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Abstract

Graphs that are given by an outside-obstacle representation form an interesting superclass
of polygon-vertex visibility graphs, which are most studied in the field of visibility
problems. We first introduce ray obstacles and compare them to previously defined
poylgon and segment obstacle representations (ORs). We define “graph-invariant” maps,
which describe possible movements of vertices in a visibility graph, without altering
adjacencies. These might be used to continuously transform an outside-OR into a ray
OR. We characterize outerplanar graphs that admit a plane outside-OR as chordal
outerplane graphs. For general planar graphs we give a set of necessary conditions which
we conjecture to also be sufficient.

Deutsche Zusammenfassung

Graphen, die durch eine Außenhindernis-Darstellung gegeben sind, sind eine interessante
Überklasse von Polygon-Knoten-Sichtbarkeitsgraphen, die im Bereich der Sichtbarkeits-
probleme bisher am stärksten untersucht wurden. In der Studienarbeit werden zunächst
Strahlhindernisse eingeführt und mit den bereits bekannten Polygon- und Strecken-
Hindernis-Darstellungen (HD) verglichen. Da ungeklärt ist, ob jeder Graph mit Polygon-
Außenhindernis-Darstellung auch durch eine Strahl-HD dargestellt werden kann, werden

”
Graph-invariante“ Abbildungen definiert, die mögliche Verschiebungen der Knoten eines

Sichtbarkeitsgraphen beschreiben, bei der die Adjazenz der Knoten unverändert bleibt.
Diese könnten dazu verwendet werden Außenhindernis-Darstellungen stetig in Strahl-
HDen zu überführen. Im zweiten Teil der Arbeit, werden Außenhindernisdarstellungen
betrachtet, die sich überschneidungsfrei in die Ebene einbetten lassen. Für außenplanare
Graphen die mit einer planaren Außenhindernisdarstellung eingebettet werden können,
wird eine Charakterisierung als chordale außenplanare Graphen angegeben. Für allgemei-
ne planare Graphen werden einige notwendige Bedingungen gezeigt, von denen vermutet
wird, dass sie auch hinreichend sind.
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1 Introduction

Visibility is a very general and real-life notion that gives rise to a large set of visibility
problems that naturally occur in many fields, such as computational geometry and
geometric graph theory. Therefore, there is a diverse set of applications in robot motion
planning, computer vision and computer graphics, to name a few. For example, visibility
is used to find Euclidean shortest paths that avoid polygonal obstacles or to determine
invisible parts, that need not be rendered in a 3D scene.

The most famous visibility problem is Chvátal’s art gallery problem: Given a simple
polygon (our “art gallery”), we want to place a minimum number of guards (here: vertices)
in our gallery, so that every point of the gallery is watched over by a guard. Here, two
points (e. g. the guard and a point in the gallery) see each other, if we can draw a straight
line connecting the points, without leaving the boundary polygon. A good survey on the
topic is given by Shermer [S92].

In the special case, where guards are only allowed at the vertices of the polygon and
it suffices to have the vertices watched (both reasonable restrictions to the problem), we
compute a polygon-vertex visibility graph from the the boundary polygon: As vertex set
we choose the vertices of the polygon and we define two vertices to be adjacent, if they
can see each other by the definition above. In this setting, it suffices to place guards at a
dominating set of the resulting polygon-vertex visibility graph.

This type of visibility graphs is most studied in the field, but although researchers
have tried for many years, no combinatorial characterization has been found yet (see
Related Works). Therefore, our analysis focuses on a more general class of graphs, where
an arbitrary point set within a simple polygon forms our vertex set.

This larger class is equivalent to the graphs with an outside-obstacle representation,
recently defined in a paper by Alpert, Koch and Liason [AKL10]: Firstly, an obstacle
representation (OR) of a graph G is a set of vertices and polygonal obstacles, where an
edge is in G if and only if it does not intersect any obstacle in a straight-line drawing
of G. An outside-OR of G is an OR that consists of obstacles in the outer face of the
drawing of G.

Their paper contains a proof showing that outerplanar graphs have an outside-OR,
which motivates approaches to extend the result to superclasses of outerplanar graphs.
Furthermore, interesting questions arise by formulating additional conditions, e. g. to
characterize graphs with an outside-OR that is plane.

The main objective of this thesis is to understand representations of graphs by
obstacles in the outside face. An extension of obstacles to not only include polygons,
but also segments or ray obstacles, will yield additional insight and gives us a tool to
measure the complexity of the obstacles.
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1.1 Related Work

For the computation of a visibilitiy graph given by points inside a simple polygon,
Ben-Moshe et al. [BHKM04] provided a nearly optimal (O(n + m logm logmn + k),
with O(m + n) space) output-sensitive algorithm, with k being the number of edges
in the resulting graph. In the more restricted case of polygon-vertex visiblity graphs,
but with general polygons that may contain holes, Pocciola and Vegter [PV96], gave an
output-sensitive O(k + n log n) algorithm using O(n) space.

Alpert, Koch and Liason [AKL10] did not only define obstacle representations, but
also a new parameter that can be associated to any graph, its obstacle number, denoted by
obs(G). It is the minimum number of obstacles needed in any obstacle representation. If
the OR has the additional restriction of having only convex obstacles, the convex obstacle
number is defined analogously. They give a construction for graphs with arbitrary large
(convex) obstacle number and analyze certain small graphs which cannot be represented
by a single obstacle. They also completely characterize graphs with convex obstacle
number one and graphs that use one line segment obstacle. While outerplanar graphs
have obstacle number one and an outside-OR, it is still open, whether any graph of
obstacle number one can be represented by an outside obstacle.

Subsequent papers extended the results and answered some open questions raised by
Alpert et al. To summarize a few results, Pach and Sarıöz [PS11] gave a construction
of several small graphs with obstacle number two and showed that there are bipartite
graphs with arbitrarily large obstacle number. Mukkamala, Pach, and Pálvölgyi [MPP11]
showed that there are graphs on n vertices with obstacle number at least Ω(n/ log n).

Some progress on the task of computing the obstacle number has been made, at least
for the problem with fixed vertex positions: Sarıöz [S11] gave an efficient approximation
algorithm that computes an OR from a given graph drawing D with O(obs(D) log obs(D))
obstacles. Later, Johnson and Sarıöz [JS11] showed that computing an OR of a plane
graph with the minimum number of obstacles is NP-hard, but admits a polynomial-time
approximation scheme (PTAS) and is fixed parameter tractable (FPT). Sarıöz also
determined the segment obstacle number of paths and cycles on n vertices in [S12] with
and without the restriction that segment obstacles may intersect.

Polygon-vertex visibility graphs form an important subclass of graphs with an outside-
OR, which were first introduced in 1983 by Avis and ElGindy [AE83]. Ghosh [G97]
formulated a set of necessary conditions for the graph class, which was later augmented
by Coullard and Lubiw [CL91], but these have not yet been proven to be sufficient.

Everett and Corneil [EC95] also showed, that there is no finite set of forbidden
induced subgraphs in polygon-vertex visibility graphs. So far, characterizations have only
been achieved for certain restrictions on the polygons of polygon-vertex visibility graphs.
For example, according to [S92], Everett and Corneil [EC90, E90] gave a characterization
of visibility graphs in spiral and 2-spiral polygons, – polygons which have exactly one
chain (two chains, resp.) of reflex vertices – are characterized as interval graphs and
perfect graphs, respectively.

