big. Summing up these
weights should result in s̄. This however is not the case.

(σ + 1)(
s̄

(σ + 1)
+ ε) = s̄+ (σ + 1)ε

> s̄

This is a contradiction implying that the lightest color has a weight of at most s̄/(σ+ 1). This
gives us a lower bound for s, namely

s ≥ s̄− s̄

σ + 1
=

σs̄

σ + 1
.

Using this information we can determine the relative performance guarantee.

sOPT
s
≤ s̄

σs̄
σ+1

=
σ + 1

σ
.

Hence, the solution produced by our algorithm always has a fairness violation δ that is at most
o� by one and a weight that is at least σ/(σ + 1) times the optimal value.

5.2 Phase 2: Determine the Maximum Weight Subgraph

In this section we describe two reductions to tackle the WDCES problem formulated in Section
4.1 for general graphs. This problem consists of �nding a maximum weighted subgraph with node
degree constraints. We �rst reduce it to the weighted perfect degree constrained edge subset problem
(WPDCES), which can be formulated as follows.

Problem 12 (WPDCES). Given a graph G = (V,E) with edge weights w : E → N\{0} and a
node capacity c : V → N such that for each node v the inequality 0 ≤ c(v) ≤ d(v) holds, determine
an edge subset of maximum weight such that each node v has degree c(v) in the induced subgraph.

In a second step we reduce this problem to the weighted perfect matching problem (WPM),
which can be stated as follows.

Problem 13 (WPM). Given a graph G = (V,E) with edge weights w : E → N\{0} �nd an edge
subset of maximum weight such that each node has degree 1 in the induced subgraph.

These two reductions have already been described by Gabow [6]. We describe them here in
the way we have implemented them. We make use of Lemon's [2] matching algorithm for solving
the WPM. Gabow has proven that these reductions are correct and therefore we do not prove
their correctness here. The goal of this section is to provide enough information to implement
these algorithms. Gabow also describes a faster but harder to implement algorithm for solving the
WPDCES problem. It uses a slightly di�erent reduction, which can not reuse WPM solvers and
therefore requires a lot more implementation work.

In the �rst reduction we construct a graph G′ = (V ′, E′) that contains two disjoint copies of G.
The edges have the same weight as their ancestors in the original graph. We set c(v) to maximum
number of dates h(v) for each node. Let v be a designated a node in the �rst copy and let v′ be
the corresponding node in the second copy. In the next step we insert h(v)− `(v) disjoint bridges
between each v and v′ where `(v) is the minimum number of dates. A bridge consists of two
additional nodes x and y and three edges {v, x}, {x, y}, {y, v′} with weight 0. We set c(x) and c(y)
to 1. Figure 5 shows an example for G and G′.

Once G′ is constructed we solve the WPDCES problem with c as the node capacity on it. We
get an edge subset E′ such that each node in the induced graph has degree c(v). Finally, we remove
all bridges and one of the copies of G and obtain a solution to the original problem.

Each bridge can be included in two ways in the edge subset as Figure 6 shows because these
are the two only ways to ful�ll the node capacity requirement. As every edge has weight 0 this
choice does not a�ect the weight condition. The one version binds one degree capacity of both v
and v′ to the bridge and the other does not. As both v and v′ have capacity h(v) and as there are
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Figure 5: The left graph is the original graph. The labels in the nodes represent its capacity in the
form `(v)/h(v). The right side shows the transformed graph. The labels show the capacity of the
nodes. The weights are omitted for clarity. The solid edges show a valid edge subset. On the right
side one can see the two copies and the four bridges.

v x y v′

v x y v′

Figure 6: Shows the two ways that a bridge can be included in the subgraph. Solid edges are
included in the edge subset and dotted ones are not. Dashed lines represent the rest of the graph.
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v

Figure 7: Shows a node and its replacement. The solid edges are included in the edge subset.

h(v)− `(v) bridges this allows the capacities of v that are used on the non bridge part of the graph
to vary between `(v) and h(v) as required.

