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Abstract

Euler diagrams allow the visual representation of set systems and their intersection re-
lations. Every set is represented by a collection of closed curves such that elements of
two or more collections intersect if and only if the intersection of the corresponding sets
is non-empty. In the area-proportional case each intersection’s area conveys numerical
information. There exist several well-formedness conditions for Euler diagrams, which for-
malize desirable aesthetic properties. In this thesis we explore a close relationship between
hypergraphs and Euler diagrams to obtain an area-proportional representation of the lat-
ter. A support for a hypergraph H is a graph G on the same set of vertices such that each
hyperedge of H induces a connected subgraph of G. Supports that are trees serve as a
basic tool for our purpose and are called tree-supports.

We present an efficient approach that generates an area-proportional Euler diagram if
there exists a tree-support for the input’s hypergraph. The generated Euler diagrams are
guaranteed to satisfy a set of well-formedness conditions. Particularly, all used curves are
simple, exactly one curve is assigned to each set, there exists exactly one connected region
in the plane for every set intersection and finally, all the regions are convex. Additionally,
our tree-support minimizes the total number of concurrent curves that separate the pairs
of internal regions that are placed next to each other in the plane.

As a byproduct, we obtain an algorithm that, for a given hypergraph, computes a minimum-
weight tree-support for an arbitrary edge-weight function (if one exists). The algorithm
has running time O(n2(m+log n)), where n is the number of vertices and m is the number
of hyperedges. This improves the best known previous algorithm for this problem [KS03],
which has a time complexity of O(n4m2).
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Deutsche Zusammenfassung

Euler Diagramme erlauben die visuelle Darstellung von Mengenbeziehungen. Jede Menge
wird durch eine Menge geschlossener Kurven repräsentiert, so dass sich zwei oder mehr
Kurven aus verschiedenen Kurvenmengen genau dann schneiden, wenn der Schnitt der
entsprechenden Mengen nicht leer ist. In der flächenproportionalen Variante liefert zu-
dem der Flächeninhalt jedes Schnitts numerische Informationen. Sogenannte Wohlge-
formtheitsbedingungen formalisieren wünschenswerte ästhetische Eigenschaften von Euler
Diagrammen. In dieser Studienarbeit untersuchen wir einen engen Zusammenhang zwis-
chen Hypergraphen und Euler Diagrammen, um flächenproportionale Euler Diagramme
zu generieren. Ein Support eines Hypergraphen H ist ein Graph G, wobei G und H
dieselbe Menge von Knoten haben und jede Hyperkante von H einen zusammenhängen-
den Subgraphen von G induziert. Supports, die Bäume sind, spielen in dem entwickelten
Visualisierungsverfahren eine wichtige Rolle und werden Baumsupports genannt.

Das vorgestellte Verfahren erlaubt das effiziente Zeichnen eines flächenproportionalen Euler
Diagramms, falls ein Baumsupport für den Hypergraphen der Eingabe existiert. Die gener-
ierten Euler Diagramme erfüllen diverse Wohlgeformtheitsbedingungen, so dass garantiert
ist, dass nur einfache Kurven verwendet werden, dass jeder Menge genau eine Kurve
zugewiesen wird, dass es für jede Schnittmenge genau ein repräsentierendes Gebiet in
der Ebene gibt, sowie dass jedes dieser Gebiete konvex ist. Weiterhin wird die Gesamtzahl
der überlappenden Kurven minimiert, die jedes Paar von inneren Gebieten, die in der
Ebene nebeneinander liegen, separiert.

Für einen Teilschritt des Verfahrens entwickeln wir einen Algorithmus, der für einen
gegebenen Hypergraphen einen Baumsupport mit minimalem Gewicht bezüglich einer be-
liebigen Kantengewichtsfunktion berechnet (falls ein solcher existiert). Die Laufzeit des
Algorithmus ist O(n2(m+ log n)), wobei n die Anzahl der Knoten und m die Anzahl der
Hyperkanten ist. Damit wird eine Verbesserung gegenüber dem bisher besten bekannten
Algorithmus für dieses Problem [KS03], dessen Zeitaufwand O(n4m2) beträgt, erzielt.
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1. Introduction

Euler diagrams were first introduced by Euler [EdCC43] and allow visual representation
of relationships between sets. The Euler diagram depicted in Figure 1.1, for example,
conveys the information that some animals can swim, some animals can fly, some animals
can even swim and fly and that no animal is a tree and vice versa. Euler diagrams can
also convey cardinal information about the represented set intersections and are in this
case called area-proportional. If the Euler diagram in Figure 1.1 is interpreted as an area-
proportional Euler diagram, it additionally conveys the information, for example, that
there are more animals that can swim than animals that can fly. Euler diagrams are used
to visualize data in many areas including computer file organization [DCES03], library
environments [TVVb05] and medicine [SDC+03].

Given an abstract Euler diagram description, which consists of a list of sets and a list
of set intersections (and in the area-proportional case an area specification for each set
intersection), the generally considered task is to generate an (area-proportional) Euler
diagram that visualizes the given data. Since the purpose of Euler diagrams is to visually
convey information to viewers, it is desirable that the generated Euler diagrams have
nice aesthetic properties, which are formalized as so called well-formedness conditions.
Depending on the input data, one might want to ensure that all regions of the resulting
diagram are convex, that all used curves are simple, that at no point more than two curves
intersect at once or that none of the sets is represented by more than one curve.

Animals

Animals

Animals that

that can swim

can fly

Trees

Figure 1.1: An Euler diagram.
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1.1. Basic concepts and related work

A hypergraph H is an ordered pair (V, S), where V is a set of vertices and S is a set
of hyperedges, which are subsets of V . Hypergraphs can be seen as a generalization of
graphs, whose edges connect exactly 2 vertices. A support for hypergraph H is a graph G
with vertex set V such that for every hyperedge s ∈ S the subgraph of G induced by
the vertex set s is connected. In addition, if G is a tree, G is called tree-support and if
there exists a tree-support for H, then H is called tree-hypergraph. Application areas for
hypergraphs and supports include modeling relational database schemes [BFMY83] and
social networks [BWR07]. Korach and Stern [KS03] introduced and solved the problem
of finding a tree-support T for a hypergraph H such that the weight of T regarding some
weight function is minimal amongst all tree-supports for H (in [KS03] such tree-supports
are called ’minimum cost clustering spanning trees’). They motivated this problem with
the following scenario related to communication networks. Given is a graph G = (V,E)
and a collection S of non-disjoint subsets of V . Each vertex of V represents a customer,
each edge e ∈ E represents a potential connection between two customers that can be
constructed for a cost of c(e) and each set s ∈ S represent groups of customers. The task
is to construct a tree-shaped communication network T = (V,E′), E′ ⊆ E with minimal
construction cost such that each group of customers of S is connected by a subtree of T ,
the motivation being that none of the groups of customers is sensitive to network faults
occurring outside of their group.

Chow [Cho07] related the topics of Euler diagrams and hypergraphs by mapping a set
system, which is collections of subsets of an item set, to a hypergraph. Analogously, we
map an abstract Euler diagram description D to a hypergraph H(D), which we call labeled
hypergraph for D (formally defined in Section 2.1). This hypergraph contains a vertex for
each specified set intersection and a hyperedge for every set. The hyperedge corresponding
to a set s contains precisely the vertices that correspond to set intersetions that are subsets
of s.

In this thesis we present a framework for algorithms that generate area-proportional Euler
diagrams for the class of abstract Euler diagram descriptions whose labeled hypergraphs
are tree-hypergraphs. The generated Euler diagrams are guaranteed to satisfy several
well-formedness conditions. We also present an algorithm that computes tree-supports
with minimal weight. The algorithm has runtime complexity O(n2(m + log n)), where n
is the number of vertices and m is the number of hyperedges of the input hypergraph.
It therefore improves upon the algorithm presented in [KS03], whose runtime complexity
is O(n4m2).

Now, in Section 1.1, we recall basic concepts of graph theory, drawings in the plane, Euler
diagrams and hypergraphs and introduce related definitions and notation. We also present
an overview of related work. Thereafter, in Section 1.2, we more precisely delineate our
contribution and present an overview of the remainder of this thesis.

1.1 Basic concepts and related work

In this section we introduce and recall the basic concepts, definitions and notation related
to the results of this thesis. We cover graph theory and drawings in the plane, Euler
diagrams and their well-formedness conditions and hypergraphs and their supports. We
also present an overview of work related to our results in the fields of Euler diagram
generation and the computation of supports for hypergraphs.

1.1.1 Graph theory and drawings in the plane

In this subsection we recall basic graph-theoretic concepts and concepts related to drawings
in the plane. Note that the corresponding definitions are adopted to the context of this
thesis and may therefore slightly differ in the literature.
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1. Introduction

A graph G is an ordered pair (V,E), where V is a set of vertices and E is a set of edges,
which are subsets of V with cardinality 2. We also use V(G) to refer to the vertex set
and E(G) to refer to the edge set of G. If there exists an edge {u, v} ∈ E for any two
distinct vertices v, u ∈ V , then G is called complete graph. A vertex v ∈ V and an
edge e ∈ E are said to be incident if v ∈ e. The degree d(v) = |{e ∈ E | v ∈ e}| of a
vertex v ∈ V is the number of edges incident to v. Two vertices u, v ∈ V are neighbours
in G if there exists an edge that is incident to both u and v. A subgraph of G is a
graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. The graph G′ is said to be induced by
vertex set V ′ if E′ = {{v, u} ∈ E | v, u ∈ V ′} and it is said to be induced by edge set E′

if V ′ = {v ∈ V | ∃e′ ∈ E′ : v ∈ e′}.

Let (v1, . . . , vk) ∈ V k be a sequence of vertices. We refer to the corresponding sequence
of edges p = (e1, . . . , ek−1) ∈ Ek−1 with ei = {vi, vi+1} for 1 ≤ i ≤ k − 1 as a path
in G between v1 and vk and we say that the edges e1, . . . , ek−1 constitute a path. A
path (ej , . . . , el), 1 ≤ j < l ≤ k− 1 is called subpath of p. A path is said to be simple if the
vertices v1, . . . , vk except for maybe v1 and vk are pairwise distinct. If v1 = vk, we refer
to p as a cycle. We say that the edge set E contains a cycle if there exists a sequence of
edges of E which is a cycle. Since we will only consider simple paths and cycles, we will
usually omit the term simple, unless this property is particularly important.

Two vertices of V are said to be connected in G if there exists a path with edges of E
between them. A connected component C of the graph G is a subgraph of G such that
the vertices in V(C) are pairwise connected and there exists no path between a vertex
of V(C) and a vertex of V \ V(C). A graph is connected if it has a single connected
component. A connected graph whose edge set does not contain a cycle is called a tree.
If all connected components of a graph are trees, the graph is called a forest. Let T be a
tree and v, u ∈ V(T ). Since the edge set of T does not contain a cycle and T is connected,
there exists exactly one path between v and u in T . We use p(v, u, T ) to refer to this path.
A subgraph of the graph G = (V,E) that is a tree is called subtree of G. A subtree of G
whose vertex set is V is called a spanning-tree of G. The graph G is called edge-weighted
if a function w : E → R is provided that assigns a real weight to every edge in E. The
weight of a subgraph G′ of G regarding w is the sum of the weights that w assigns to the
edges of E(G′). A minimum spanning-tree of G regarding w is a spanning-tree of G that
has minimum weight regarding w amongst all spanning-trees of G.

A breadth-first search [CLRS09] is a strategy for searching a vertex v ∈ V of graph G
with V(G) = V by traversing the vertices of G starting at some vertex v1 ∈ V . A first-
come-first-served queue Q is initialized with v1. In every step the first vertex u in Q is
removed and all not previously visited neighbours of u are added to Q. This process is
repeated until v is found or Q is empty. If all vertices of V are visited with this strategy,
we call the sequence (v1, . . . , v|V |) in which they are visited a breadth-first traversal of G.