A generalization of these graphs are induced subgraphs of polygon-vertex visibility
graphs, or “induced visibility graphs” for short. Spinrad [S03] considers this graph class
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the natural generalization of polygon-vertex visibility graphs, which is hereditary with
respect to induced subgraphs. These can also be represented by an outside-OR.

If a graph is given as a pointset inside a simple polygon, Cheng, Chobrak and
Sundaram [CCS00] formulated an algorithm to find crossing-free paths in the graph
with a time and space complexity of O(m2n2), where m is the number of vertices in
the polygon and n the cardinality of the pointset. This was improved by Daescu and
Luo [DL08], provided that n = o(m2/ logm). While finding crossing-free spanning trees,
one and two-factors in general geometric graphs is NP-complete, as shown by Jansen
and Woeginger [JW93], no research has yet been published on the complexity of finding
crossing-free spanning trees, etc. in our more restricted class of visibility graphs with an
outside-OR.

1.2 Outline

In Chapter 2, we introduce basic notions and preliminaries. We begin by defining obstacle
representations, turning later to general visibility notions, such as a visibility polygon of
a point and a weak visibility polygon of an edge. Readers familiar to the field of visibility
problems may skip this section, or consult it for questions of notation.

In Chapter 3 and 4, I present the main findings of my study thesis. I start with
defining “graph-invariant” maps, which allow us to move vertices in a graph drawing
without changing the graph, by retaining again an outside-OR. This might provide a
tool to transform a graph drawing to show that certain restrictions on the obstacles
are possible. The aim of this technique was to show, whether any graph which can be
represented by polygonal outside-obstacles, may be transformed into a version that needs
only rays to block sights between non-adjacent vertices.

Later we characterize the class of outerplanar graphs which can be represented by
a plane outside-OR. We further show necessary conditions of general graphs with a
plane outside-OR. On the question whether any planar graph can be represented by an
outside-OR, we show only partial results.

The last chapter concludes my research and gives pointers to future work that could
not be addressed within the scope of my study thesis.

9





2 Preliminaries

2.1 Obstacle Representations

In [AKL10], Alpert et al. defined an obstacle representation (OR) of a graph G as a
straight-line drawing of G in the plane, where an edge is in G if and only if it does not
intersect any obstacle. This representation is given by a pair (V,O), where V is a set of
points in the plane and O is the set of obstacles. We write G(V,O) for G.

For obstacles, we can choose from several models, resulting in different types of
obstacle representations. In [AKL10] two types are defined. A general obstacle, called
polygon obstacle here for avoidance of ambiguity, is defined to be a polygon, i. e. a
connected union of line segments. For a segment OR, an obstacle is a line segment in the
plane. We introduce a third type, so called ray ORs, where O is a set of rays, starting at
a point and extending infinitely in one direction.

Throughout this document, we assume that points and vertices of obstacles are in
general position, so no three of them are collinear. For notation, we will denote the
segment between points p1 and p2 as p1p2 := {x ∈ R2 : x = λp1 + (1− λ)p2, λ ∈ [0, 1]}
and the polygon defined as the union of segments

⋃n−1
i=1 pipi+1 ∪ pnp1 as p(p1, . . . , pn).

Furthermore, denote the ray starting at p1 and pointing in direction of p2 as r(p1, p2) :=
{x ∈ R2 : x = p1 +λ(p2− p1), λ ∈ R≥0}. Let pointset(o) denote the set of defining points
of an obstacle o.

Figure 2.1. An example of a segment obstacle representation. The non-edges (dashed)
are intersected by segment obstacles (heavy lines).

Definition 1. The obstacle number of a graph G is the smallest number of obstacles
in any obstacle representation of G [AKL10]. The segment obstacle number and ray
obstacle number is defined analogously for segment and ray ORs.
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F2

F1

p(F2)

p(F1)

Figure 2.2. The face polygon p(F1), and the face polygon p(F2) of a self-intersecting
graph, are displayed in orange. The dashed lines are the polygons corresponding to the
outer face.

Let DG be a drawing of G and consider the plane graph G(DG) that is constructed
from DG by placing a vertex at any intersection of edges. We call a region of R2 \DG,
corresponding to a face of G(DG), a face of DG or shorter a face of G if no ambiguity is
possible.

As points are in general position, given a line segment pq, p, q ∈ V ∪ pointset(O) and
a point r ∈ V ∪ pointset(O) \ {p, q} arbitrarily, the distance between span(pq) and r is
positive. We set rG as the minimum of distances of all such points in (V,O).

Each obstacle is contained in exactly one face f of our graph drawing DG. Polygon
obstacles can be enlarged to the complete face, so we can assume that each face which
is crossed by a non-edge (that is not intersected by polygons in other faces) contains
exactly one polygon obstacle. As polygons are closed and faces are open sets, we give a
simple construction to shrink (or enlarge in the case of the outside face) the face just a
bit and get a closed polygon of a face, denoted by p(f), which is well-defined. We will
call this the face polygon of f .

The construction is as follows. Draw a circle of radius rG around any vertices and
intersection points on the boundary of f , as in Figure 2.2. For each circle determine the
point intersection of the angle bisection inside the face and the circle (for intersection
points there may be more than one). Exclude points with an angle of π, as they would
unnecessarily increase the complexity of the resulting polygon. By scanning the boundary
of the face, connect the points in their order. As the radius of the cirles was small enough,
the resulting polygon is simple. Also note that the complexity of the polygon does not
increase significantly.

Definition 2. As in [AKL10], an outside-obstacle representation (outside-OR) of G is
an obstacle representation that consists of obstacles in the outer face of the drawing of
G. Clearly, all rays in a ray OR lie in the outer face.

Lemma 1. 1. Graphs with a polygon OR can be represented by a segment OR, and
vice versa.

2. Every graph with a ray OR has a polygon outside-OR.
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Proof. 1. Given a polygon OR (V,Op) of a graph G, we form a segment obstacle
set Os by adding segments pipi+1 and pnp1, for each p(p1, . . . , pn) ∈ Op. Clearly
(V,Os) is a segment OR of G. On the other hand, let (V,Os) be a segment OR of
a graph G. For each face f of DG which contains a segment, construct the polygon
p(f), which fills the face and add it to a set Op. Delete other segments from Os in
this face, to avoid duplication of polygons. Iterate, until Os is empty. (V,Op) is
now a polygon OR of G.

2. Let f be the outer face of DG. (V, {p(f)}) is a polygon OR of G.

The missing equivalence of Lemma 1.2 is an open question, which we will look into in
section 3.2. The following lemma gives us a way to construct subgraphs of graphs with
an OR by intersecting edges with obstacles. It shows, that our graph class is hereditary
with respect to subgraph relationship, without having to come up with a new OR from
scratch.

Lemma 2 (removing edges). Let (V,O) be an obstacle representation of G and e ∈ E(G)
an edge that has an open, non-empty intersection with the border of a face f , bordering
to f ′ of DG. Then G− e also has an OR.

Proof. Let x ∈ e be a point between f and f ′ and let U be an open set containing x,
which does not intersect DG except for e. We can place an arbitrarily small segment
obstacle in U that intersects only e to obtain an obstacle representation of G − e. In
particular, if DG is an outside-OR and e borders to the outside face, G− e also has an
outside-OR. See Figure 2.3 for illustration.