Let β be the maximal number of bridges, i.e., β = maxv∈V h(v) − `(v) then 2n(1 + β) is an
upper bound for the number of nodes in G′ and 2m + 3nβ is an upper bound for the number of
edges in G′. An upper bound for the maximum degree is 4+ β.

The key idea of the second reduction is to replace each node by a bipartite subgraph. Let G
be the graph constructed in the previous reduction. We construct G′ by inserting a Kd(v),d(v)−c(v)

into G′ for each node v. This is a complete bipartite graph with d(v) nodes in the one set, which
we refer to as external nodes, and d(v) − c(v) nodes in the other set called the internal nodes.
All the edges inserted so far have weight 0. Each external node will now be connected to exactly
one external node of another subgraph. This means for each edge {u, v} in G we choose a free
external node in the subgraph of u and one in the subgraph of v and connect them. We set the
weight of this new edge to the weight of the original edge. Next, we execute a weighted perfect
matching algorithm on G′. We then contract the subgraphs of each node and obtain a solution to
the original WDCES problem. Figure 7 shows a node and its replacement.

In the worst case c(v) is 0 for each node so 2n4 is an upper bound for the number of nodes
and m + n42 is an upper bound for the number of edges. This transformation itself is fast but
it signi�cantly increases the size of the graph and is therefore responsible for most of the time
needed by the approximation algorithm being developed. Gabow's other reduction mentioned in
Section 5.2 lightens this problem as his sparse node substitute has a size linear in d(v) and not
quadratic as the substitute we use.

To perform the feasibility test in the �rst phase it su�ces to check whether a degree constrained
subgraphs exists. This can be tested using the exact same reductions but ignoring the weights.
A perfect matching exists if and only if a maximum matching (MM) algorithm �nds a matching
with n/2 edges.

5.3 Phase 3: Coloring the Edges

The third phase consists of coloring the edges using 4G′ + 1 colors. We do this using Vizing's
algorithm [9, 10]. We will not explain the details of the algorithm here. It works similarly to our
bipartite coloring algorithm and also has a running time in O(nm). As 4G′ ≤ σ we may have used
one color more than allowed. If this is the case we correct it in the next phase.

5.4 Phase 4: Removing the Lightest Color

In this phase we dispose of a color if necessary. We �rst count the colors. At most σ + 1 colors
may have been used. If exactly σ + 1 colors are used we identify the lightest color and remove all
edges of that color.

5.5 Analysis

The WPM matching problem can be solved in O(nm log n) using the algorithm implemented in
Lemon [2]. The MM problem can be solved in O(m

√
n) [8]. To determine the running time of the

WPDCES problem let us �rst recall the size of the transformed graph. We have
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n′ = 2n4 ∈ O(n4) and

m′ = m+ n42 ∈ O(n42)

where 4 is the maximum degree of the input graph. We made use of the fact that m ≤ n4/2 for
every graph. The worst case running time is thus

O(n′m′ log n′) = O(n243 log n4) ⊆ O(n5 log n) .

Testing whether a feasible solution exists is faster because we can reduce it to the maximum
matching problem, which can be solved faster, namely in time

O(m′
√
n′) = O(n42

√
n4) ⊆ O(n4) .

In the next step, we determine the running time of the weighted degree constrained subgraph
algorithm. The characteristical numbers of the transformed graph are

n′ = ∈ 2n(1 + β) ∈ O(nβ) ,

m′ = 2m+ 3nβ ∈ O(m+ nβ) and

4′ = 4+ β ∈ O(4)

where 4′ is the maximum node degree of the transformed graph and β is maxv∈V h(v)− `(v). The
problem can thus be solved in time

n′24′3 log n′4′ ∈ O(n2β243 log nβ4) ⊆ O(n245 log n4) ⊆ O(n7 log n)

and the corresponding feasibility test runs in time

n′4′2
√
n′4′ ∈ O(nσ42

√
nβ4) ⊆ O(n44

√
n) ⊆ O(n5,5) .