A curve in the plane is a continuous function c : [a, b] → R2 that maps elements of a
real interval to points in the plane. The points c(a) and c(b) are called endpoints of c.
If c(a) = c(b), then c is called a closed curve. The image of c is the set of points image(c) =
{p ∈ R2 | ∃d ∈ [a, b] : c(d) = p}. Let d, e ∈ (a, b) be real numbers. The curve c is called
simple if c(d) = c(e) implies that d = e. A simple and closed curve c partitions the plane
into two regions, which are the connected components of R2 \ image(c). One of these
regions is bounded, the other region is unbounded. We say a point is interior to c if it
is located in the bounded region and it is exterior if it located in the unbounded region.
For non-simple closed curves the concept of a point being interior or exterior can be more
generally defined by the points winding number [SRHT07] which informally is the number
of times the curve ’winds’ around the point. If this number is odd, then the point is
interior, if it is even, the point is exterior. We use interior(c) and exterior(c) to denote the
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1.1. Basic concepts and related work

1 0

(a) Simple closed curve

2
1

1

1

0

2

(b) Non-simple closed curve

Figure 1.2: Images of closed curves (black), the sets of points interior (grey) and exterior
(white) to them and the corresponding winding numbers.

set of points interior or exterior to a closed curve c respectively. Figure 1.2 illustrates this
concept.

A drawing of graph G = (V,E) can be obtained by mapping the vertices of V to distinct
points in the plane and representing the edges of E with simple curves in the plane such
that the endpoints of the curve associated with an edge {v, u} ∈ E are the points associated
with u and v. A drawing of G is called planar if the images of the curves associated with
the edges of E only intersect at their respective endpoints and therefore only at points
associated with vertices. The graph G is called planar if there exists a planar drawing of G.
The regions bounded by the images of the curves in a planar drawing of a graph are called
faces. The outer, infinitely large region is called outer face. Let f be a face of the planar
drawing D of G, let Ef be the set of edges that correspond to the curves whose images
bound f inD and letGf = (Vf , Ef ) be the subgraph ofG induced by Ef . The vertices in Vf
are said to be adjacent to f in D. If there exists a planar drawing of the graph G = (V,E)
such that all vertices in V are adjacent to the outer face of the drawing, then G is called
outerplanar or 1-outerplanar. The graph G is called k-outerplanar, with k ≥ 2, if there
exists a planar drawing ofG such that if all vertices adjacent to the outer face of the drawing
are removed from V all of the connected components of the subgraph of G induced by the
remaining vertices are (k − 1)-outerplanar.

1.1.2 Euler diagrams

In the literature there exists no uniform set of definitions for the concept of Euler diagrams.
In fact the definitions for Euler diagrams and their well-formedness conditions tend to
differ severely from author to author. In this subsection we therefore first present the set
of definitions that is used in this thesis, then comment on some of the differences to the
definitions used by other authors and conclude with an overview of related work.

The following set of definitions adepts and combines the definitions given in [FFH08] and
[SRH11]. An Euler diagram is an ordered pair D = (C,L), where C is a finite collection
of closed curves in the plane and L : C → L is a function that returns a curve’s label,
with L being some set of labels. The set of curves with some specific label l ∈ L is
called contour with label l. We use interior(c) and exterior(c) to denote the set of points
interior to at least one curve of contour c or exterior to all curves of contour c respectively
and say that the points in interior(c) are interior to c and that the points in exterior(c)
are exterior to c. A minimal region of the Euler diagram D = (C,L) is a connected
component of R2 \⋃c∈C image(c), i.e., a set of points in the plane that is bounded by the
union of the images of all curves of D. Each minimal region can be described as being
the interior of the simple closed curve that describes its boundary. Let m1 and m2 be
minimal regions of D and c1 and c2 the simple closed curves that describe their respective
boundaries. We say that m1 and m2 are neighbours if there exists a connected component
of image(c1)∩image(c2) that contains more than one point. Let X be the set of all contours
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1. Introduction

a

b

c

c

{a, b, c}{a, b}

{a, c}

{c}

{a}
L∅

{a}

Figure 1.3: Euler diagram realizing ({a, b, c}, {L∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}})

of D, let X ⊆ X be a set of contours of D, let LX ⊆ L be the set of labels of the contours
in X and let PX be the set of points that is interior to the contours in X and exterior to the
remaining contours of D, more precisely PX = (

⋂
x∈X interior(x))∩ (

⋂
x∈X\X exterior(x)).

If PX 6= ∅, then PX is called concrete zone of D with label set LX . Note that every
concrete zone of D is a union of minimal regions of D and that the concrete zone P∅ of D
with the empty label set L∅ = ∅ ⊆ L is the set of points

⋂
x∈X exterior(x) which is the set

of minimal regions whose points are exterior to all contours of D.

An abstract Euler diagram description is an ordered pair D = (L,Z), where L is a set of
labels and Z is a set of zones, which are subsets of L with L∅ = ∅ ∈ Z. Let D = (C,L)
be an Euler diagram and Z be the set of all concrete zones of D. We say that D realizes
the abstract Euler diagram description D = (L,Z) if |Z| = |Z| and for any zone z ∈ Z
there is a concrete zone in Z with label set z in D. If in addition to the abstract Euler
diagram description D = (L,Z) a function area : Z \ {L∅} → R+ is provided, then an
Euler diagram D that realizes D is called area-proportional with respect to area if the
area covered in the plane by the concrete zone of D with label set z is area(z) for any
zone z ∈ Z \ {L∅}.

The Euler diagram depicted in Figure 1.3 realizes the abstract Euler diagram description
({a, b, c}, {L∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}}). The letter next to each curve is its label
and denoted inside each minimal region is the label set of the concrete zone that the
minimal region belongs to. Note that the concrete zone with label set {a} consists of two
minimal regions. Also note that contour with label c consists of two curves. The minimal
region belonging to the concrete zone with label set {a, b} and the minimal region belonging
to the concrete zone with label set {a, b, c} are neighbours, however, the minimal region
belonging to the concrete zone with label set {a, b} and the minimal region belonging to
the concrete zone with the empty label set L∅ are not neighbours since the curves that
describe their minimal regions intersect at exactly one point.

A general task that is considered in the context of Euler diagrams is, given an abstract Euler
diagram description D, to generate an (area-proportional) Euler diagram that realizes D.
Figure 1.4 shows five Euler diagrams. The first four Euler diagrams all realize the abstract
Euler diagram description ({a, b}, {L∅, {a}, {b}, {a, b}}), however, some of them do this
in an arguably more aesthetically pleasing way than others. In order to describe the
aesthetic properties of Euler diagrams in a more precise manner we now define several
well-formedness conditions for Euler diagrams. Let therefore D = (C,L) be an Euler
diagram, M be the set of all minimal regions of D and Z be the set of all concrete zones
of D. If each contour of D consists of exactly one curve, then D possesses the unique
curve labels property. This property is not satisfied by the Euler diagram in Figure 1.4b
since there are two curve labeled b. If all curves in C are simple, then D possesses the
simple curves property. This property is violated by the Euler diagram in Figure 1.4b,

5



1.1. Basic concepts and related work

a b

(a)

a

b
b

(b)

a b

(c)

a

b

(d)

a

b

c

(e)

Figure 1.4: Differently well-formed Euler diagrams

because the right curve labeled b is self-intersecting. We stated above that every concrete
zone of D is a union of minimal regions of D. If for any concrete zone Pz ∈ Z there
exists a minimal region Pm ∈ M such that the point sets Pz and Pm are equal, then D
possesses the connected concrete zones property. In the Euler diagram in Figure 1.4d each
of the concrete zones with the label sets {a}, {a, b} and L∅ consists of multiple minimal
regions, therefore the ’connected concrete zones’ property is not satisfied. If for any two
distinct curves c, c′ ∈ C all connected components of image(c)∩ image(c′) consist of exactly
one point, then D possesses the no concurrency property. If, however, for two distinct
curves c, c′ ∈ C there exists a connected component of image(c) ∩ image(c′) consisting of
more than one point, then c and c′ are said to be concurrent, which is the case for the
two curves of the Euler diagram in Figure 1.4c, which therefore does not satisfy the ’no
concurrency’ property. Euler diagram D possesses the crossing property if it possesses the
’no concurrency’ property and if whenever two distinct curves in c, c′ ∈ C intersect they
cross, which means that for any connected component p ∈ image(c) ∩ image(c′) and for
any ε > 0 there exist distinct points p1 ∈ interior(c)∩image(c′), p2 ∈ interior(c′)∩image(c),
p3 ∈ exterior(c) ∩ image(c′) and p4 ∈ exterior(c′) ∩ image(c) such that ||pi − p||2 ≤ ε
for 1 ≤ i ≤ 4. The Euler diagram in Figure 1.4c does not possess the ’no concurrency’
property and therefore does also not possess the ’crossing’ property. In both the Euler
diagram in Figure 1.4b and the Euler diagram in Figure 1.4d a curve labeled b ’touches’ a
curve labeled a, these Euler diagram therefore also do not satisfy the crossing property. If
for any three distinct curves c1, c2, c3 ∈ C the set of points image(c1)∩image(c2)∩image(c3)
is empty, then D possesses the no triple points property, which is not the case for the Euler
diagram in Figure 1.4e. Finally, let m∞ ∈M be the infinitely large minimal region that is
exterior to all contours of D and therefore subset of the concrete zone with label set L∅. If
every minimal region inM\{m∞} is convex, then D possesses the convex minimal regions
property. This property is violated by the Euler diagrams in Figure 1.4c and Figure 1.4d.
The Euler diagram in Figure 1.4a satisfies all of our well-formedness conditions and could
therefore by described as being well-formed.

Rodgers et al. [RZP12] provide reports on empirical studies to determine how well-formed-
ness conditions affect user comprehension of Euler diagrams. The studies indicate that
users perform particularly less well if the ’connected concrete zones’ and the ’no concur-
rency’ property are not satisfied. It is also implied that users deem the ’simple curves’ prop-
erty to be more important than the ’crossing’ or the ’no triple points’ property. Note, how-
ever, that the requirement of the ’no concurrency’ property is a very restricting constraint
for Euler diagram generating algorithms, as there exist even very simple abstract Euler
diagram descriptions for which there exists no Euler diagram that satisfies the ’no concur-
rency’ property, for example, the abstract Euler diagram description D = ({a, b}, {{a, b}}).
Also note, that, on the other hand, if the ’unique curve labels’ property is not required,
it is easy to generate trivial Euler diagrams for any abstract Euler diagram description by
drawing disjoint circles such that the intererior of each circle is a concrete zone, Figure 1.5
depicts such a trivial Euler Diagram. These Euler diagrams even satisfy the ’connected
concrete zones’, the ’convex minimal regions’ and the ’simple curves’ properties, however,
they do not convey more information than a list of all intersections.

6



1. Introduction

{a, b, c}{a, c}{c}{b}{a}

a b c a, c a, b, c

Figure 1.5: A trivial Euler diagram realizing ({a, b, c}, {{a}, {b}, {c}, {a, c}, {a, b, c}})

As mentioned in the beginning of this subsection, there exist many different definitions
for Euler diagrams in the literature. This is the case mostly due to the fact that authors
incorporate several of the above defined well-formedness properties into their respective
definitions of Euler diagrams. In this thesis Euler diagrams are basically sets of labeled
closed curves which, as stated above, is similarly handled in [FFH08] and [SRH11]. How-
ever, Chow [Cho07], for example, defined Euler diagrams as sets of simple and uniquely
labeled curves such that there exists exactly one minimal region for every zone. There-
fore one of Chow’s Euler diagrams corresponds to one of our Euler diagrams that satisfies
the ’simple curves’, the ’unique curve labels’ and the ’connected concrete zones’ property.
Similarly, there are many other definitions for Euler diagrams that differ more or less from
both the definitions given in this thesis and the definitions of Chow.