We may be able to construct an OR of G − e, without increasing the number of
obstacles, by choosing f (and f ′) along the edge e, such that either f or f ′ already
contains an obstacle. Depending on the geometry of the faces, we may be able to change
the obstacles in that face, to also intersect with e, e. g. if a segment obstacle in either
face intersects only one non-edge.

f

e

U
f ′

Figure 2.3. The heavy line is the additional segment obstacle for G− e.
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2.2 Visibility Polygons of Points and Edges

The definitions and remarks of this section are taken from Ghosh’s monograph on
Visibility Algorithms in the Plane [G07], which is recommended to anyone with further
interest in the field of visibility problems.

Definition 3. The visibility polygon vp(q) of a point q in an OR is the set of all points
that are visible from q, i. e. vp(q) = {p ∈ R2 : p is visible by q}.

Observe that vp(q) might be unbounded. In the formulation of the art gallery
problem, this is the area of sight of a guard, who can see 360 degrees. By definition,
vp(q) is star shaped, with q being in the kernel of vp(q).

Ghosh [G07] suggests a combination of a preprocessing algorithm of Bhattacharya,
Ghosh and Shermer [BGS06] and an algorithm of Lee [L83] or ElGindy and Avis [EA81]
to be used to obtain a linear algorithm for computing vp(q) in a simple polygon P . Here,
the first algorithm prunes P to remove winding, while the latter one computes vp(q), if
P is non-winding, i. e. the angle subtended at q is less or equal than 2π while scanning
the boundary of P . If P is a polygon with n vertices and h holes, Heffernan and Mitchell
[HM95] gave an optimal Θ(n + h log h) algorithm. Because we can easily compute a
bounding box of our graph drawing, we can also use these algorithms in our setting of
obstacle representations, in which visibility polygons may be unbounded.

For the visibility of a line segment or an edge, several definitions are possible. For our
purposes, the notion of “weak visibility”, originally defined by Avis and Toussaint [AT81],
fits best. In the context of the art gallery problem it can be seen as a guard who patrols
along a line segment in the gallery polygon.

Definition 4. Let P be a simple polygon and pq an internal segment in P . A point
z ∈ P is said to be weakly visible from pq, if there exists a point w ∈ pq (depending on
z), such that w and z are mutually visible. The set of all points of P weakly visible
from pq is called the weak visibility polygon of P or wvp(P ) for short. See Figure 2.4 for
illustration.

p
qP

wvp(P )

Figure 2.4. The weak visibility polygon (dark gray) of pq in P .

For the question of computing wvp(pq), let P be a simple polygon and pq an internal
segment in P . Guibas et al. [GHLST87] gave an algorithm to compute wvp(pq) in O(n)
time, using a given triangulation of P .
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There is a characterization of weak visibility using Euclidean shortest paths. The
Euclidean shortest path from s to t in a polygon P is a length-minimal path connecting s
and t, which lies completely in P . It is denoted by SP(s, t). Properties of SP(s, t) are
summarized by Ghosh [G07] as follows:

1. SP(s, t) is not self-intersecting

2. Let SP(s, t) = (s, . . . , u, . . . , v, . . . , t). Then, v ∈ SP(u, t) and u ∈ SP(s, v).

3. SP(s, t) turns only at vertices of P .

4. If P is simple, then SP(s, t) is a unique path in P .

In the following, a vertex p of a polygon is convex if the interior angle at p is less than π.
A convex edge is an edge of two convex vertices.

Lemma 3. [G07, Lemma 3.2.7] Let vkvk+1 be a convex edge of a simple polgon P . A
vertex vi of P is visible from some point of vkvk+1 if and only if SP(vk, vi) makes a left
turn at every vertex in the path and SP(vk+1, vi) makes a right turn at every vertex in
the path. See Figure 2.5 for illustration.

vk vk+1

vi

SP(vk, vi)

SP(vk+1, vi)

P

Figure 2.5. vkvk+1 is a convex edge in P and the shortest paths make left and right
turns according to Lemma 3.

Theorem 1. [G07, Theorem 3.2.13] Let vkvk+1 be a convex edge of a simple polygon P .
The following statements are equivalent:

1. P is weakly visible from vkvk+1.

2. For any two vertices vi and vj of P , where vkvk+1 belongs to bd(vj , vi), SP(vi, vj)
passes only through vertices of bd(vi, vj).

3. For any two vertices vi and vj of P , where vkvk+1 belongs to bd(vj , vi), SP(vi, vj)
makes a right turn at every vertex in the path.

4. For any vertex vi of P , SP(vk+1, vi) makes a right turn at every vertex in the path
and SP(vk, vi) makes a left turn at every vertex in the path.
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3 Ray Obstacle Representations

In this chapter, we study the class of graphs with a ray OR. The motivating question
of the chapter is, whether graphs with an outside-OR can also be represented by ray
obstacles. For an illustratory example, given a graph with a spiral chain of segment
obstacles in the outside face, can we “straighten” it to use linear ray obstacles, as in
Figure 3.1. Therefore, we introduce “graph-invariant” regions, in which we can freely
move a vertex, without changing the incidences of the graph.

Figure 3.1. The graph is given by a segment outside-OR (left) and a ray OR (right),
obstacles are represented by heavy lines.

3.1 Graph-invariant Maps on Obstacle Representations

Definition 5. Let G be a graph with an OR (V,O).

• Let v ∈ V , then v(x,y) denotes v with new position (x, y) ∈ R2. Then Fv→(x,y) is
the corresponding map of ORs, which maps v to v(x,y) and leaves everything else
fixed. Also Gv→(x,y) := G(Fv→(x,y)((V,O)).

• Let o = p(p1, . . . , pn) ∈ O, then oi : (x,y) denotes o with new position of pi at
(x, y) ∈ R2. Analogously, Fo→i : (x,y) is the map of ORs, which maps o to oi : (x,y)
and leaves everything else fixed. Also Go→i : (x,y) := G(Fo→i : (x,y)((V,O)). In
the case of segment or ray obstacles, i = 1, 2 correspond to the first and second
component of the obstacle’s definition.
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Definition 6 (vertex invariance region). Let G be a graph with an OR (V,O), v ∈ V .
We define the invariance region I(v) of a vertex v ∈ V under translation as the set
M ⊆ R2, such that uv ∈ E(G)⇔ uv ∈ E(Gv→(x,y)) for all (x, y) ∈M and u ∈ V \ {v}.

Additionaly the strong (or outside-preserving) invariance region Is(v) of v is defined
to be the set M ⊆ I(v), such that obstacles that are outside in (V,O), remain outside in
Fv→(x,y)((V,O)).

Definition 7 (obstacle invariance region). Let G be a graph with an OR (V,O), o ∈ O,
i ∈ N. We define the invariance region Ii(o) of an obstacle o under translation of the
ith component as the set M ⊆ R2, such that E(G) = E(Go→i : (x,y)) for all (x, y) ∈ M .
Analog to the previous definition, the strong invariance region Iis(o) has the additional
property that o remains outside if it was outside in (V,O).