Using the binary search over δ we can solve the �rst and the second phase in time

O((n2β243 log nβ4) + nβ42
√
nβ4 log t) = O(n2β243 log nβ4)

⊆ O(n5σ2 log n) .

This clearly dominates the third phase, which has a running time of Θ(mn), so this is also the
overall running time. The essence of this section can be summed up in the following theorem.

Theorem 14. The general speed dating problem can be approximated with an absolute performance
guarantee of 1 with respect to the weight criterion and with a relative guarantee of (σ + 1)/σ with
respect to the fairness criterion in time O(n5σ2 log n).

6 Heuristics

The worst-case running time derived in the previous section does not seem satisfactory. We there-
fore implemented and evaluated a couple of heuristic algorithms. All of these are greedy algorithms
and have the same top level structure. They associate a key k(e) to each edge e. At each iteration
they insert an edge with maximum key that does not violate any constraints. The algorithms di�er
only in the choice of the key. Algorithm 3 shows this structure in more details. In the following
subsections we describe the keys used by the di�erent algorithms.

6.1 δ-absolute

Let wmax be the maximum edge weight and d′(v) the node degree of v in the subgraph induced by
the currently selected edge set E′. The key is calculated using the following formula:

k(u, v) = wmax max{0, `(u)− d′(u), `(v)− d′(v)}+ w(u, v)

The �rst term tries to measure how well the δ-criterion would be satis�ed if the edge e would
be added to E′. The second does the same for the weight criterion. We multiply the �rst term
with wmax to make sure that the �rst term always dominates the second one unless it is 0.

As adding an edge to E′ changes d′(v) the key values are not constant during the execution of
the algorithm. All of the keys of the edges adjacent to an edge that is added may decrease by that
action. We use a heap data structure to quickly determine an edge with maximum key value. The
running time is in O(m4 logm).
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Algorithm 3 The top level structure of the greedy algorithms considered.

H ← E;
E′ ← ∅;
For all e ∈ E calculate k(e);
while H 6= ∅ do

e← edge with maximum k(e) in H;
H ← H\{e};
if can add e to E′ without violating the upper capacity constraint then

if can color e without violating the coloring constraint in E′ then
E′ ← E′ ∪ {e};
update all k(e) that changed;

end

end

end

6.2 δ-initial

The second algorithm uses a similar formula that does not depend on E′ and therefore provides
keys that are constant over time. This allows us to sort the edges once at the start of the algorithm.
The formula is:

k(u, v) = wmax max{`(u), `(v)}+ w(u, v)

The running time is in O(m logm).

6.3 δ-relative

Let c be the least common multiple of all d(v). The third greedy algorithm uses the following key
formula:

k(u, v) = wmaxcmax{ `(v)

d(v)
,
`(u)

d(u)
}+ w(u, v)

The multiplication with c makes sure that the �rst term is integer. As it is also a multiple of wmax

it dominates the second term unless it is 0.
The ratio `(v)

d(v) describes how many of v's out edges must be included in E′ to achieve a δ value

of 0. If we randomly add edges then we will most likely have problems with nodes were this ratio
is near 1. The idea of this greedy algorithm is therefore to add edges to these problematic nodes
as early as possible.

The keys are constant over time and therefore it is possible to sort the edges once at the start
of the algorithm. The running time is in O(m logm).
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7 Evaluation

In the previous sections we have developed a number of algorithms and analyzed their theoretical
performances. In this section we evaluate their running time using an implementation and test
data.