Related work

We now present a small overview of work related to the generation of Euler diagrams.
Observe that whether the area-proportional case is considered or not is a crucial distinction
to make as having to respect an area specification for every zone is a severe restriction when
generating Euler diagrams. The first three results consider non-area-proportional Euler
diagrams wheras the latter two consider the area-proportional case. We have adapted each
respective result to match our set of definitions.

Rodgers et al. [RZF08] present an algorithm together with an implementation that gen-
erates Euler diagrams satisfying the ’connected concrete zones’ and the ’simple curves’
property for any abstract Euler diagram description.

Flower et al. [FFH08] identify properties which classify an abstract Euler diagram descrip-
tion as drawable, which in our definition context means that there exists an Euler diagram
that realizes the abstract Euler diagram description and satisfies the ’simple curves’, the
’unique curve labels’, the ’crossing’, the ’no triple points’ and the ’connected concrete
zones’ property. They present a high level algorithms that checks these properties and
draws a diagram if the description is drawable. One step of this algorithm is related
to solving a NP-hard problem, the authors therefore provide an implementation of the
algorithm for abstract Euler diagram descriptions limited to having up to four different
labels.

Chow [Cho07] shows that deciding if there exists an Euler diagram that realizes some
abstract Euler diagram description while satisfying the ’simple curves’, the ’unique curve
labels’ and the ’connected concrete zones’ property is an NP-complete problem. However,
deciding if such an Euler diagram exists while also satisfying the ’no concurrency’ property
or the ’no concurrency’ and the ’no triple points’ property are considered open problems.

Chow and Ruskey [CR04] present an algorithm together with an implementation that
generates area-proportional Euler diagrams that satisfy the ’simple curves’, the ’unique
curve labels’ and the ’connected concrete zones’ property while realizing abstract Euler
diagram descriptions with up to 3 different labels. In the case with 1 or 2 labels all curves
describe circles. If the abstract Euler diagram has 3 different labels, then the curves
describe rectangles. In this case the zone that contains all labels must be part of the
descriptions zone set.
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1.1. Basic concepts and related work

v1 v2 v3

v4
v5

s1 s2

s3

Figure 1.6: Illustration of a hypergraph together with a tree-support.

Stapleton et al. [SRH11] present a high level algorithm that allows the generation of
an area-proportional Euler diagram for any abstract Euler diagram description. They
represent the Euler diagram description as a graph and compute a set of cycles in this
graph. The cycles are used to obtain the actual Euler diagram. For the ’unique curve
labels’, the ’simple curves’, the ’no concurrency’, the ’no triple points’, the ’crossing’ and
the ’connected concrete zones’ property they present constraints for the computed cycles.
If the cycles comply with a specified set of constraints, then the generated diagram satisfies
the corresponding well-formedness properties. However, depending on the chosen set of
constraints and the abstract Euler diagram description, there may not exists a set of
cycles that complies with the set of constraints so that no according Euler diagram can be
generated. The algorithm’s runtime complexity is not considered.

1.1.3 Hypergraphs

In this subsection we introduce definitions and notation related to hypergraphs and provide
an overview of some results related to our work. First, we recall the definitions from the
introduction (Chapter 1) in order to keep this section self-contained. A hypergraph H is
an ordered pair (V, S), where V is a set of vertices and S is a set of hyperedges, which are
subsets of V . A support for hypergraph H = (V, S) is a graph G with V(G) = V such that
for every hyperedge s ∈ S the subgraph of G induced by the vertex set s is connected. The
support G is called tree-support if G is a tree and hypergraph H is called tree-hypergraph
if there exists a tree-support for H. Every support for H is a subgraph of the complete
graph K with vertex set V(K) = V . If a weight function w : E(K) → R is provided that
assigns a real weight to every edge of K, then a tree-support for H is called minimum
tree-support regarding w if its weight regarding w is minimal amongst the weight of all
tree-supports for H. Hypergraphs are often illustrated by assigning a point of the plane
to each vertex and a simple closed curve to each hyperedge such that the interior of each
hyperedge curve contains the points assigned to the vertices contained in the hyperedge
and the exterior of each hyperedges curve contains the points assigned to the hypergraphs
remaining vertices. Figure 1.6 illustrates hypergraph H = ({v1, . . . , v5}, {s1, s2, s3}) with
s1 = {v1, v2, v4}, s2 = {v2, v3} and s3 = {v2, v4, v5} and also depicts the drawing of a
tree-support for H.

Related work

It is possible to decide in linear time if a given hypergraph has a cycle-support [BKM+10]
or a path-support [BKM+10], where a cycle-support is defined as a connected support
such that the degree of all its vertices is 2 and a path-support is a connected support
such that there exist 2 vertices with degree 1 and the degree of the remaining vertices
is 2. Deciding if a hypergraph has a tree-support [JP87] or a cactus-support [BCPS11],
where a cactus-support is described as a connected support such that each of its edges is
contained in at most one cycle, is possible in polynomial time. It can also be decided in
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polynomial time if for a hypergraph H = (V, S) and a value dv for every vertex v ∈ V
there exists a tree-support T for H such that the degree of v in T is at most dv [BKM+10].
On the other hand, it is NP-complete to decide if a given hypergraph has a planar [JP87]
or 2-outerplanar support [BKM+10]. Deciding if a hypergraph H = (V, S) has a planar
or outerplanar support is possible in polynomial time if H is closed under intersection
and differences, which means that for any two hyperedges s1, s2 ∈ S with s1 ∩ s2 6= ∅,
s1 \ s2 6= ∅ and s2 \ s1 6= ∅ both the containments s1 ∩ s2 ∈ S ∪ {{v} ⊆ V | v ∈ V }
and s1 \ s2 ∈ S ∪ {{v} ⊆ V | v ∈ V } are fulfilled [BCPS11]. However, whether there exists
a polynomial time algorithm to decide if a hypergraph that is not closed under intersection
and differences has an outerplanar support or not is an open problem.

Korach and Stern [KS03] presented an algorithm for computing minimum tree-supports
for hypergraphs in O(n4m2) time, n being the number of vertices and m being the number
of hyperedges of the input hypergraphs. They define the intersection-closure of a hyper-
graph’s hyperedge set S to be the set of vertex sets cl(S) = {s ⊆ V | ∃S′ ⊆ S : s =⋂
s′∈S′ s

′} and necessary edges to be the elements in a hyperedge set’s intersection-closure
that have cardinality 2. They observe that if the hypergraph’s hyperedges are restricted
to have cardinality at most 3 the necessary edges are element of the the edge set of every
minimum tree-support. They devise an algorithm for this restricted case that computes
all necessary edges. If the obtained edge set is not yet the edge set of a tree, they add
edges according to their weight. The algorithm for general hypergraphs utilizes a contrac-
tion idea. The input hypergraph is successively contracted until the hypergraph’s vertex
set contains at most 3 vertices. After applying the algorithm for the restricted case the
contraction is reversed in a backwards process to obtain a minimum tree-support.

1.2 Our contribution and thesis overview

In this thesis we present a framework for efficient algorithms that for the class of abstract
Euler diagram descriptions whose labeled hypergraphs are tree-hypergraphs generate area-
proportional Euler diagrams that satisfy the ’simple curves’, the ’connected concrete zones’,
the ’unique curve labels’ and the ’convex minimal regions’ property and also have a minimal
total number of concurrent curves between the neighbour pairs of minimal regions that
belong to concrete zones with non-empty label sets. Labeled hypergraphs are introduced
in Section 2.1 and act as an interface between abstract Euler diagram descriptions and
hypergraphs. In Section 2.2 we present an algorithm that computes minimum tree-supports
for labeled hypergraphs and in Section 3.1 we present the aforementioned framework for
generating Euler diagrams. To follow up, in Section 3.2 we then present several ideas to
improve the aesthetic aspects of the generated Euler diagrams.

We also provide an algorithm that computes minimum tree-supports for hypergraphs. This
algorithm is presented in Section 2.3. It converts a given hypergraph into a labeled hyper-
graph, applies the algorithm presented in Section 2.2 and then transforms the result into
a minimum tree-support for the original hypergraph. The algorithm’s runtime complexity
is O(n2(m+log n)), where n is the number of vertices and m is the number of hyperedges.
It therefore improves upon the algorithm presented in [KS03], which has runtime O(n4m2).

We conclude our work in Chapter 4 and also point at some future directions and open
problems.
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2. Computing minimum tree-supports for
(labeled) hypergraphs

In this chapter we first define labeled hypergraphs, which serve as an interface between
abstract Euler diagram descriptions and hypergraphs. We then motivate why it is advan-
tageous to be able to compute minimum tree-supports for labeled hypergraphs and provide
an algorithm that accomplishes this task. Finally we provide an extended version of the
algorithm that allows us to also compute minimum tree-supports for general hypergraphs
and show that this approach improves upon the one presented in [KS03] in terms of time
complexity.

2.1 Labeled hypergraphs and a motivation for minimum tree-
supports

In this section we first introduce labeled hypergraphs, which are hypergraphs that relate
to specific abstract Euler diagram descriptions and then motivate why one should be
concerned with computing minimum tree-supports for these kind of hypergraphs.

Hypergraphs have been related to the concept of Euler diagrams in the past. Chow [Cho07]
defined a function ϕ(S) = (X(S), S \ {∅}), which maps a set system to a hypergraph.
A set system S is defined as a set of subsets of X(S), which is a set of items. The
function ϕ is used to compare hyperedge-based and vertex-based Venn diagrams, which
were introduced by Johnson and Pollak [JP87], to Chow’s version of Euler diagrams. In
a similar manner, we define H(D) = (Z \ {L∅},S(L)) to be the labeled hypergraph for the
abstract Euler diagram description D = (L,Z) with S(L) = {s ⊆ Z \ {L∅} | ∃l ∈ L : s =
s(l)} and s(l) = {z ∈ Z \ {L∅} | l ∈ z}. For example, Figure 2.1 illustrates the labeled
hypergraph for the abstract Euler diagram description ({a, b, c}, {{a}, {a, b}, {a, b, c}}).
For the remainder of this section, let D = (L,Z) be an abstract Euler diagram description
and let H(D) = (Z \ {L∅},S(L)) be the labeled hypergraph for D.

In Chapter 3 we provide a framework for algorithms that given a tree T with vertex
set V(T ) = Z \ {L∅} produce an Euler diagram D that realizes D such that for any
zone z ∈ Z there exists a concrete zone of D with label set z that consists of exactly
one minimal region. Furthermore, two minimal regions m1 and m2 which belong to the
concrete zones with label set z1 and z2 respectively are neighbours in D if and only if there
exists an edge {z1, z2} ∈ E(T ) or if either z1 = L∅ or z2 = L∅.
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{a, b, c} {a, b} {a}
s(a)s(b)s(c)

Figure 2.1: Illustration of a labeled hypergraph.

Let l ∈ L be a label. If the input tree T is a tree-support for H(D), then the subgraph of T
induced by s(l) is connected and therefore the minimal regions that correspond to concrete
zones whose label set contains l form a succession of neighbours in D implying that one
closed curve labeled l is sufficient in the curve set of D. Therefore D can easily possess
the ’unique curve labels’ property if the algorithm used to compute D is implemented
accordingly. This motivates computing tree-supports for the labeled hypergraphs.