Let G be a graph with a OR (V,O), and v ∈ V . The invariance region of v is the
area, in which we can move v without changing the adjacencies of the graph. These may
change if we move a vertex out of the visibility polygon of an adjacent vertex, or if we
move it into a visibility polygon of a previously non-adjacent vertex. Hence,

I(v) =

 ⋂
u∈N(v)

vp(u)

 \
 ⋃

u∈V \N(v)

vp(u)

 .

Lemma 4. Let G be a graph with an OR (V,O), and uv, xy two crossing edges in G. Let
w ∈ {u, v, x, y} and p : [0, 1]→ I(w) be a continuous path in I(w), starting at p(0) = w.
If p crosses the edge that does not contain w, then w is adjacent to both vertices of this
edge. See Figure 3.2 for illustration.

Proof. Assume w.l.o.g. w = v. For any point p(a), a ∈ [0, 1] on the path, the line segment
up(a) does not cross any obstacle, as otherwise p(a) would not be in I(v). Furthermore, if
a vertex is visible from p(a), then v is adjacent to it. In a crossing position p((0, 1]) ∩ xy
an obstacle which blocks sight to a vertex of xy cannot lie between x and y, as they are
adjacent. Therefore, v is adjacent to x and y.

u

v
x

y
vp(1)

p

Figure 3.2. Vertex v is moved along continuous path p in I(v) and crosses the edge xy.
Therefore, it will be adjacent to x and y (not in the picture).
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v

o

C2

C3

C1

Figure 3.3. The graph-invariant region I(v) in grey. The connected component C1 is
Is(v), as o is only outside for positions of v in C1.

Proposition 1. Let G be a graph with a segment outside-OR (V,O) and v ∈ V . Then
I(v) decomposes into connected components C1, . . . , Ck. If a point p ∈ Ci, i ∈ {1, . . . , k}
satisfies p ∈ Is(v) then Ci ⊆ Is(v). Put differently, satisfying the property of being outside
preserving is constant if restricted to a connected component.

Proof. Let C be a connected component of I(v), v ∈ C and v′ = v(x,y) with (x, y) ∈ C.
Assume that there is an obstacle o ∈ O that will no longer be in the outside face in
G′ := Fv→v′(G). Let f be the face containing o in DG′ . There are at least three edges on
the boundary of f , one of them incident and one non-incident to v′. Let G̃ = G− v be
the graph of (V \ {v}, O). Then o is outside of DG̃, as the drawing of G̃ is the fixed part
while v is moved in G. Let p : [0, 1]→ C be a continuous path in C, going from p(0) = v
to p(1) = v′.

First, consider the case that o is enclosed in a region of DG′ (not necessarily the face
o is contained in) bounded by two edges incident to v′ and necessary edges of DG̃, as in
Figure 3.4, left. Because DG̃ does not change, it is clear that there is an intermediate
configuration on p such that a point of o lies on either of the two bounding edges incident
to v. But this is not possible, as the edge would be intersected by o.

Therefore consider the second case, as in Figure 3.4, right. Then, there is exactly
one incident edge e = uv′ on f . Let Rp,u := {x ∈ R2 : x ∈ up(a), a ∈ [0, 1]}, u ∈ N(v) be
the area that is touched by the edge uv when v traverses p. We show that any point that
is not in the outside face of G and not in Rp,u, is also not outside in G′. For this, let
q ∈ R2 be an inner point in G but not contained in Rp,u. We can safely assume that q is
not inside in G̃, but in a face that has an edge e ∈ E(G̃) on its border.

Assume that q is outside in G′. Then, either i) v crossed an edge e on the border of f
or ii) a vertex z of an edge e on f is in Rp,u. There is no other possibility to “open” a face,
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R(G̃)

o

f

Figure 3.4. Case 1 on the left: o is enclosed in DG̃ and a triangle with tip v′, and case
2 on the right: o is enclosed in DG̃ and a single edge incident to v′.

because the topology of f will not change, if no point lies on an edge in an intermediary
position.

For i), it follows by Lemma 4 that v is adjacent to both vertices of e = xy, and hence
the first case applies, as q is enclosed in a region bounded by uv and ux or uy and DG̃.
For ii), it follows by Lemma 4 that u is adjacent to z and therefore q is inside in DG̃, a
contradiction.

Therefore, a point on o that is outside in G′ but inside in G has to be in Rp,u. In
the intermediate configuration corresponding to a point in Rp,u, v does not see u.

In the next section, we try to find a way to transform a graph with an outside-OR into a
graph with a ray OR. For ease of analysis, we restrict ourselves to continuous movements
of vertices only. To justify this a bit, I guessed that there is a simple criterion, when Is(v)
is connected. However, 2-connectedness of the graph does not imply connectedness of Is(v)
as can be seen in Figure 3.5. Therefore, there might be non-continuous transformations
of the graph that we did not include in our analysis.

v

o

C1

C2

Figure 3.5. Although the graph is 2-connected, it does not have a connected Is(v).
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3.2 Ray Obstacle Representations

At first, we present a condition of a given drawing of G which is equivalent to the existence
of a ray OR. For this, we use weak visibility polygons as defined in Chapter 2.

Let G be a graph with a polygon or segment outside obstacle representation (V,O)
and DG its drawing. In this section, we will try to find an answer to the question, whether
every graph representable by a polygon or segment outside-OR, can also be represented
by a ray OR.

Lemma 5. Let Pi be the polygon defined vivi+1 and the path from vi to vi+1 in G that
uses only edges on the boundary of DG which are not on the boundary of the convex hull
of V . There is a ray OR (V,O′) of a given drawing DG, if and only if for any non-edge
e, there is an i such that e has an open intersection with Pi and with the weak visibility
polygon of vivi+1 in Pi.

Proof. We show the proof by assuming (V,O) to be a segment outside-OR. There are no
non-edges and therefore w.l.o.g. no segment obstacles outside the convex hull of V , so it
suffices to look at the Pi defined above. Therefore, fix an i and assume the condition holds
for Pi. Let e be a non-edge of G with an open intersection with Pi. Let z ∈ e ∩ wvp(Pi),
which exists due to our condition. By definition of weak visibility we find a w ∈ vivi+1,
such that z and w see each other. Introduce a ray obstacle re = r(z, w), which intersects
e. Repeat this for all non-edges which are not already intersected by previously inserted
rays.

Now, let (V,O) be a ray OR of G and assume there is a non-edge e which does not
intersect wvp(Pi) for any i. Hence, there is no straight line starting from an arbitrary
point z ∈ e ∩ Pi to a point of vivi+1. A ray obstacle to intersect e cannot be in Pi.

Remark that the number of ray obstacles may increase, as we can have segment
obstacles which intersect more than one non-edge and cannot be replaced by a single ray
obstacle.

The property can be strengthened a bit by assuming that Pi = wvp(Pi) for all
non-edges vivi+1 on boundary of the convex hull of V . For drawings with this stricter
property the outer boundary of our graph is called weakly externally visible polygon, as
defined in [G07, Section 3.7]. As all pairs of non-adjacent vertices of Pi are non-edges in
G, this strengthening of our condition concerns only previously non-weakly-visible parts
of single triangles or convex parts of the boundary polygon consisting of intersecting
edges.

Our criteria developed above becomes more useful by the characterization of weak
visibility polygons with Euclidean shortest paths, as seen in chapter 2. We will look at
the situation that a vertex of P is not in the weak visibility polygon of vkvk+1, therefore
a drawing which might not be represented by ray obstacles without moving vertices.