Our �rst solver makes use of the ILP formulation we have given in Section 3.2. It simply
feeds the input data to an o�-the-shelf ILP solver. We have not tried to tune the ILP solver for
this speci�c problem. In this section we refer to this solver of the speed dating problem as ILP-
based solver. Next, we have implemented the algorithm described in Section 4 which solves the
heterosexual speed dating problem. We refer to this solver as the bipartite solver as it operates
only on bipartite graphs. The min cost �ow solver used at the core of this implementation is the
network simplex based solver bundled with Lemon [2]. This di�ers from the algorithm that was
used in Section 4.4 to derive a bound for the worst case running time. The author claims that
the simplex based approach is generally faster even though it has worse theoretical worst case
running time [1]. We also implemented the approximation algorithm for general graphs described
in Section 5. At its core it makes use of the solver for the general maximal matching problem
provided by Lemon. We will refer to this solver as the general solver. Finally we implemented the
three heuristic greedy algorithms described in Section 6. We refer to them as the absolute solver,
the initial solver and the relative solver.

Unfortunately, we do not have any real world data. Therefore, we use random test instances.
There is a quite large set of parameters that make up the instances, hence it is impossible to perform
exhaustive testing. Parameters include the number of people, the number of bad dates, the fairness
constraints, the date quality distribution and whether we consider homo- or heterosexual dating.
We test instances that we suppose could be produced by the original problem statement.

We evaluate how fast our implementations are and how well the produced solution satis�es
the fairness and weight criteria. We perform three test series. The �rst two evaluate the general
performance of our algorithms. The last one tries to model a real world situation as closely as
possible. As the performances depend on the graph structure we performed each test four times
using di�erent graphs of the same size to smoothen outliers.

Our tests have been performed on an Intel Core2 Quad Q6600 processor1 with 2GB RAM. All
tests are single threaded, i.e., make only use of a single core. The test were run under Ubuntu 11.1
and the compiler was GCC 4.4.1 with an optimization level of -O3.

7.1 Heterosexual Dating

In this experiment we evaluate the performance of our algorithms on bipartite graphs. Because of
the way we implemented Vizing's algorithm the general solver always manages to color the graph
in the third phase using σ colors. It therefore does not have to throw away the lightest color and
thus always provides an optimal solution. As we have an optimal and fast solver at our disposal, it
makes no sense to display the performance of the ILP-based or general solvers on any plot except
the one showing the running times.

1See http://ark.intel.com/Product.aspx?id=29765 for processor details
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7.1.1 Varying the Number of People
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Figure 8: running times while varying n

In this section we vary the number of people n.
For each two women there are three men. The
number of bad dates is always set to 2/3 of all
possible dates. There are 3n/5 men and 2n/5
women and therefore a total of 6n2/25 pos-
sible dates. As 2/3 are bad dates we have
m =

⌊
2/25 · n2

⌋
. Which dates are bad is chosen

at random. For each person we choose ` and h
such that `(v) ≤ h(v) ≤ 12 randomly along a
uniform distribution. A dating event with 12
dates and 10 min per date will last at least 2
hours. We suppose therefore that this produces
realistic values. The date qualities are chosen
randomly from {1, 2, . . . , 100} using a uniform
distribution. We call this graph structure uni-
form.

Plot 8 shows the running times of the evaluated algorithms. One can see that the ILP-based
solver is not even able to handle small instances. The approximation algorithm for general graphs
is not quite as slow as our analysis predicted but it is largely outperformed by the remaining
algorithms. What is surprising is that the bipartite algorithm, which produces exact solutions, can
rival the speed of the greedy algorithms. The algorithm is by far faster than what our worst case
time analysis predicted. This can be explained to some extent by the fact that we used a di�erent
min cost �ow solver in these tests than in the worst case analysis.

Plot 9 shows the performance of the approximation algorithms with respect to the weight
criterion and the fairness criterion. The weight of the solutions is plotted as di�erence to the
optimal value. The absolute Solver works well whereas the initial solver and the relative solver
struggle a lot. They only �nd solutions that have a δ value of about 3 which is quite large considering
that solutions with δ = 0 exist. Also the weight criterion is far from being met optimally. We
can explain these di�erences in performance by the fact that the key of the two bad heuristics are
constant during the execution and the absolute solver may adjust the keys to react to unforeseen
situations.