Chow [Cho07] defined Euler dual graphs for Euler diagrams, in which the vertex set
contains a vertex for every minimal region and the edge set contains an edge for each
pair of vertices whose corresponding minimal regions are neighbours. Assigned to each
edge {v1, v2} is a label set containing the label of each curve that separates the minimal
regions corresponding to v1 and v2 and therefore causes them to be neighbours. For ex-
ample, let v1 be the vertex corresponding to a minimal region of the concrete zone with
label set {a, b}, let v2 be the vertex corresponding to a minimal region of the concrete
zone with label set {a, b, c, d} and let v1 and v2 be neighbours. The edge {v1, v2} then has
the label set {c, d} attached to it. Chow stated that an Euler diagram possesses the ’no
concurrency’ property if and only if the label set attached to each edge contains exactly
one element (Proposition 4.4.1 in [Cho07]).

In order to formalize this idea, we define the concurrency weight function w(D) : E(K(D))→
N0 for D = (L,Z) as w(D)({z, z′}) = |(z∪z′)\ (z∩z′)|, where K(D) is the complete graph
with vertex set Z \{L∅}. As seen in Section 1.1.2, there exist even very simple abstract Eu-
ler diagram descriptions for which there exists no Euler diagram that realizes them while
possessing the ’no concurrency’ property, which makes the requirement of this property
a very restricting constraint for Euler diagram generating algorithms. Observe, however,
that w(D), in addition to enabling us to verify whether D possesses the ’no concurrency’
property or not, provides more information. Let z, z′ ∈ Z be the label sets of two concrete
zones of D whose corresponding minimal regions are neighbours in D. If w(D)({z, z′}) > 1,
the value w(D)({z, z′}) is the number of concurrent curves whose images separate the two
minimal regions in D. An implication of this is that minimizing the weight of T re-
garding w(D) minimizes the number of concurrent curves between each neighbour pair of
minimal regions in D that belong to concrete zones with non-empty label sets, thereby
motivating the computation of minimum tree-supports for labeled hypergraphs.

2.2 Computing minimum tree-supports for labeled hyper-
graphs

In this section we present Algorithm MTS-labeled, which computes minimum tree-supports
for labeled hypergraphs. The input of Algorithm MTS-labeled is a labeled hypergraph
H(D) = (Z,S(L)) for some abstract Euler diagram description D = (L,Z ∪ {L∅}). Recall
that this implies that every vertex z ∈ Z is a subset of the set of labels L and that there is
a hyperedge s(l) ∈ S(L) for every l ∈ L that contains all vertices in Z containing l. Note
that we explicitly chose to denote the set of zones of D as Z ∪{L∅} so that we can assume
that L∅ /∈ Z and so that the vertex set of its labeled hypergraph H(D) can be denoted
as Z, resulting in a more convenient notation for this section.
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Algorithm: MTS-labeled

input : labeled hypergraph H(D) = (Z,S(L)) for abstract Euler diagram
description D = (L,Z ∪ {L∅}),
weight function w : E → R where E is the edge set of a complete graph with
vertex set Z

output: minimum tree-support for H(D) regarding w or infeasibility notification

Feasibility Check

1 if not FeasibilityTreeSupport(H(D)) then
2 return ‘not feasible‘

Computing edge cardinality sets

3 for i = 0 to |S(L)| − 1 do
4 Ei = ∅
5 for each edge {z, z′} ∈ E do
6 C(D)({z, z′}) = |z ∩ z′|
7 EC(D)({z,z′}) = EC(D)({z,z′}) ∪ {z, z′}

Computing minimum tree-support

8 F = ∅
9 for each vertex z ∈ Z do

10 MakeSet(z)

11 for i = |S(L)| − 1 to 0 do
12 sort edges in Ei into nondecreasing order by weight w
13 for each edge {z, z′} ∈ Ei taken in nondecreasing order by weight w do
14 if FindSet(z) 6= FindSet(z′) then
15 F = F ∪ {{z, z′}}
16 Union(z, z′)

17 return T = (Z,F )

Algorithm: MST-Kruskal [CLRS09]

input : graph G = (V,E),
weight w(e) for every edge e ∈ E

output: minimum spanning-tree of G

1 F = ∅
2 for each vertex v ∈ V do
3 MakeSet(v)

4 sort edges of E into nondecreasing order by weight w
5 for each edge {u, v} ∈ E, taken in nondecreasing order by weight do
6 if FindSet(u) 6= FindSet(v) then
7 F = F ∪ {{u, v}}
8 Union(u, v)

9 return T = (V, F )
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First Algorithm MTS-labeled performs a feasibility check to verify whether there actually
exists a tree-support for H(D) or not. Johnson and Pollak [JP87] suggest that this can
be done efficiently for any hypergraph H = (V, S) by performing an acyclicity check on
the dual hypergraph H∗ = (V ∗, S∗) of H, which is a hypergraph with vertex set V ∗ = S
and edge set S∗ = {S′ ⊆ S | ∃v ∈ V : v ∈ ⋂

s∈S′ s, ∀s ∈ S \ S′ : v 6∈ s}. Acyclicity is a
property of hypergraphs for which Beeri, Fagin, Maier and Yannakakis [BFMY83] present
a definition as well as a total of twelve equivalent characterizations. Johnson and Pollak
derive from one of these characterizations that the dual of a tree-hypergraph is an acyclic
hypergraph. For a linear time acyclicity check for hypergraphs they refer to the work of
Tarjan and Yannakakis [TY84].

Recall that every tree-support for H(D) is a subgraph of the complete graph with vertex
set Z. We now define a special kind of complete graph. The zone skeleton of an abstract
Euler diagram description D′ = (L′, Z ′) is an edge-weighted complete graph G′ with
vertex set V(G′) = Z ′ \ {L∅} and the weight function for the edge weights of G′ is the
cardinality weight function C(D′) : E(G′)→ N0 for D′ defined as C(D′)({z, z′}) = |z ∩ z′|.
The value C(D′)({z, z′}) is called cardinality of edge {z, z′} for any two distinct zones
z, z′ ∈ Z ′ \ {L∅}. Let G = (Z,E) be the zone skeleton for D. After performing the
acyclicity check Algorithm MTS-labeled computes the cardinality C(D)(e) for each edge
of E and then partitions the edges of E into |S(L)| subsets of E, one for each possible
cardinality.

The remainder of Algorithm MTS-labeled is very similar to the popular algorithm of
Kruskal for computing minimum spanning-trees of graphs. The pseudocode version Algo-
rithm MST-Kruskal of this algorithm is taken directly from [CLRS09]. In the following, we
first provide a brief description of Kruskals algorithm and then describe how we adopted its
approach in our algorithm. The version of Kruskals algorithm presented in [CLRS09] uses
the disjoint-set forests data-structure, which provides the means to efficiently maintain
disjoint sets of elements. MakeSet(x) creates a new set containing element x, FindSet(x)
returns a handle to the set which contains x and Union(x, y) merges the sets containing
element x and element y. Given an edge-weighted graph G′ = (V ′, E′) Algorithm MST-
Kruskal creates a minimum spanning-tree of G′. The algorithm grows the edge set of
a forest with vertex set V ′ by successively adding edges from E′. Every edge in E′ is
considered in increasing order by its weight and added to the edge set of the forest if the
vertices incident to the edge are in distinct connected components of the forest. This can
be efficiently verified by using the disjoint-set forest data-structure to maintain one set per
connected component of the forest. The total runtime complexity is O(|E′| log |V ′|). For
a more detailed explanation of both Kruskals algorithm and the disjoint-set forest data
structure we refer to [CLRS09].

In Algorithm MTS-labeled we essentially apply Algorithm MST-Kruskal to G but we alter
the order in which the edges in E are considered: We perform |S(L)| hierarchy steps, in
each of which only edges of a certain cardinality are considered. In the first hierarchy step
only the edges with the potentially highest cardinality |S(L)| − 1 are considered, in the
second hierarchy step the edges with cardinality |S(L)| − 2 are considered and so forth.
Figure 2.2 shows the three hierarchy steps of the application of Algorithm MTS-labeled to
the hypergraph H(D) = (Z, S(L)) with Z = {{a}, {a, b, c}, {a, b, c, d}, {c, d, e}, {c, d, e, f}}
and L = {a, b, c, d, e, f} for the abstract Euler diagram description D = (L,Z). The
continuous edges are the edges already added to F and the numbers next to each edge are
the edge’s cardinality/weight. The idea for the approach used in Algorithm MTS-labeled
is based on Korach and Stern’s [KS03] observation that every element of a hypergraph’s
hyperedge set’s intersection-closure induces a connected subgraph in every tree-support for
this hypergraph (Theorem 5.2.1 in [KS03]). This observation was also utilized by Buchin
et al. [BKM+10], who compute tree-supports with bounded degrees (see Section 1.1.3).
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Figure 2.2: Exemplary application of Algorithm MTS-labeled.

We now present a few auxiliary results that allow us to later prove the correctness of
Algorithm MTS-labeled.

First we introduce a few definitions. Let H = (V, S) be a hypergraph, let S′ ⊆ S be a
set of hyperedges, let GH be a graph with V(GH) = V and let be e = {v, u} ∈ E(GH).
We say that e actively supports S′ if {v, u} ⊆ s′ for any hyperedge s′ ∈ S′. Note that
for our labeled hypergraph H(D), its zone skeleton G and some support G′ for H(D) this
definition conveys information about an edge’s cardinality. If edge e′ ∈ E(G′) actively
supports hyperedge set S(L′) for some label set L′ ⊆ L the cardinality C(D)(e′) of e′

is at least |L′|. We say that the pairwise distinct vertices v1, . . . , vt ∈ V, t ≥ 3 have a
circular relationship in H if there exist pairwise distinct hyperedge sets S1, . . . , St ⊆ S
with v1 ∈

⋂
s∈S1∪S2

s, v2 ∈
⋂
s∈S2∪S3

s, . . . , vt−1 ∈
⋂
s∈St−1∪St

s and vt ∈
⋂
s∈St∪S1

s.
In this case the hyperedge sets S1, . . . , St are said to cause the circular relationship of
v1, . . . , vt. Note that for a specific set of vertices that have a circular relationship in a
hypergraph there may exist multiple sets of hyperedge sets that cause this vertex set to
have a circular relationship. Figure 2.3 illustrates some hypergraphs whose vertices have
circular relationships. In the hypergraph displayed in Figure 2.3a the vertices v1, v2, v3
have a circular relationship caused by the hyperedge sets Si = {si}, 1 ≤ i ≤ 3 because
v1 ∈

⋂
s∈S1∪S2

s, v2 ∈
⋂
s∈S2∪S3

s and v3 ∈
⋂
s∈S3∪S1

s. There is no tree-support for
this hypergraph because every tree with vertex-set {v1, v2, v3} fails to support one of the
hyperedges s1, s2, s3. The hypergraph displayed in Figure 2.3b is identical to the one
in Figure 2.3a except for hyperedge s1, which now has vertex-set {v1, v2, v3}. As before
vertices v1, v2, v3 have a circular relationship due to their inclusion in intersections of
the hyperedge sets Si = {si}, 1 ≤ i ≤ 3, but this time the depicted tree with edge-set
{{v1, v2}, {v2, v3}} is a tree-support. Figure 2.3c depicts a more complex hypergraph.
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Figure 2.3: Hypergraphs with circular relationships.

The vertices of each the the four vertex sets {v1, v2, v3, v4}, {v1, v2, v5}, {v2, v3, v5, v6} and
{v3, v4, v6} have a circular relationship. Observe how the displayed tree-support does not
connect any of the vertices in {v1, v2, v3, v4} directly.

The following Lemma characterizes the edges of paths in tree-supports between vertices
that are part of a circular relationship and allows us to derive information about the
cardinality of these edges.