Lemma 6 (cf. Lemma 3). Let vkvk+1 be a convex edge of a simple polygon P and vi
be a vertex that is not weakly visible from vkvk+1. Then there is a vertex vr, such that
SP(vk, vi) makes a right turn at vr or there is vertex vl such that SP(vk+1, vi) makes a
left turn at vl.
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vi vi+1

wvp(Pi)

conv(V )

e

Figure 3.6. The non-edge e has an open intersection with Pi and wvp(Pi) and thus our
condition is valid.

Looking (w.l.o.g.) first at sp0 := SP(vk+1, vi) only on bd(vk+1, vi), i. e. the convex
hull of bd(vk+1, vi), as we ignore bd(vk, vi), the path on the boundary between vk and vi.
In the situation of Lemma 6, bd(vk, vi) crosses sp0. We will therefore try to transform
bd(vk, vi) to eliminate these intersections. Later, we change the roles of bd(vk, vi) and
bd(vk+1, vi).

To transform the vertices on the boundary, we may have to move vertices outside of
their invariance regions and adjust other vertices whose adjacencies would be altered by
the move afterwards. See Figure 3.7, for an illustration of the delta in visibility polygons.
Any vertices in this region have to be moved of this region, possibly starting a process of
subsequent moves. The difficulty of this technique for our main question is that we have
to show that this chain of moves is acyclic. This is not obvious and still open.
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vk vk+1

vi

v
v(x,y)

∆vp = vp(v(x,y)) − vp(v)

sp0

Figure 3.7. The dashed line sp0 crosses the left part of the boundary. Therefore moving
v transformes the boundary of the outer face into an externaly visible polygon, with
possibly non-empty ∆ vp(v).
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4 Plane Outside-Obstacle Representations

An obstacle representation (of one of the three types defined above) is called plane, if the
drawing DG of (V,O), without the obstacles, is a plane graph. In this section, we try to
characterize the class of graphs with a plane outside-OR. The first proposition allows
us to restrict our analysis to a certain type of chordal plane graphs, which we define as
plane graphs which are chordal, with the restriction that chords have to be contained
inside their cycle.

Definition 8. A chordal graph G is called inner-chordal, if every cycle of length larger
than three, has an inner chord, i. e. a chord that is contained in the region enclosed by
the cycle. See Figure 4.1 for illustration.

a) c)c)b) s

t

s

ta a

b
b

Figure 4.1. Example of a) an inner-chordal graph and b), c) chordal graphs with an
outside chord st of cycle a, s, b, t.

Proposition 2. Graphs with a plane outside-OR are inner-chordal plane graphs.

Proof. Let G be a graph with a plane outside-OR DG. Assume that G is not chordal
plane, i. e. that it has a cycle Cn of length n ≥ 4 without a chord. Because of the
existence of a plane outside-OR, all non-edges have an open intersection with the outer
face. In particular, this holds for all pairs of vertices of distance two on Cn. Consider a
chain of neigbouring vertices v1, . . . , v4 ∈ Cn. Here, the non-edges {v1, v3} and {v2, v4}
have an open intersection with the outside face and the edges do not cross, therefore v2,
v3 is the same side of {v1, v3} and {v2, v4}, respectively. Thus, the chain is in convex
position, see Figure 4.2. As it was chosen arbitrarily, Cn is a convex polygon and all
non-edges are completely contained in the inner face, a contradiction.

Assume that all chords of a cycle Cn of length n ≥ 4 are embedded outside of Cn.
We create a subgraph of G by intersecting all outer chords of Cn with an outside obstacle
(cf. Lemma 2), without intersecting Cn itself. The resulting graph is also a graph with a
plane outside-OR, but is not chordal, a contradiction. Therefore, our graph class is also
inner-chordal.
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v1

v2

v3
v4

outer face

inner face

Figure 4.2. Four neighboring vertices form a convex chain, as non-edges (dashed) have
to be in the outside face.

For our characterization, it suffices to restrict our graph class to biconnected graphs,
as the different 2-connected components can be embedded separately and then put
together by arbitrary scaling and rotation. Note that the graph generated by contracting
the 2-connected components to single vertices, is acyclic, as otherwise there would be a
second path, contradicting a connectivity of less than 2.

Any chordal outerplane graph is also inner-chordal, as it is inner-triangulated. Remark
that inner-chordal graphs are hereditary to removing outside edges (cf. Lemma 2), as we
cannot remove necessary chords with outside obstacles, without intersecting the cycle
of the chord. As our analysis will look at both, plane and outerplane graphs, we give a
characterization of inner-chordal graphs via a construction method. If we find a way to
embed these graphs with a plane outside-OR during every step of the construction, we
would be able to show a characterization of the class.

For the proof of the following lemma, we use a well-known characterization of chordal
graphs. Let G = (V,E) be a graph. G is chordal, if and only if it has a perfect elimination
ordering, i. e. there is an ordering {v1, . . . , vn} of V , such that vi is simplicial in the
subgraph induced by {v1, . . . , vi}. A vertex v is simplicial if the subgraph induced by v
and its neighbors, is a clique. Note that we first show a construction for chordal plane
graphs and then change it to a construction for inner-chordal plane graphs.

Lemma 7 (Chordal plane graphs). Biconnected chordal plane graphs are exactly the
graphs which are given by the following construction. We start with a single triangle
G1 = (V1, E1) with V1 = {v1, v2, v3}, and E1 = P(V1). Given a graph Gi = (Vi, Ei) at
construction step i, we obtain Gi+1 by either

1. placing the tip w of a new triangle that shares an existing edge e = {u, v} ∈ Ei, so
that {u,w} and {v, w} do not cross any edges in Ei. Then, Vi+1 = Vi ∪ {w} and
Ei+1 = Ei ∪ {u,w} ∪ {v, w}, or

2. replacing a triangle with a plane 4-clique by adding a center vertex c in a given
triangle {u, v, w} and connect it to the surrounding vertices. Then Vi+1 = Vi ∪ {c}
and Ei+1 = Ei ∪ {u, c} ∪ {v, c} ∪ {w, c}.

Proof. We first show that graphs generated by this construction are biconnected chordal
plane graphs. For the induction start, the triangle embedded in general position is a
biconnected chordal plane. Let Gi be a biconnected chordal plane graph. As we apply
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the first rule, by construction, Gi+1 is plane and also no n-cycle of cardinality larger than
three not having a chord is generated. Because w is on a cycle, it is also 2-connected and
as we do not remove any edges, Gi+1 is biconnected. If we apply the second rule, Gi+1 is
also plane and and no larger cycle is generated.

For the other direction, we have to show that given any chordal plane graph G, there
is a way to construct it using the rules above. Hence, let G = (V,E) be chordal plane
and {v1, . . . , vn} a perfect elimination ordering of G. G does not contain any simplicial
vertices of degree four, because this would result in a 5-clique, which is not planar. Also,
as G is biconnected, only the penultimate simplicial vertex has degree one, and will not
be looked at here, because our construction starts with a triangle. Thus, in order to
construct G from the ordering, we start with the triangle of v1, v2, v3 and continue with
vertex v4 as below.