This experiment clearly shows that the bipartite solver is superior in every way to both the ILP
as well as the general solver. We will therefore not consider them in the remaining experiments on
bipartite graphs.
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Figure 9: performance for bipartite uniform graphs while varying n
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7.1.2 Varying the Number of Dates

In the previous experiment the density of the graph was constant and we varied the size of the graph.
To evaluate the e�ect of the density on the performances we perform another experiment, where
we set n = 1000 and let m vary between 0 and

⌊
6/25 · n2

⌋
= 240000. All the other parameters are

the same as in the previous experiment.
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Figure 10: running times while varying m

Figure 10 shows the running times of the
four tested algorithms. The graph density is
the same as in the previous experiment when
m =

⌊
2/25 · n2

⌋
= 80000. The results observed

at that density are consistent with those of the
previous experiment. It is surprising that for
largem the exact bipartite solver is fastest. We
suppose that this e�ect is due to the fact that
many edges have to be discarded by the greedy
algorithms. In our implementation a loop over
all colors is needed to discard an edge. Consid-
ering that there are only twelve colors this is
not prohibitive but it may explain the running
times observed.

Figure 11a shows the performance of the
greedy algorithm with regard to the weight cri-
terion. One can see, just as in the previous experiment, that absolute solver outperforms the two
others. On sparse graphs the algorithms perform rather poorly. Probably there are fewer solutions
that are close to the optimal one and therefore including a wrong edge in the subset has worse
repercussions than when operating on dense graphs.

Figure 11b shows how well the fairness criterion is satis�ed. We can see the same thing as
in the previous experiment that the absolute solver is nearly optimal but the two others perform
poorly. The peak near the sparse graphs is due to the graph structure as even the optimal fairness
violation is not near 0.
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Figure 11: performance for bipartite uniform graphs while varying m
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7.1.3 Real World Scenario

Our goal in this experiment is to evaluate how well our algorithms perform in models based on �lled
out forms. We suppose each form contains 30 questions and each of them requires the participant
to rate something on a scale ranging from 0 to 5. Every person is therefore represented using
a vector vp with 30 elements chosen from the set {0/5, 1/5, . . . , 5/5} randomly along a uniform
distribution. We use the euclidean distance to model the date goodnesses. The maximum distance
of two such vectors is the distance of the vectors (0, 0, 0, . . .) and (1, 1, 1, . . .), which is

√
30. Using

this model good dates have a small distance. We however need a large date goodness. To �x this
we use the following formula to calculate the goodness of a date between the persons p and q:

wp,q =

⌊
(

√
30

2
− |vp − vq|2) · 100

⌋

A date is bad if wp,q ≤ 0. We still suppose that we have three men for every two women. We
try to make sure that every person gets the maximum number of dates possible. Therefore, we set
`(v) = h(v) = 8 for the men and `(v) = h(v) = 12 for the women. A graph with such a structure
is called form based.
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Figure 12 shows the running times of the
di�erent solvers tested. We also tried to eval-
uate the ILP-based solver but it was not ca-
pable of solving even the smallest instances in
reasonable time. The running times are gen-
erally slower than in the previous experiments.
Surprisingly, the running time of the bipartite
solver is between the running times of the ab-
solute solver and the other two greedy solvers.

Figure 13 show the quality of the solutions.
They greatly di�er from the results in Section
7.1.1. In terms of total weight the absolute
solver still outperforms the two other greedy
algorithms but the di�erence is smaller. The
results for the fairness violations are very in-
teresting. The initial solver performs just as
bad as in the previous experiment. The relative solver is a lot better and the absolute solver no
longer manages to achieve the optimum value but is nearly constantly o� by only one.