Lemma 1. Let H = (V, S) be a tree-hypergraph, let T = (V,E) be a tree-support for H
and let v1, . . . , vt ∈ V be vertices that have a circular relationship in H caused by S1, . . . , St
with v1 ∈

⋂
s∈S1∪S2

s, v2 ∈
⋂
s∈S2∪S3

s, . . . , vt−1 ∈
⋂
s∈St−1∪St

s and vt ∈
⋂
s∈St∪S1

s. For
any two distinct vertices vi, vj with 1 ≤ i, j ≤ t every edge of path p(vi, vj , T ) actively
supports at least two of the hyperedge sets S1, . . . , St.

Proof. Let without loss of generality 1 ≤ i, j ≤ t be two indices with i < j and e = {u, v} be
an edge of path p(vi, vj , T ). Since T is a tree, the graph G = (V,E\{e}) has two connected
components C1 = (V1, E1) and C2 = (V2, E2) with V = V1 ∪ V2 and E \ {e} = E1 ∪ E2

and we can find an index i ≤ p < j with vp ∈ V1 and vp+1 ∈ V2. The vertices vp and
vp+1 are part of the circular relationship, it therefore follows that {vp, vp+1} ⊆ s for every
hyperedge s ∈ Sp+1. Since T is a tree support, every edge of path p(vp, vp+1, T ) must
actively support Sp+1 and since any path in T between a vertex of V1 and V2 contains e,
it follows that e actively supports Sp+1.

Since vi, vp ∈ V1 and vp+1, vj ∈ V2, there exist indices 1 ≤ a, b ≤ t such that va ∈ V2 and
vb ∈ V1 with either j ≤ a < t and b = a+ 1, a = t and b = 1 or 1 ≤ a < i and b = a+ 1.
In any case, the circular relation in H implies that {va, vb} ⊆ s for every hyperedge
s ∈ Sb. Therefore every edge of the path p(va, vb, T ) actively supports Sb. Edge e is one
of the edges of path p(va, vb, T ) because va ∈ V2 and vb ∈ V1, which concludes the proof
since b 6∈ {i+ 1, i+ 2, . . . , j} and therefore b 6= p+ 1.
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The next results allows us to exchange a subtree of a spanning-tree of some graph G with
a specific kind of subtree of G to obtain another spanning-tree of G.

Lemma 2. Let G = (V,E) be a graph, let T = (V,E0 ∪ E1) be a spanning-tree of G with
E0 ∩ E1 = ∅ and let T1 = (V1, E1) be the subtree of T induced by E1. For any subtree
T ′1 = (V1, E

′
1) of G the graph T ′ = (V,E0 ∪ E′1) is a spanning-tree of G.

Proof. Assume that there exists a cycle in T ′. Both E0 and E′1 are edge sets of forests, it
therefore follows that every cycle in T ′ must be constituted by edges from both E0 and E′1.
Since T ′1 = (V1, E

′
1) is a subtree of G with vertex set V1, there must exists a cycle in T ′

constituted by the edge set of a path p(v, v′, T ′1) containing edges exclusively from E′1 and
the edge set of a path p(v′, v, T ) containing edges exclusively from E0, with v, v′ ∈ V1. But
since T1 is also a subtree of G with vertex set V1, the edge sets of the paths p(v, v′, T1)
and p(v′, v, T ) also constitute a cycle, contradicting to T being a tree, since T1 is a subtree
of T . Therefore, there exists no cycle in T ′ and since V(T1) = V(T ′1) = V1, it follows that
|E1| = |E(T1)| = |E(T ′1)| = |E′1| and therefore that T ′ is also connected and thus, T ′ is a
tree.

We now extends the result above to also be able to exchange multiple subtrees of a
spanning-tree of a graph at once.

Corollary 1. Let G = (V,E) be a graph, let T = (V,E0∪E1∪ . . .∪Et) be a spanning-tree
of G with Ei ∩ Ej = ∅ for every 0 ≤ i ≤ t and 0 ≤ j ≤ t with i 6= j and let Tk = (Vk, Ek)
be the subtree of T induced by Ek for every 1 ≤ k ≤ t. For any forest consisting of trees
T ′1 = (V1, E

′
1), . . . , T

′
t = (Vt, E

′
t) the graph T ′ = (V,E0 ∪ E′1 ∪ . . . ∪ E′t) is a spanning-tree

of G.

Proof. The graphs G, T , T1 and T ′1 meet the preconditions of Lemma 2, therefore, the
graph T̃1 = (V,E0 ∪ E′1 ∪ E2 ∪ . . . ∪ Et) is a spanning-tree of G. The tree T2 is a subtree
of T̃1 induced by E2, therefore, the graphs G, T̃1, T2 and T ′2 now meet the preconditions
of Lemma 2 and it follows that the graph T̃2 = (V,E0 ∪ E′1 ∪ E′2 ∪ E3 ∪ . . . ∪ Et) is also a
spanning-tree of G.

This process can be repeated to, analogously, exchange the edge sets E3, . . . , Et of the
remaining trees T3, . . . , Tt with the edge sets E′3, . . . , E

′
t of the trees T ′3, . . . , T

′
t to finally

obtain the spanning-tree T ′ = T̃t = (V,E0 ∪ E′1 ∪ . . . ∪ E′t) of G.

We are now prepared to prove the correctness and analyze the time complexity of Al-
gorithm MTS-labeled over the course of the next three Lemmata and the concluding
Theorem. First, we introduce some notation that is used for the remainder of this section.
Let H(D) = (Z, S(L)) be the labeled hypergraph for abstract Euler diagram description
D = (L,Z ∪ {L∅}) and let G = (Z,E) be the zone skeleton of D. The labeled hyper-
graph H(D) and a weight function w : E → R are the input for Algorithm MTS-labeled.
Let T be the output of Algorithm MTS-labeled for the case that H(D) is a tree-hypergraph.
We define λ = |S(L)|. Let Ei ⊆ E be set of edges with cardinality i in E, let Ei ⊆ E be
the set of edges with cardinality at least i in E and let Gi be the subgraph of G induced
by Ei for 0 ≤ i ≤ λ− 1. Let finally Fλ−j for 1 ≤ j ≤ λ be the edge set that is obtained by
Algorithm MTS-labeled after hierarchy step j, therefore, after considering all edges with
cardinality at least λ− j.
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2.2. Computing minimum tree-supports for labeled hypergraphs

Lemma 3. The set of edges Eλ−1 is a subset of the edge set of any tree-support for H(D).

Proof. If H(D) is not a tree-hypergraph or if Eλ−1 = ∅ then our proposition holds trivially.
Let therefore H(D) be a tree-hypergraph, Eλ−1 6= ∅ and e = {z, z′} ∈ Eλ−1. The cardinality
of e is C(D)(e) = |z∩z′| = |L|−1 = |S(L)|−1 = λ−1. Since the vertices in Z are pairwise
distinct sets of labels from L, this can only be the case if either z or z′ is the complete set of
labels L. Let without loss of generality be z = L and z′ = L \ {l′} with l′ ∈ L and let T̃ be
a tree-support for H(D). Since z, z′ ∈ ⋂

l∈L\{l′} s(l), every edge of p(z, z′, T̃ ) has to actively

support S(L\{l′}) and therefore has cardinality |L\{l′}| = |L|−1 = |S(L)|−1 = λ−1. As
stated above, this is only true for edges incident to z, thus e is the only edge that actively
supports S(L \ {l′}) and therefore e ∈ E(T̃ ).

Lemma 4. If H(D) is a tree-hypergraph, then Algorithm MTS-labeled computes a tree-
support for H(D).

Proof. Let H(D) be a tree-hypergraph. As described above, every tree-support for H(D)
is a subgraph of its zone skeleton G = (Z,E). In Algorithm MTS-labeled we grow the edge
set F of a forest with vertex set Z by successively adding edges from E =

⋃
0≤j≤λ−1 Ej

and finally return the subgraph T = (Z,F ) of G. We now show by induction that after
each hierarchy step of Algorithm MTS-labeled, if F is the current set of edges computed
by the algorithm there exists a tree-support for H(D) whose edge set contains all edges
of F .

For the induction base case we need to show that our hypothesis is true after the first
hierarchy step, therefore, that there exists a tree-support for H(D) whose edge set contains
all edges of Fλ−1, the edge set obtained by Algorithm MTS-labeled after considering Eλ−1,
which is the set of edges with the potentially highest cardinality. Since Lemma 3 states
that the set of edges Eλ−1 is a subset of the edge set of any tree-support for H(D), our
proposition holds, thus concluding the base case. Observe that since Eλ−1 is a subset of the
edge set of every tree-support, the edges in Eλ−1 can not constitute a cycle in G, therefore
Algorithm MTS-labeled will in fact add all edges of Eλ−1 to F , hence Fλ−1 = Eλ−1.
Now consider j ∈ N with 1 ≤ j ≤ λ − 1 and assume that our induction hypothesis holds
for the first j hierarchy steps, implying that there exists a tree-support whose edge set
contains all edges in Fλ−j , which is the set of edges obtained by Algorithm MTS-labeled
in the first j hierarchy steps. For the induction step we show there exists a tree-support
for H(D) whose edge set contains all edges in Fλ−j−1, which is the edge set obtained
by Algorithm MTS-labeled after hierarchy step j + 1, in which the edges of Eλ−j−1 are
considered. Let therefore Tλ−j be a tree-support for H(D) with Fλ−j ⊆ E(Tλ−j), which
exists by our induction hypothesis. Recall that Gλ−j−1 is the subgraph of G induced by
the edges of E with cardinality at least λ − j − 1. Let C be a connected component
of Gλ−j−1 and let TCλ−j−1 = (V(C),E(C) ∩ Fλ−j−1) be the tree of the forest with edge
set Fλ−j−1 that is a spanning-tree of C.

We will now show that the vertices of V(C) are connected by edges with cardinality at
least λ − j − 1 in Tλ−j , which implies the existence of a subtree of Tλ−j with vertex
set exactly V(C), since C is a connected component of Gλ−j−1. Let therefore be e =
{z, z′} ∈ E(TCλ−j−1) be an edge of TCλ−j−1 and observe the path p(z, z′, Tλ−j). The
cardinality of e is C(D)(e) ≥ λ− j−1. Assume that there exists an edge ẽ in p(z, z′, Tλ−j)
with C(D)(ẽ) < λ− j−1. Then there exists a label l̃ ∈ z∩ z′ for which ẽ does not actively
support {s(l̃)}, which contradicts to Tλ−j being a tree-support for H(D).

Since the statement above is true for any connected component of Gλ−j−1, it follows that
for every connected component of Gλ−j−1 and its corresponding tree in the forest with
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edge set Fλ−j−1 there exists a subtree of Tλ−j whose vertex set is equal to the vertex
set of the connected component of Gλ−j−1. The graphs G, Tλ−j and its subtrees and
the forest with edge set Fλ−j−1 therefore meet the preconditions of Corollary 1 and it
follows that we can obtain spanning-tree Tλ−j−1 of G by substituting the edge sets of
the subtrees of Tλ−j by Fλ−j−1. Since the subtrees of Tλ−j are spanning-trees of the
connected components of Gλ−j−1, which is the subgraph of G induced by the edges of E
with cardinality at least λ−j−1, it follows that |E(Tλ−j)∩Eλ−j−1| = |Fλ−j−1| and we can
therefore conclude that the edge set of Tλ−j−1 is E(Tλ−j−1) = (E(Tλ−j)\Eλ−j−1)∪Fλ−j−1.
Note that TCλ−j−1 is a subtree of Tλ−j−1.