We have already seen that all simplicial vertices in our ordering starting at v4 are of
degree two and three. By chordality, simplicial vertices of degree two have to be vertices
of triangles, and simlicial vertices of degree three are inner vertices of plane 4-cliques.
Our perfect elimination ordering gives us a way to embed the graph by rules 1 and 2.
If vi is a simplicial vertex of degree 2, apply rule 1 and connect it to its neighborhood
accordingly. If it is of degree 3, apply rule 2 and place it inside the triangle forming its
neighborhood.

Proposition 3 (Inner-chordal plane graphs). Biconnected inner-chordal plane graphs
are exactly the graphs which are given by the following construction. We start with a
single triangle G1 = (V1, E1) with V1 = {v1, v2, v3}, and E1 = P(V1). Given a graph
Gi = (Vi, Ei) at construction step i, we obtain Gi+1 by either

1′. placing the tip w of a new triangle that shares an existing outside edge e = {u, v} ∈
Ei, so that {u,w} and {v, w} do not cross any edges in Ei. Additionally, w has to
be outside. Then, Vi+1 = Vi ∪ {w} and Ei+1 = Ei ∪ {u,w} ∪ {v, w}, or

2′. replacing a triangle that was created by rule 1′ with a plane 4-clique by adding
a center vertex c in a given triangle {u, v, w} and connect it to the surrounding
vertices. Then Vi+1 = Vi ∪ {c} and Ei+1 = Ei ∪ {u, c} ∪ {v, c} ∪ {w, c}.

For outerplane embeddings, only the first rule is used. This construction of biconnected
inner-chordal plane graphs can be conducted such that first only rule 1′ and afterwards
only rule 2′ is used. Note that this results in the same graphs as replacing triangles by
plane 4-cliques in a chordal outerplane graph.

Proof. We first show that the generated graphs are biconnected inner-chordal plane
graphs. Rule 1′ can be implemented by rule 1, with extra caution on where to put w, and
rule 2′ can be implemented by rule 2, with extra caution to not use it on triangles that
have been generated by rule 2 itself, as this would create a stacked triangle configuration
as in Figure 4.1b). Therefore, the resulting graphs are biconnected chordal plane. It
remains to show inner-chordality. The starting triangle is obviously inner-chordal. Let
Gi be a biconnected inner-chordal plane graph. As we apply rule 1′, in Gi+1 attaching a
triangle, any newly generated n-cycle have to use both vertices of the outer edge, which
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is an inner chord. As rule 2′ can only be used on triangles where all vertices are outside
vertices, adding a center vertex inside the triangle to create a plane 4-clique does not
create an outer chord in Gi+1. For outerplane embeddings this holds as well, because
applying rule 1′ does not change outerplanarity.

For the other direction, we have to show that given any inner-chordal (outer)plane
graph G, there is a way to embed it using the rules above. For the easier case, let G be
a chordal outerplane graph with a weak dual T . Because of biconnectivity, T is a tree.
Along T by application of rule 1′, G can be generated.

Now let G = (V,E) be inner-chordal plane and {v1, . . . , vn} a perfect elimination
ordering of G. As in the proof of the preceeding lemma, all simplicial vertices in our
ordering starting at v4 are of degree 2 and 3. By inner-chordality, simplicial vertices of
degree 2 have to be outside vertices of triangles, and simlicial vertices of degree three are
inner vertices. Our perfect elimination ordering gives us a way to embed the graph by
rules 1′ and 2′. If vi is a simplicial vertex of degree 2, apply rule 1′, place it outside and
connect it to its neighborhood accordingly. If it is of degree 3, apply rule 2′ and place it
inside the triangle forming its neighborhood.

Because we cannot attach any triangle with rule 1′ to inner edges of 4-cliques
generated by rule 2′, we can find a perfect elimination ordering, such that first only
simplicial degree 2-vertices and afterwards degree three-vertices are listed. Hence, we can
first construct the chordal outerplane skeleton of G with rule 1′ and afterwards apply
rule 2′ to generate plane 4-cliques.

The following corollary gives our final form of the construction, which will be used
in the proofs of Section 4.2.

Corollary 1. Note that instead of rule 2′ in Proposition 3 we could also introduce an
alternative rule 2′′, yielding the same graphs, if we additionally allow to use a plane
4-clique as starting point G1.

2′′. Placing the tip w of a new plane 4-clique with center cw that shares an existing
outside edge e = {u, v} ∈ Ei, so that {u,w} and {v, w} do not cross any edges
in Ei. Additionally, w has to be outside. Then, Vi+1 = Vi ∪ {w, cw} and Ei+1 =
Ei ∪ {u,w} ∪ {v, w} ∪ {u, cw} ∪ {v, cw} ∪ {w, cw}.

4.1 Embedding Outerplanar Graphs with a Plane Outside-OR

Our characterization of graphs with a plane outside-OR will start with a restriction to the
simpler class of outerplanar graphs. Their description will yield an easy characterization,
which can be extended to get necessary conditions for the full class.

The class of outerplanar graphs with a plane outside-OR is equivalent to the outer-
planar graphs with an outerplane outside-OR, therefore it suffices to look at outerplane
outside-ORs only. This is true, because of chordality and the fact that an inner vertex
sees at least three surrounding vertices. This would create a clique with cardinality of at
least 4, contradicting outerplanarity of the graph.
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RD(v1, e2)

RD(v1, e3)

Figure 4.3. The regions of a triangle D.

As discussed before, we now look in detail at outerplanar graphs with a plane outside-
OR. Obviously, the triangle is such a graph. Given a biconnected chordal outerplane
graph Gi with a plane outside-OR, is there a way to place the tip w of a new triangle,
sharing an edge e, such that the resulting obstacle representation is still an outside-OR?

A necessary condition is that the non-edge between w and the opposite tip of the
neigboring triangle, has an (open) intersection with the outside face of our drawing and
hence can be intersected by an outside obstacle of the graph.

Before we proceed, we introduce some notation to describe possible positions for the
tip of our new triangle. See Figure 4.3 for an illustration of the following definitions.

Definition 9. Let D be a triangle in the plane, with edges ei (i = 1, 2, 3). Let l(D)
be the set of lines l(ei) = span(ei) defined by the edges of D. As points are in general
position, these lines partition R2 − (

⋃3
i=1 l(ei)) into seven open regions. Let R be such a

region and define a mapping σR : l(D)→ {+,−} which maps l ∈ l(D) to +, if R lies on
the side of l containing D and − otherwise. We call σR a signature of R with respect to
D.

For a vertex x ∈ V (D), define RD(x) to be the region with σR(l(e)) = − for incident
edges e ∈ E(D) of x. For an edge e ∈ E(D), define RD(e) to be the region with
σR(l(e)) = − and σR(l(ẽ)) = + for all ẽ ∈ E(D) \ {e}. For the inside of D, called R(D),
it is σR(l(ẽ)) = + for all e ∈ E(D) by definition of σR. This defines seven disjoint regions.
The region with σR(l(ẽ)) = − for all e ∈ E(D) is empty.
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Figure 4.4. Embedding a new triangle D2 attached to D1.

Definition 10. Let D be a triangle and e1, e2 ∈ E(D) incident to a vertex x ∈ V (D).
We partition the region RD(x) into two regions, called RD(x, ei) by deleting the angle
bisection of e1 and e2 from RD(x), whereas RD(x, ei) is on the side of ei, i = 1, 2.