We suppose that the reason the relative solver performs that well is because it �rst tries to
match the sparse bridge like parts in the graph. Only once this is done it tries to match the edges
inside the clusters. Each cluster is a rather dense subgraph and therefore it is simpler to �nd a
matching with many edges inside it. It is however not as easy to �nd a heavy matching with many
edges and therefore the relative solver performs bad in terms of total matching weight.
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Figure 13: performance for bipartite form based graphs
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7.2 Homosexual Dating

In this section we present similar experiments to the ones in the previous section, however they
examine general non-bipartite graph structures. As a consequence it is not possible to make use of
the bipartite solver. We therefore no longer have a solver that can compute optimal solutions for
large instances. We can therefore not plot the di�erence to the optimal solution as we did in the
previous section but have to resort to plotting the actual values.

7.2.1 Varying the Number of People

This experiment is very similar to the one in Section 7.1.1. There are n(n − 1)/2 possible dates
and, to make sure that 2/3 of the dates are bad dates, we set m = bn(n− 1)/6c. The bad dates are
again chosen uniformly at random. Figure 14a shows the running times of the di�erent algorithms.
They behave nearly the same as in the bipartite case.

We have also tested how well the weight and the fairness criteria are met. Figure 14b displays
the result for the total weight. We plot the di�erence to the relative solver. The general solver
produces the best results. The absolute solver is better than the other two greedy algorithms.
These two produce solutions that are of the same quality. For the few test cases that the ILP
based solver was able to �nd an optimal solution it found one that has the same quality as the
solution found by the general solver. All solvers �nd nearly always solutions with an optimal
fairness violation of zero. We only found a single test instance where the initial solver was o� by
1. The plot showing this has been omitted as it would not provide any additional information.

An interesting observation is that these results are di�erent from those in Experiment 7.1.1.
Especially, the initial and relative algorithms do not struggle nearly as much as with bipartite
graph structures when considering the fairness violation. It is possible that the good solutions for
the bipartite graph structures make use of characteristic of that structure that these two solver
can not �nd and therefore they are not able to determine the optimal solution.

Consider for a moment the weighted matching problem i.e. each node should be matched once.
In graphs with a uniform weight distribution it is in general best to match the edges along an
even cycle in an alternating way. This maximizes the expected total weight sum and provides
a perfect matching. As soon as one edge is matched in a way that no such alternating chain
can be constructed anymore one misses out on at least two edges. Greedy algorithms are likely
to do this. As bipartite graphs only contain even cycles these algorithms often fall into this trap.
General graphs on the other hand also contain cycles with an odd length. In those cycles no perfect
matching is possible so this matters less. We know that this does not explain this e�ect very well,
for example we do not know why the absolute solver can cope with bipartite graphs, however it is
the best attempt at an explanation that we have got.
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7.2.2 Varying the Number of Dates
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In this experiment we will �x n = 100 and
vary m between 0 and n(n− 1)/2 = 4950. The
remaining parameters are the same as in the
previous experiment. As the ILP based solver
is incapable of producing solutions of this size
we do not consider it.

Figure 15 shows the running time of the
general algorithm. We also measured the time
that the greedy algorithms take but it was
nearly constantly below the resolution of our
timer. It therefore makes no sense to plot these
results. Figure 16a shows the achieved weights
of the di�erent algorithms. We plot the di�er-
ence to the relative solver. It is interesting that
on dense graphs the di�erence between the gen-
eral solver and the greedy solvers diminishes as
the graphs become denser. This e�ect is probably due to the fact that as there are more edges
it is more likely that there are more edges with high weights and as a consequence the greedy
algorithms do not have to use edges with a low weight at the end. The general solver can not make
use of that many high weight edges as there is a maximum of edges that may be selected and the
number of these good edges is higher than that limit. Figure 16b shows the values for the fairness
violation. One should note that all algorithms are capable of �nding optimal solutions most of the
time when one only considers this criterion. Just as in the previous experiment we can observe
that the initial and relative algorithms perform a lot better on non bipartite graphs.
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Figure 16: performance on uniform graphs while varying m
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Figure 17: performance on form graphs