We know by the induction hypothesis that E(Tλ−j) ∩ Eλ−j ⊇ Fλ−j and we know by
construction that E(Tλ−j−1) ∩ Eλ−j = Fλ−j . Before we proceed to show that the tree
Tλ−j−1 is a support for H(D), we show that E(Tλ−j) ∩ Eλ−j = Fλ−j , a result which we
will use in the final part of the induction step. Let therefore TCλ−j be the subtree of Tλ−j
with V(TCλ−j) = V(C) and let c ∈ N be a natural number with λ − j ≤ c ≤ λ − 1.

It suffices to show that there exists no edge with cardinality c in E(TCλ−j) that is not an

element of E(TCλ−j−1) because this result is then true not only for C but for every connected

component of Gλ−j−1. Assume that e = {z, z′} ∈ E(TCλ−j) is an edge with this property.

The subset of edges with cardinality at least c in E(TCλ−j−1) together with e does not

constitute a cycle because TCλ−j is a tree whose edge set contains all these edges. This is a
contradiction to Fλ−j being the set of edges obtained in the first j hierarchy steps because
Algorithm MTS-labeled would in this case have added e to F when considering the edge
set EC(D)(e) = Ec.

We are now prepared to show that Tλ−j−1 is a support for H(D). Since C is a con-
nected component of Gλ−j−1, it suffices to show that TCλ−j−1 is a support for hypergraph
HC(D) = (V(C), SC(L)) with SC(L) = {sc ⊆ V(C) | ∃s ∈ S(L) : sc 6= ∅, sc = s ∩ V(C)}
because then for any edge e = {z1, z2} ∈ E(TCλ−j) the edges of the path p(z1, z2, T

C
λ−j−1)

actively support the hyperedge set S(z1 ∩ z2). Since this then is true for the edge set of
every tree of the forest with edge set Fλ−j−1 and since Tλ−j is a support for H(D), it
follows that for any two vertices z′1, z

′
2 ∈ Z the edges of the path p(z′1, z

′
2, Tλ−j−1) actively

support S(z′1 ∩ z′2) and hence Tλ−j−1 is a support for H(D).

Assume that TCλ−j−1 is not a support for HC(D). Then there exist vertices z1, zt ∈ V(C)

and not all edges of the path p(z1, zt, T
C
λ−j−1) actively support hyperedge set S(L′) with la-

bel set L′ = z1∩zt. We now examine the path p(z1, zt, T
C
λ−j−1) more carefully. Let therefore

without loss of generality be p(z1, zt, T
C
λ−j−1) = (e11, . . . , e

1
h1
, e21, . . . , e

2
h2
, . . . , et−11 , . . . , et−1ht−1

),
where L1, . . . , Lt−1 ⊆ L are pairwise distinct label sets, in which for 1 ≤ i ≤ t − 1 the
edge sequence (ei1, . . . , e

i
hi

) is a path between zi ∈ V(C) and zi+1 ∈ V(C) whose edges
actively support the hyperedge set S(Li) and z1 ∈

⋂
s∈S(L′)∪S(L1)

s, z2 ∈
⋂
s∈S(L1)∪S(L2)

s,
. . . , zt−1 ∈

⋂
s∈S(Lt−2)∪S(Lt−1)

s and zt ∈
⋂
s∈S(Lt−1)∪S(L′) s. We may also assume with-

out loss of generality that there exists no index i ∈ {1, . . . , t − 1} with S(L′) ⊆ S(Li).
See Figure 2.4 for an example of such a path that illustrates the notation. The edges
of path p(z1, zt, T

C
λ−j) actively support S(L′). Let e′ be any edge of p(z1, zt, T

C
λ−j) and

let e be an edge of p(z1, zt, T
C
λ−j−1) that has the lowest cardinality amongst all edges

of p(z1, zt, T
C
λ−j−1). The vertices z1, . . . , zt have a circular relationship in H(D) caused

by S(L′), S(L1), . . . ,S(Lt−1), therefore, Lemma 1 states that e′ actively supports at least
two of the hyperedge sets S(L′),S(L1), . . . ,S(Lt−1), one of which has to be S(L′). Let
i′ ∈ {1, . . . , t − 1} be the index of the label set corresponding to another hyperedge set
actively supported by e′. Since there exists no index i ∈ {1, . . . , t− 1} with S(L′) ⊆ S(Li),
there exists at least one label l ∈ L′ for which s(l) /∈ S(Li′). Therefore the cardinality of e′

is C(D)(e′) ≥ |S(L′) ∪ S(Li′)| > |S(Li′)| ≥ C(D)(e) ≥ |S(L)| − j − 1 = λ− j − 1, thus the
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z1 z2 z3 = zt

{a, b, c, e} {b, c, f} {f, g} {f} {a, d, f}

L′ = {a}
L1 = {b, c}
L2 = {f}

S(L′) = {s(a)} = {{{a, b, c, e}, {a, d, f}}}
S(L1) = {s(b), s(c)} = {s(b)} = {{{a, b, c, e}, {b, c, f}}}
S(L2) = {{{b, c, f}, {f, g}, {f}, {a, d, f}}}

e11 e21 e22 e23

Figure 2.4: Example for the in the proof of Lemma 4 supposedly existing vertices z1, zt
and their path p(z1, zt, T

C
λ−j−1) with t = 3.

cardinality of all edges of p(z1, zt, T
C
λ−j) is at least λ − j. Since E(Tλ−j) ∩ Eλ−j = Fλ−j ,

this implies that p(z1, zt, T
C
λ−j) = p(z1, zt, T

C
λ−j−1), contradicting to Tλ−j being a support

for H(D) and it follows that TCλ−j−1 is indeed a support for HC(D) and therefore, that
Tλ−j−1 is a tree-support for H(D), which concludes the induction step.

By the principle of induction, our hypothesis holds and there exists a tree-support whose
edge set contains the final forest F0, which is obtained after considering the edges of all
cardinalities. Since Algorithm MTS-labeled considers every edge in E and adds it to F
if the two vertices of the edges are in distinct connected components of the graph with
the current edge set, F0 is the edge set of a tree with vertex set Z, implying that the
output T = (Z,F0) is a tree-support for H(D).

Lemma 5. If H(D) is a tree-hypergraph, then Algorithm MTS-labeled computes a mini-
mum tree-support for H(D) regarding w.

Proof. Let H(D) be a tree-hypergraph. We show by induction that after each hierarchy
step of Algorithm MTS-labeled, if F is the current set of edges computed by the algorithm,
there exists a minimum tree-support for H(D) regarding w whose edge set contains all edges
of F . We will refer to this induction hypothesis as the outer induction hypothesis, as we
will use a second induction proof as part of the induction step of the outer induction proof.

For the outer induction base case we need to show that our outer induction hypothesis
is true after the first hierarchy step, therefore, that there exists a minimum tree-support
for H(D) regarding w whose edge set contains all edges of Fλ−1, the edge set obtained
by Algorithm MTS-labeled after considering Eλ−1, which is the set of edges with the
potentially highest cardinality. Like in the proof of Lemma 4, we utilize Lemma 3, which
states that the set of edges Eλ−1 is a subset of the edge set of any tree-support for H(D).
This directly concludes the outer induction base case.

Now let be 1 ≤ j ≤ λ− 1 and let our induction hypothesis be true for the first j hierarchy
steps, therefore, there exists a minimum tree-support for H(D) regarding w whose edge
set contains all edges in Fλ−j , which is the set of edges obtained by Algorithm MTS-
labeled in the first j hierarchy steps. For the induction step we show there exists a
minimum tree-support for H(D) regarding w whose edge set contains all edges in Fλ−j−1,
which is the edge set obtained by Algorithm MTS-labeled after hierarchy step j + 1,
in which the edges of Eλ−j−1 are considered. Let therefore Tλ−j be a minimum tree-
support for H(D) regarding w whose edge set contains Fλ−j . If Eλ−j−1 = ∅, it follows that
Fλ−j−1 = Fλ−j , therefore, Tλ−j concludes the outer induction step. Let now be Eλ−j−1 6= ∅.
We show by induction that at any point during hierachy step j + 1 if F is the current
set of edges computed by Algorithm MTS-labeled there exists a minimum tree-support
for H(D) regarding w whose edge set contains all edges in F . We will refer to this induction
hypothesis as the inner induction hypothesis.
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In the beginning of hierarchy step j + 1 the current edge set is F = Fλ−j , therefore, Tλ−j
fulfills all required properties to conclude the inner induction base case. Now let the inner
induction hypothesis be true for some non-final step of hierarchy step j + 1, let T̂ be a
minimum tree-support for H(D) regarding w with F ⊆ E(T̂ ) and let e = {z, z′} ∈ Eλ−j−1
be the next edge that is considered by Algorithm MTS-labeled. If z and z′ are in the
same connected component of the graph with edge set F and vertex set Z, F remains
unchanged and T̂ concludes the inner induction step. Let therefore now z and z′ be in
distinct connected components of the graph with edge set F and vertex set Z, so that e
is the next edge that is added by Algorithm MTS-labeled. If e ∈ E(T̂ ), then again T̂
concludes the inner induction step. Let therefore be e /∈ E(T̂ ).

The edge set {e} ∪ E(T̂ ) contains a cycle. Let R̂ be the edge set of that cycle. Lemma 4
states that T , the output of Algorithm MTS-labeled, is a tree-support for H(D). The
edge set E(T ) = F0 contains all edges of F ∪ e. We will now show that there exists an
edge ê = {ẑ, ẑ′} ∈ R̂ \ F0 such that the edge set {ê} ∪ E(T ) contains a cycle whose edge
set contains e. The edge set R̂ \ F0 can not be empty because this would imply that F0

contains all edges of R̂ and therefore a cycle. Assume that there is no edge in R̂ \ F0

with the properties of ê and let be R̂ = (e, e1, . . . , ew) = ({z, z′}, {z1, z′1}, . . . , {zw, z′w})
and let 1 ≤ f1 < . . . < fv ≤ w be the indices of the edges of R̂ that are elements
of R̂ \ F0. A subset of the edges of the paths p(z′, zf1 , T ), p(zf1 , z

′
f1
, T ), p(z′f1 , zf2 , T ),

p(zf2 , z
′
f2
, T ), . . . ,p(zfv , z

′
fv
, T ), p(z′fv , z, T ) is the edge set of a simple cycle and since the

paths only contain edges of E(T ), this implies that there is a cycle in T , contradicting to T
being a tree.

Let now R be the cycle in the edge set {ê} ∪ E(T ) with e ∈ R. Since T is a tree-support
for H(D), the edges of path p(ẑ, ẑ′, T ), which are the edges of R \ {ê}, actively support
S(ẑ ∩ ẑ′) and therefore e also actively supports S(ẑ ∩ ẑ′). On the other hand, since T̂ is a
tree-support for H(D), the edges of path p(z, z′, T̂ ), which are exactly the edges of R̂\{e},
actively support S(z ∩ z′) and therefore, ê also supports S(z ∩ z′) since ê ∈ R̂. It follows
that z ∩ z′ = ẑ ∩ ẑ′ and therefore, that all edges in R̂ actively support S(ẑ ∩ ẑ′). This
implies that the tree T̂e = (Z, (E(T̂ ) \ {ê}) ∪ {e}) is also a tree-support for H(D) because
for any vertices z1, z2 ∈ Z with ê ∈ p(z1, z2, T̂ ) the hyperedge set which has to be actively
supported by any edge of p(z1, z2, T̂e) is S(z1∩z2) ⊆ S(ẑ∩ ẑ′) and the edge sets of the paths
p(z1, z2, T̂ ) and p(z1, z2, T̂e) are equal except for the edges of the subpaths of p(z1, z2, T̂ )
and p(z1, z2, T̂e) whose edge sets are subsets of R̂.