Lemma 8 (region symmetry). Let D1, D2 be triangles in the plane with vertex sets
V (D1) = {v1, u, v} and V (D2) = {v2, u, v}. D1 and D2 share an edge e = {u, v}.
Then v2 ∈ RD1(w) ⇔ v1 ∈ RD2(w) for w ∈ e and vi ∈ RDj (vj) ⇔ vj ∈ Di for
i, j ∈ {1, 2}, i 6= j. This means, that our definition of the regions of two neighbouring
triangles exhibits a certain symmetry.

Proof. Let w ∈ e ∈ E(D1) ∩ E(D2) and v2 ∈ RD1(w). Observe that v1 is on the side of
l(e) which does not contain D2. Furthermore, v1 is on the side of l({w, v2}) not containing
D2, because l({w, v2}) and l({w, v1}) cross at w and v2 is on the side of l({w, v1}) not
containing D1. By definition of RD2(w) and symmetry the first equivalence holds.

Let w.l.o.g. be v2 ∈ RD1(v1). Then v1 is on the side of l({u, v2}) and l({v, v2})
containing D2. Furthermore v1 is on the same side of l(e) as D2. By symmetry the
second equivalence follows.

Lemma 9. Let D1, D2 be triangles in the plane with vertex sets V (D1) = {v1, u, v} and
V (D2) = {v2, u, v}. D1 and D2 share an edge e = {u, v} and assume that v1, v2 is not
contained in D2, D1, respectively. Then the following statements are equivalent:

1. The drawing of D1 and D2 is a plane outside-OR.

2. v2 ∈ RD1(u) ∪RD1(v).

3. v1 ∈ RD2(u) ∪RD2(v).
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In particular, if we construct the graph starting from D1, then v2 can be chosen to be in
RD1(u, e) ∪RD1(v, e).

Proof. We first show “1⇔ 2” by verifing or falsifying the property for each of the seven
regions defined above. For ease of notation call the edges e1 = {u, v}, e2 = {u, v1}, e3 =
{v, v1} (see Figure 4.4 for an illustration). By assumption, v2 is not inside D1 and neither
in RD1(v1), as then v1 would be inside D2. If v2 ∈ RD(e2) then {v, v2} crosses e2, because
v and v2 are on opposite sides of l(e2), but inside the cone of l(e1) and l(e3) containing
D1 and thus cannot cross l(ei) to the left or right of ei. This is a contradiction to the
planarity of the embedding. The case v2 ∈ RD(e3) follows by symmetry. If v2 ∈ RD(e1),
then {v1, v2} crosses e1, so v1 and v2 are not adjacent. This non-edge is completely
contained inside both triangles so there is no outside obstacle which can intersect it, a
contradiction.

The remaining case is v2 ∈ RD1(u) ∪RD1(v). By symmetry we can assume w.l.o.g.
v2 ∈ RD1(u). The edge {v1, v2} does not cross l(e2) and lies completely on the side of
l(e2) opposite to the triangle, thus on the outside face. Both, the graph with {v1, v2}
and without it, have a plane outside-OR.

The equivalence “2⇔ 3” follows directly from the preceding Lemma 8.

Given that we have a construction of any biconnected chordal outerplane graph,
such that we can add a new triangle sharing an edge with a triangle of a given graph,
i. e. RD1(u, e) ∪RD1(v, e) contains enough (outer) space to contain the tip v2, and that
all non-edges intersect the outside face, we will have a complete characterization of
outerplanar graphs with a plane outside-OR. We will show this in Proposition 4. Before,
we argue that it suffices to look at maximal outerplanar graphs in the following Lemma 10.

Lemma 10. Chordal outerplanar graphs are obtained from a maximal outerplanar
supergraph by subsequent deletion of outer edges. Thus, if a maximal outerplanar graph
has an outside-OR, then so has any chordal outerplanar subgraph.

Proof. Assume that there is an inner edge, that needs to be removed, in order to get
a chordal outerplanar graph. This inner edge divides two faces with each at least two
other edges on the border. Removal of the edge would generate a cycle of length at least
4 without a chord as a boundary of an inside face. This contradicts the definition of
chordality in outerplane graphs.

Proposition 4. Outerplanar graphs with a plane outside-OR are exactly the chordal
outerplanar graphs.

Proof. Proposition 2 shows the first direction. For the opposite direction, because of
Lemma 10. it suffices to show that maximal outerplanar graphs have a plane outside-OR.
Maximal outerplanar graphs are constructed as biconnected chordal outerplane graphs
with rule 1′ of Proposition 3. It suffices to show that we can embed the new triangle
as in Lemma 9, to retain a plane outside-OR for the graph. We do this by giving a
construction in which the following invariant is preserved: for each edge e = {u, v} on
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exactly one triangle D, bordering to the unbounded face, one of RD(u, e), RD(v, e) does
not contain any vertices or edges of G.

Our proof is by induction on the number n of vertices. For n = 3 the invariant holds
trivially, as all regions are empty. Furthermore, G has a plane outside-OR. Let G be a
maximal outerplane graph of order n and assume that the induction hypothesis holds for
G. Let e = {u, v} be an edge of G on the unbounded face on a triangle and let w.l.o.g.
R(u, e) ∩G = ∅.

We embed a new triangle D̃ sharing the edge e by placing a new vertex y in RD(u, e)
such that RD̃(y) ⊂ RD(u, e). This holds if we place y on the line through v which is
parallel to the angle bisection of D at u, see Figure 4.5 for illustration. As y ∈ RD(u, e),
our embedding is a plane outside-OR if we add an obstacle intersecting the non-edge of
y and the opposite vertex of D.

It remains to show that if there is an edge e′ = {u,w} ∈ D′ 6= D on the outside face
(for which there might be an intersection of RD′(u, e′) with our new triangle) RD′(w, e′)
does not contain any edges or vertices of G. This holds true, because by our construction,
all triangles in the sequence of edges (ei)i=0,...,k, starting from the edge e0 ∈ D = D0,
e0 6= e incident to u, to ek = e′ ∈ Dk added to Di−1 were embedded so that the region
RDi(x, ei) (x ∈ ei \ {u}) allowed further embedding of Di+1, and hence also for e′ = ek
in RDk

(w, ek).

4.2 Embedding Graphs with a Plane Outside-OR

For the larger class of general graphs with a plane outside-OR, we allow a plane 4-clique
in our construction. Again, we first introduce notation for the different regions around a
plane 4-clique.

Definition 11. Let ∆ be a plane 4-clique with center c, x ∈ V (∆) \ {c} and e1, e2
incident edges of x in ∆. Let Di be the inner triangle of ∆ sharing edge ei. We define
Rc(x, e1) := RD2(x) and Rc(x, e2) := RD1(x). Note the change of indices.

In order to attach a 4-clique to another 4-clique, analog to Lemma 9, certain conditions
have to be obeyed.

Lemma 11. Let ∆1, ∆2 be plane 4-cliques with vertex sets V (∆1) = {v1, u, v, c1} and
V (∆2) = {v2, u, v, c2} and center c1, c2, respectively. ∆1 and ∆2 share an edge e = {u, v}
and assume that v1, v2 is not contained in ∆2,∆1, respectively. Then the following
statements are equivalent (cf. Figure 4.6 for notation):

1. The drawing of ∆1 and ∆2 is a plane outside-OR.

2. c2, v2 ∈ Rc1(u, e) ∪Rc1(v, e) and c2 is inside ∆2.