7.2.3 Real World Scenario
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Figure 18: running times for form graphs

We also tested the solvers for general graph
structures on form based graphs. Figure 18
shows the running times of the di�erent algo-
rithms. As we expected the general solver is
slow and the rest is fast. Figure 17a shows
the total weights of the solutions produced by
the di�erent solvers and Figure 17b the val-
ues for the fairness violation. It is surprising
that the greedy algorithms struggle a lot more
than with uniform graphs. The initial solver
is always worst with a fairness violation signi�-
cantly above the optimum. The relative solver
is a lot better but its performance varies a lot.
The absolute solver is constantly one unit above
the optimum. The general solver nearly always
�nds solutions with an optimal fairness viola-
tion of zero.

8 Conclusion

We have formalized the speed dating problem in graph-theoretic terms and as an integer linear
program. We have shown that heterosexual special case can be solved in polynomial time and that
the general homosexual problem statement is NP-hard.

We have developed an algorithm that solves the heterosexual special case in at mostO(n2m log(nW ))
running time. Our experiments have shown that even for very large events with 1000 people the
computation time is only slightly above a single second. Let us recall that σ is the number of dating
rounds. We described an algorithm that computes an approximate solution for the general case in
O(n5σ2 log n) running time. The weight of the solution found by our approximation algorithm is
at least σ/(σ + 1) times the total weight of an optimal solution and the fairness violation is o� by
at most one unit. Empirical results show that our algorithm nearly always �nds a solution with
an optimal fairness violation and that the running time is acceptable with 5 minutes for a medium
sized event of 200 people. The algorithm will perform better the more dating rounds the event
has, as σ/(σ + 1) tends to 1 for σ →∞.

It turned out that the matching aspect can be solved in polynomial time but requires a lot
of implementation work. We were only able to solve the scheduling subproblem e�ciently for the
heterosexual special case. The implementation work was however a lot easier. In the homosexual
case the two subproblems can not be treated separately which complicates the problem of �nding
an optimal solution considerably. If one treats them separately then it is possible that scheduling
problem becomes unsolvable.
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We also investigated a number of di�erent greedy approaches. It turned out that their perfor-
mance heavily depends on the graph structure. Interestingly, di�erent approaches perform vastly
di�erent on di�erent graph structures. Our tests show that we have found one approach that
provides solutions of decent quality even for large homosexual events. The running time is slightly
below 10 seconds for 1000 people.

Starting Points for Follow-up Work

Our approximation algorithm does not make use of the best reductions known for solving the
weighted degree constrained edge subset subproblem. It is possible to use the other reduction
described by Harold [6]. This will certainly speed up the algorithm and lower the worst case running
time but it will signi�cantly increase the implementation work. Further our Phase 1 algorithm is
optimized for a uniformly distributed fairness violation. However in most cases relevant to the
original problem this violation is zero. Making use of this knowledge one can easily achieve a speed
up. Instead of determining the minimal violation using a binary search, one can just guess that it
is zero and one would almost always be lucky. It would certainly be interesting to investigate to
what extent our algorithm can still be optimized.

Our tests have revealed that the performance of the initial and relative greedy algorithms
presented here largely depends on the graph structures on which they are run. We have not
investigated this e�ect. An interesting question is which are the exact graph features that trigger
this behavior. One could try to derive performance guarantees for these graph classes. Further,
it would be interesting to see what the worst case performance for the absolute greedy algorithm
actually is.

We have concentrated on determining the actual date rounds and have deliberately ignored
a number of aspects of the original problem. For example we have not investigated what the
optimal order of the rounds is. One could gather additional requirements imposed by the real
world situation and try to formalize these as algorithmic problem. Once this is done an obvious
question is how to solve these e�ciently.
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