Since T̂ is a minimum tree-support for H(D) regarding w, C(D)(e) = C(D)(ê) and
w(e) ≤ w(ê) because Algorithm MTS-labeled considered e before ê, it follows that T̂e is
a also minimum tree-support for H(D) regarding w. The edge set of T̂e contains F ∪ {e},
which concludes the induction step of the inner induction proof and by the principle of
induction, it follows that there exists a minimum tree-support for H(D) regarding w whose
edge set contains the in hierarchy step j+ 1 finally obtained edge set Fλ−j−1. This on the
other hand concludes the induction step of the outer induction proof.

Therefore, by the principle of induction, our outer induction hypothesis is true and there
exists a minimum tree-support for H(D) regarding w whose edge set contains the final
edge set F0, which is obtained after the last hierarchy step. Since Algorithm MTS-labeled
considers every edge in E and adds it to F if the two vertices of the edges are in distinct
connected components of the graph with the current edge set, F0 is the edge set of a
tree with vertex set Z, implying that the output T = (Z,F0) is a minimum tree-support
for H(D) regarding w.
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Theorem 1. Given a labeled hypergraph H(D) = (Z,S(L)) for an abstract Euler diagram
description D = (L,Z ∪ {L∅}) and a weight function w : E → R, where E is the edge
set of a complete graph with vertex set Z, Algorithm MTS-labeled computes a minimum
tree-support for H(D) regarding w or produces an infeasibility notification in O(n2m) time
with n = |Z| and m = |L| = |S(L)|.

Proof. We utilize the feasibility check presented by Johnson and Pollak [JP87], which is
described in the beginning of this section, to test whether H is a tree-hypergraph. If this
is the case, Lemma 5 states that the output tree T is a minimum tree-support for H(D)
regarding w. However, if H(D) is not a tree-hypergraph, we produce an infeasibility
notification and thus, Algorithm MTS-labeled is correct.

For the feasibility check we have to compute the dual hypergraph H(D)∗ = (Z∗, S∗) =
(S(L), {S′ ⊆ S(L)|∃z ∈ Z : z ∈ ⋂

s∈S′ s, ∀s ∈ S(L) \ S′ : z 6∈ s)}) of H(D) and test
whether H(D)∗ is acyclic. Computing Z∗ takes O(m) time and the hyperedge set of
H(D)∗ can be computed in O(n2m) by testing for every vertex z ∈ Z which hyperedges
of S(L) contain z. The acyclicity test by Tarjan and Yannakakis [TY84] is described as
being a linear time algorithm in the sense that its runtime is in O(n′ + m′), where n′ is
the number of vertices of the input hypergraph and m′ is the total size of the of the input
hypergraphs hyperedge set, which is the sum of the number of elements of all hyperedges.
Dual hypergraph H(D)∗ has |Z∗| = m vertices and |S∗| = n hyperedges. Since every hy-
peredge of H(D)∗ contains up to |Z∗| = m elements, the time complexity for the acyclicity
check is O(nm) and the total time complexity for the feasibility check is therefore O(n2m).

To calculate the cardinality values we have to compute the intersection z∩ z′ for all O(n2)
pairs of vertices {z, z′} ⊆ Z, z 6= z′. Since every vertex is a set of at most m labels, this
can be done in O(n2m) time.

Recall that the zone skeleton G = (Z,E) of D is a complete graph. The time complex-
ity of Algorithm MST-Kruskal to compute a minimum spanning-tree for a graph with n′

vertices and m′ edges is O(m′ log n′) [CLRS09]. We now show that the time complexity
for the operations performed in Line 8 to Line 16 of Algorithm MTS-labeled for the in-
put H(D) = (Z, S(L)) is asymptotically equivalent to the time complexity of an application
of Algorithm MST-Kruskal to G = (Z,E) and some weight function w′.

We sort the edges of each cardinality individually, but since the sets Ei with 0 ≤ i ≤
|S(L)| − 1 are disjoint and

⋃
0≤i≤|S(L)|−1 Ei = E, the time complexity for doing so is

asymptotically equivalent to the time complexity for sorting all edges of E at once, which is
done by Algorithm MST-Kruskal. After the sorting step Algorithm MST-Kruskal considers
each edge in E exactly once and per edge performs two FindSet operations and up to one
Union operation, totaling to O(m) FindSet and O(m) Union operations. Algorithm MTS-
labeled considers the edges of E in a different order than Algorithm MST-Kruskal, but
since the sets Ei with 0 ≤ i ≤ |S(L)|−1 are disjoint and

⋃
0≤i≤|S(L)|−1 Ei = E, each edge of E

is also considered exactly once by Algorithm MTS-labeled resulting in an asymptotically
equivalent number of O(m) FindSet and O(m) Union operations. Therefore the total time
complexity for the operations performed in Line 8 to Line 16 of Algorithm MTS-labeled
is O(|E| log |Z|). Zone skeleton G is a complete graph implying that |E| = O(|Z|2). The
vertices in Z are pairwise distinct subsets of label set L, therefore, log |Z| = O(|L|). Since
|L| = |S(L)| = m and |Z| = n, the complexity of Line 8 to Line 16 can be restated
to O(n2m), which then also is the total time complexity of Algorithm MTS-labeled.
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2.3 Computing minimum tree-supports for hypergraphs

In this section we present a modification for Algorithm MTS-labeled that allows us to also
compute minimum tree-supports for the general version of hypergraphs instead of being
restricted to the labeled case.

The optimization problem of computing a minimum tree-support for a hypergraph was
introduced by Korach and Stern [KS03]. They present an algorithm, which is briefly
described in Section 1.1.3, that solves this problem in O(n4m2) time, where n is the
number of vertices and m is the number of hyperedges of the input hypergraph. The
algorithm presented in this section improves upon the approach of Korach and Stern by
solving the problem in O(n2(m+ log n)) time.

In a labeled hypergraph for an abstract Euler diagram description each vertex is a set of
labels which encodes in which hyperedges the vertex is contained. The general idea to
solve the problem of finding a minimum tree-support regarding some weight function w
for a hypergraph H = (V, S) is to compute the labeled hypergraph H(D) = (Z,S(L)) for
the abstract Euler diagram description D = (L,Z ∪ {L∅}), where L contains a label for
each hyperedge of S and for each vertex v ∈ V there exists a label set z ∈ Z such that the
labels of z correspond to the labels associated with the hyperedges of S that contain v.
We can then apply Algorithm MTS-labeled to obtain a minimum tree-support for H(D)
and finally retranslate the result to obtain a minimum tree-support for H regarding w.

In order to realize this idea, however, we must address the following problem. Since the
zones of an abstract Euler diagram description are pairwise distinct label sets, the vertices
of a labeled hypergraph for an abstract Euler diagram description are pairwise distinct
with regard to their containment in the hyperedges. In the hypergraph H, however, any
number of vertices can be contained in exactly the same set of hyperedges. As a result, D
might be what we call a relaxed abstract Euler diagram description, which is an abstract
Euler diagram description in which the zones are not necessarily pairwise distinct label
sets. The labeled hypergraph H(D) for D can be created exactly like in the not relaxed
case, however, in order to use Algorithm MTS-labeled we need a to make an adjustment.
Since the vertex set of H(D) can contain multiple vertices with label set L, the potentially
highest edge cardinality is now λ = |L| = |S(L)| instead of λ− 1. We therefore define the
new Algorithm MTS-relaxed, which works exactly like Algorithm MTS-labeled, except that
the the input is a labeled hypergraph for a relaxed abstract Euler diagram description and
that the first hierarchy step considers the edges with cardinality λ instead of λ− 1. In the
following Lemma we show that MTS-relaxed is correct and discuss it’s runtime complexity.

Lemma 6. Given a labeled hypergraph H(D) = (Z,S(L)) for a relaxed abstract Euler
diagram description D = (L,Z ∪ {L∅}) and a weight function w : E → R, where E
is the edge set of a complete graph with vertex set Z, Algorithm MTS-relaxed computes
a minimum tree-support for H(D) regarding w or produces an infeasibility notification
in O(n2(m+ log n)) time with n = |Z| and m = |S(L)| = |L| = λ.

Proof. Observe that since Algorithm MTS-relaxed works almost exactly like Algorithm
MTS-labeled, most arguments used in the correctness and complexity proofs for Algo-
rithm MTS-labeled are valid for Algorithm MTS-relaxed as well. In these proofs, we use
the facts that the considered abstract Euler diagram description is not relaxed and that
the first hierachy step considers the edges with cardinality λ− 1 at exactly two occasions:
(1) In the induction base cases of the proofs of Lemma 4 and Lemma 5 and (2) in the
runtime analysis in the proof of Theorem 1. It is therefore sufficient to discuss how to
adapt (1) and (2) to conclude this Lemma’s proof.
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2.3. Computing minimum tree-supports for hypergraphs

(1) In the induction base cases of the proofs of Lemma 4 and Lemma 5 we argue that
the edge set Eλ−1 is a subset of the edge set of any tree-support for the given labeled
hypergraph for an abstract Euler diagram description. We thereby show that there exists
a minimum tree-support whose edge set contains the edge set Fλ−1, which is the set of
edges obtained after the first hierachy step of Algorithm MTS-labeled. We now consider
Algorithm MTS-relaxed, in which the first hierachy step considers Eλ, which is the set of
edges with cardinality λ. We therefore need to show that there exists a minimum tree-
support for H(D) regarding w that contains the edge set that we obtain after the first
hierachy step of Algorithm MTS-relaxed, which we denote with Fλ. If Eλ = ∅, then our
propositions holds trivially. Let therefore be Eλ 6= ∅ and consider an edge e = {z, z′} ∈ Eλ.
The cardinality of e is C(D)(e) = λ, therefore, both z and z′ have label set L. Let ZL ⊆ Z
be the set of vertices with label set L, let T̃ = (Z, Ẽ) be a minimum tree-support for
H(D) regarding w and consider the path p(z, z′, T̃ ). Since z, z′ ∈ ⋂

l∈L s(l), every edge

of p(z, z′, T̃ ) has to actively support S(L) and therefore has cardinality λ, implying that
Eλ induces a subtree T̃L = (ZL, EL) of T̃ since there exists an edge in Eλ for each pair of
vertices in ZL.

In the first hierachy step of MTS-relaxed, we obtain Fλ by essentially applying Algo-
rithm MST-Kruskal to the subgraph Gλ of the zone skeleton G of D induced by Eλ, where
the zone skeleton of a relaxed abstract Euler diagram description is defined analogously
to the not relaxed case. The trees T̃ , T̃L and TL = (ZL, Fλ) meet the preconditions of
Lemma 2 and we can therefore substitute T̃L with TL to obtain Tλ = (Z, (Ẽ \ EL) ∪ Fλ),
which is a spanning-tree of G. Since every edge of TL actively supports the hyperedge
set S(L) and since TL is a minimum spanning-tree for Gλ, it follows that Tλ is a minimum
tree-support for H(D) regarding w

(2) In the proof of Theorem 1, we showed that the time complexity of both the feasibility
check and the computation of the edge cardinalities in Algorithm MTS-labeled (as well
as in Algorithm MTS-relaxed) is O(n2m) and that the total time complexity for the
operations performed in Line 8 to Line 16 of is O(n2 log n). We used the fact that the
input of Algorithm MTS-labeled is labeled hypergraph for an (not relaxed) abstract Euler
diagram description to argue that log n = O(m) and therefore, that the total runtime of
Algorithm MTS-labeled is O(n2m). However, we can not use this argument for MTS-
relaxed, therefore, the total runtime of MTS-relaxed is O(n2(m+ log n)).

We now prove the correctness and analyze the runtime of Algorithm MTS-general, which
utilizes Algorithm MTS-relaxed to realize the idea for computing minimum tree-supports
for hypergraphs which was presented in the beginning of this section.

Theorem 2. Given a hypergraph H = (V, S) and a weight function w : E → R, where E
is the edge set of a complete graph with vertex set V , Algorithm MTS-general computes
a minimum tree-support for H regarding w or produces an infeasibility notification in
O(n2(m+ log n)) time with n = |V | and m = |S|.