3. c1, v1 ∈ Rc2(u, e) ∪Rc2(v, e) and c1 is inside ∆1.

32



v1

u

v

D
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v2

w

e′

D′

Figure 4.5. The construction in the proof of Proposition 4 with added triangle D̃, here
the dash-dotted lines are parallel.

Proof. Let D be the triangle with V (D) = {c1, u, v}, sharing the edge e = {u, v} and
consider D2, the triangle of ∆2 without the center point c2. To be a plane outside-OR,
we have to place v2 in RD(u) ∪RD(v) = Rc1(u, e) ∪Rc1(v, e) by Lemma 9. This region
is disconnected, but as {u, v, c2} form a triangle sharing edge e, c2 has to be in the same
connected componend in order to avoid crossing the boundary of D2. The equivalence of
2) and 3) follows from symmetry by Lemma 8.

Of course, instead of ∆2, we can also add only a triangle D2 to ∆1.

Corollary 2. Let ∆1 be a plane 4-clique and D2 be triangle, with vertex sets V (∆1) =
{v1, u, v, c1} and V (D2) = {v2, u, v} and center c1. ∆1 and D2 share an edge e = {u, v}
and assume that v1, v2 is not contained in D2,∆1, respectively. Then the following
statements are equivalent:

1. The drawing of ∆1 and D2 is a plane outside-OR.

2. v2 ∈ Rc1(u, e) ∪Rc1(v, e).

3. c1, v1 ∈ RD2(u) ∪RD2(v) and c1 is inside ∆1.
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Figure 4.6. The regions of a plane 4-clique ∆1 with center c1.

In the following we try to characterize graphs with plane outside-OR as chordal
outerplane graphs, in which we can replace triangles with plane 4-cliques, provided that
certain conditions hold. We introduce the following notation: Let G be an inner-chordal
plane graph, then T (G) denotes the weak dual of G after removing the inner vertices. In
T (G), nodes which had its inner vertex removed, are marked, they represent the plane
4-cliques. T (G) is a tree with maximal degree 3, as after removal of inner vertices, G is
chordal outerplane. For a given subset C of vertices in a graph, we denote C := C ∪N(C)
as the vertices of C, together with their neighbors.

Lemma 12. Let G be an inner-chordal plane graph. Let Ci, i ∈ {1, . . . , n} be the
connected components of marked vertices in T (G). If G has a plane outside-OR, the
following holds:

1. Cj does contain at most one degree 3-vertex for any j ∈ {1, . . . , n}.

2. If Cj , Ci have degree 3-vertices, Cj is disjoint Ci for j 6= i ∈ {1, . . . , n}.

Proof. We first note that, besides mirroring, there is no other possibility to embed a
plane 4-clique that shares edges with three other plane 4-cliques, than that of Figure 4.7
left, also if the outer 4-cliques are replaced by triangles. Given this configuration and
one of the outside cliques ∆, observe that both of their outside edges contain only one
convex vertex (at the tip w of ∆), the other vertices have an outside angle of less than
π. Therefore, if we attach a plane 4-clique to one of these edges, assume uw, the tip
w reduces its outside angle to less than π and no other plane 4-clique or triangle can
be attached to ∆. As the outside angle at u was further reduced, the newly attached
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Figure 4.7. Two examples of a graph with a plane outside-OR. On the right side, no
additional triangle can be attached to the edge e.

4-clique retain the invariant of having only one convex outside vertex, as u and w are
not convex. By induction, if we only attach plane 4-cliques, we cannot create another
4-clique that is surrounded by three other 4-cliques, or maximally one 4-clique and two
triangles.

For the second property, see Figure 4.8 and note that on the left side, the connected
components are disjoint and embeddable, while on the right side, they intersect and
the configuration can not be embedded. In both cases, the first property holds. This is
because the triangle in the intersection of the components has contradictory conditions
of placing the tip, from both components.

Due to time constraints, we can as yet, only formulate the sufficiency of our necessary
conditions as the the following conjecture. We have not yet come up with a good invariant
of an embedding which would ensure that when adding a new triangle or 4-clique, we have
“enough space” to do so while obeying the conditions of Lemma 9, 11 and Corallary 2.

Conjecture 1. Graphs with a plane outside-OR are exactly the inner-chordal plane
graphs which satisfy the necessary condition of Lemma 12.

4.3 Planar Graphs with an Outside-OR

In [AKL10] the question is posed, whether planar graphs do always have an outside-OR.
As for outerplanar graphs, this is true, we were guessing, that planar graphs with an
outside-OR have a treewidth of 2, or at least bounded treewidth. In the following we
show, that this is wrong. See Figure 4.9 for a forbidden minor of tree-width 3, which
can be represented by an outside-OR. We may be able to show an even stronger result
that grid graphs can be represented with an outside-OR. Two-dimensional grid graphs
are defined as the product of two path graphs. However, due to time constraints on the
thesis, our possiby correct construction and formal proof might be given afterwards.
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∆1

∆2

∆1

∆2

∆1

∆2

Sketch:

Figure 4.8. Left: Two degree three nodes, but not in the same connected component,
right: this configuration is not embeddable via a plane outside-OR, because at the vertex
shared by ∆1 and ∆2 the outside angle is less than π.

a) b)

Figure 4.9. The octahedral graph as a) a plane 1-segment OR, b) a 3-segment outside-
OR.
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5 Conclusion

Throughout this thesis, several results about graphs with a representation by outside
obstacles are shown. The newly introduced type of ray obstacles was compared to
previously defined obstacle representations, though it remains open, whether any polygon
outside-OR can be transformed into a ray OR. Furthermore, the outerplanar graphs with
a plane outside-OR were characterized in terms of chordal outerplane graphs. This result
might be extended to a characterization of the general class, but within the scope of this
thesis only a set of necessary conditions could be shown so far.

5.1 Future Work

While it is still unknown whether a full combinatorial characterization of polygon-vertex
visibility graphs exists, the same question can be asked for induced visibility graphs and
our even larger class of graphs represented by outside obstacles. As far as I know, it is
also open whether induced visibility graphs form a proper subclass of our graphs with a
polygon outside-OR. This could be answered negative, if via graph-invariant vertex moves,
an inner vertex can be moved outside, without moving outer vertices inside. Without
the additional condition of retaining outsideness of outer vertices, one could show that
graphs with an outside-OR are hereditary with respect to induced subgraph relationship.

It would be also interesting to analyze segment obstacle number and to obtain some
results on this in relation to ray obstacle number and polygon complexity. Also concerning
obstacle numbers, it would be interesting to adopt an algorithm of [S11] to approximate
the segment obstacle number of a given graph drawing. Throughout this thesis, obstacles
were allowed to intersect. In addition to the question of plane obstacle representations,
we could as well ask about non-crossing obstacles.

While there are theoretical results on the problem of “point set embeddability” for
outerplanar and planar graph, it would be interesting to look at this problem for graphs
with a (plane) outside-OR.

For our specific embedding of graphs with a plane outside-OR, it would be nice
to analyze properties, like the resolution or the segment obstacle number. There are
probably ways to improve the embedding concerning these properties.
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