Proof. Again we utilize Johnson and Pollaks [JP87] feasibility check to test if H is a
tree-hypergraph and print an infeasibility notification if this is not the case.

Let now H be a tree-hypergraph. The hypergraph H(D) constructed by Algorithm MTS-
general is equivalent to H in the sense that for any set of indices I ⊆ {1, 2, . . . , n} the
hyperedge {v ∈ V | ∃i ∈ I : v = vi} is element of the hyperedge set S of H if and only if
the hyperedge {z ∈ Z | ∃i ∈ I : z = z(vi)} is element of the hyperedge set S(L) of H(D).
An implication of this equivalence relationship is that for any tree-support Tg of H the
edge set {{z, z′} ⊆ Z | ∃i, j ∈ {1, 2, . . . , n} : z = z(vi), z

′ = z(vj), {vi, vj} ∈ E(Tg)} is the
edge set of a tree-support for H(D) and that for any tree-support Tl of H(D) the edge
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2. Computing minimum tree-supports for (labeled) hypergraphs

Algorithm: MTS-general

input : hypergraph H = (V, S) = ({v1, . . . , vn}, {s1, . . . , sm}),
weight function w : E → R where E is the edge set of a complete graph with
vertex set V

output: minimum tree-support for H regarding w or infeasibility notification

Feasibility Check

1 if FeasibilityTreeSupport(H) then
2 return ‘not feasible‘

Computing labeled hypergraph H(D)

3 for j = 1 to m do
4 l(sj) = ‘sj ‘

5 for i = 1 to n do
6 z(vi) = ∅
7 for j = 1 to m do
8 if vi ∈ sj then
9 z(vi) = z(vi) ∪ {l(sj)}

10 for j = 1 to m do
11 s(l(sj)) = ∅
12 for i = 1 to n do
13 if vi ∈ sj then
14 s(l(sj)) = s(l(sj)) ∪ {z(vi)}

15 Z = {z(v1), . . . , z(vn)}
16 S(L) = {s(l(s1)), . . . , s(l(sm))}
17 H(D) = (Z, S(L))

Translating weight function

18 for 1 ≤ i < l ≤ n do
19 w′({z(vi), z(vl)}) = w({vi, vl})

Computing minimum tree-support

20 T ′ =MTS-relaxed(H(D), w′)
21 T = (V, {{v, v′} ⊆ V | ∃i, j ∈ {1, 2, . . . , n} : v = vi, v

′ = vj , {z(vi), z(vj)} ∈ E(T ′)})
22 return T
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2.3. Computing minimum tree-supports for hypergraphs

set {{v, v′} ⊆ V | ∃i, j ∈ {1, 2, . . . , n} : v = vi, v
′ = vj , {z(vi), z(vj)} ∈ E(Tl)} is the edge

set of a tree-support for H.

Since H is a tree-hypergraph, H and H(D) are equivalent in the sense defined above
and H(D) is a labeled hypergraph for the relaxed abstract Euler diagram description
D = (Z, S(L)), it follows by Lemma 6 that MTS-relaxed(H(D), w′) does indeed return
a minimum tree-support T ′ for H(D) regarding w′. Since H and H(D) are equivalent
and since w(e) = w′(e′) for any e = {vi, vj} ⊆ V and e′ = {z(vi), z(vj)} ⊆ Z with
i, j ∈ {1, 2, . . . , n}, i 6= j, it follows that the constructed tree T is a minimum tree-support
for H regarding w.

The time complexity of the feasibility check is O(n2m) as shown in in the proof of The-
orem 1. Keeping in mind that each hyperedge of S contains at most n vertices one can
easily verify that the construction of H(D) also takes O(n2m) time. Computing w′ can
be done in O(n2) time. Since |Z| = |V | = n and |S(L)| = |S| = m, Lemma 6 states that
the computation of T ′ =MTS-relaxed(H(D), w′) takes O(n2(m+log n)) time. Finally, the
tree T ′ has n−1 edges and to obtain T for each edge {z, z′} ∈ E(T ′) we have to look up the
vertices v, v′ ∈ V with v = vi, v

′ = vj , z = z(vi) and z′ = z(vj) for i, j ∈ {1, 2, . . . , n}, i 6= j,
which can be done in constant time per edge and therefore in O(n) total time.
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3. A framework for generating
area-proportional Euler diagrams

In this chapter we present a framework for algorithms that generate area-proportional
Euler diagrams for abstract Euler diagram descriptions whose labeled hypergraphs are
tree-hypergraphs. We first introduce the general drawing approach and then conclude the
chapter by presenting several aesthetic improvements and variations.

3.1 A general drawing approach

In this section we present a general approach to efficiently draw area-proportional Euler
diagrams that satisfy several well-formedness conditions. We therefore first introduce a
way to represent a tree in the plane using curves. To obtain an area-proportional Euler
diagram D that realizes an abstract Euler diagram description D = (L,Z ∪ {L∅}) we use
a tree T with V(T ) = Z and modify its representation in the plane. The Euler diagram D
is guaranteed to satisfy several well-formedness conditions. We show that if T is a tree-
support for the labeled hypergraph H(D) of D the resulting Euler diagram D has even
superior well-formedness properties. We conclude the section by summarizing the results
of Section 2.2 and Section 3.1.

Chow explained a general concept for obtaining an Euler diagram, given a connectivity
graph (Theorem 5.0.4 in [Cho07]). Connectivity graphs are graphs with properties similar
to the properties of planar supports for labeled hypergraphs. The concept involves drawing
the connectivity graph’s planar dual. Our general approach for obtaining an Euler diagram
via a representation of a graph is similar to the approach used by Chow, so that, on the
one hand, the framework described in this section can be seen as a concrete instantiation
of Chow’s general concept. However, recall that our definition of Euler diagrams is more
general than Chow’s and so is our general drawing concept.

First we introduce some definitions and related notation. Let G = (V,E) be a planar
graph. A contact representation of G is a set of curves R that contains a simple closed
curve for every vertex in V such that the images of any two distinct curves c, c′ of R
dot not cross and such that the images of c and c′ intersect if and only if there exists an
edge in E that is incident to both the vertex associated with c and the vertex associated
with c′. Furthermore, if c and c′ intersect then each of the connected components of
image(c) ∩ image(c′) contains more than one point. If the interior of each curve of R is
convex, then R is called convex. If a function area : V → R+ is provided, we call the
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3.1. A general drawing approach

contact representation R area-proportional with respect to area if for any v ∈ V the region
interior to the curve associated with v has area area(v). We call half-lines originating at
the point 0 = (0, 0) ∈ R2 rays. Given a set of clockwise ordered rays R = {r1, . . . , rk} we
call ri and ri+1 clockwise consecutive for any 1 ≤ i ≤ k − 1. We use ab to denote the line
segment connecting points a, b ∈ R2. A line segment ab connects two consecutive rays r, r′

of R if a is a point of r and b is a point of r′ or vice versa.

We now present an approach to generate a convex and area-proportional contact repre-
sentation of a tree.

Lemma 7. Let T = (V,E) be a tree, let v1 ∈ V be a vertex and let area : V → R+

be a function. It is possible to construct a convex contact representation of T that is
area-proportional with respect to area in O(|V |) time.

Proof. Let (v1, . . . , v|V |) be a breadth-first traversal of T and let Ti be the subtree of T
induced by the vertex set {v1, . . . , vi} for any 1 ≤ i ≤ |V |. We show by induction that:

(1) For every 1 ≤ i ≤ |V | we can construct a convex contact representation Ri of Ti that
is area-proportional with respect to area.
(2) We can obtain a set of rays Ri such that for each curve c of Ri there exists a line
segment s in the image of c that connects two clockwise consecutive rays r, r′ of Ri such
that the closed unbounded region formed by r, r′ and s does not contain any point of any
curve of Ri except for the points of c in s.

For the induction base case we have to construct a contact representation R1 of T1 =
({v1}, ∅) and a set of rays R1 that satisfy the conditions (1) and (2). We choose any
two rays r, r′ and a point p of r and a point p′ of r′ such that ||p||2 = ||p′||2 > 0 and
such that the line segments 0p, 0p′ and pp′ form an equilateral triangle with area area(v1).
We associate the curve c1 that describes this triangle with v1 and define R1 = {c1},
R1 = {r, r′} and s1 = pp′ which is the required line segment in the image of c1. It is easy
to see that R1 and R1 together with s1 fulfill the conditions (1) and (2) and therefore,
conclude the induction base case.

For the induction step let our induction hypothesis be true for some i ∈ N with 1 ≤ i ≤
|V | − 1. Let Ri be a contact representation of Ti = ({v1, . . . , vi}, Ei) and let Ri be a set
of rays so that Ri and Ri satisfy the conditions of the induction hypothesis. We have to
construct a contact representation Ri+1 for Ti+1 = ({v1, . . . , vi+1}, Ei ∪ {e}) and obtain
a set of rays Ri+1 such that Ri+1 and Ri+1 also satisfy these conditions. The edge set
of Ti+1 contains exactly one more edge than the edge set of Ti, therefore, vi+1 has exactly
one neighbour vj , 1 ≤ j ≤ i in Ti+1. Let cj be the curve of Ri that is associated with vj .
By induction hypothesis there exists a line segment s′j in the image of cj that connects
two clockwise consecutive rays r, r′ of Ri such that the closed unbounded region formed
by r, r′ and s′j does not contain any point of any curve of Ri except for the points of cj

in s′j . Let p, p′ ∈ R2 be the endpoints of s′j so that s′j = pp′ and p is a point of r and p′ is a

point of r′ and let p1, p2 ∈ {x ∈ R2 | ∃λ ∈ (0, 1) : x = λp+ (1− λ)p′} be distinct points of
s′j such that the rays r1, r2 through p1 or p2 respectively are clockwise consecutive rays in

{r, r1, r2, r′}. We compute a point p̄2 of r2 and a point p̄′ of r′ such that p̄2, p̄′ is parallel to
p2, p′ and such that the trapezoid formed by p2, p′, p̄2, p̄′, p2, p̄2 and p′, p̄′ is located in the
closed unbounded region formed by r, r′ and s′j and has area area(vi+1). We define ci+1 to

be the curve that describes this trapezoid, associate vi+1 with ci+1 and set si+1 = p̄2, p̄′.
We also define sj = p, p1 and set Ri+1 = Ri ∪ {ci+1} and Ri+1 = Ri ∪ {r1, r2}.

The closed unbounded region formed by r, r′ and s′j does not contain any point of any
curve of Ri except for the points of cj in s′j . Therefore, the image of ci+1 intersects
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Figure 3.1: Illustration of the induction step in the proof for Lemma 7 with i = 5 and
j = 2.
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3.1. A general drawing approach

with cj but none of the other curves of Ri. Furthermore, curve ci+1 describes a trapezoid
and therefore a convex region which by construction has area area(vi+1), thus Ri+1 is a
convex area-proportional contact representation of Ti+1 with respect to area (1). Since
the closed unbounded region formed by r, r′ and s′j does not contain any point of any
curve of Ri except for the points of cj in s′j , we know that this is also true for the closed
unbounded region formed by r, r1 and s′j and the closed unbounded region formed by r2, r

′

and s′j . Note that the closed unbounded region formed by r, r1 and s′j is in fact the closed
unbounded region formed by r, r1 and sj . The line segment sj is therefore the required line
segment in the image of cj . Since the closed unbounded region formed by r2, r

′ and si+1 is
a subregion of the closed unbounded region formed by r2, r

′ and s′j the line segment si+1

is the required line segment in the image of curve ci+1 (2), thus concluding the induction
step.

By the principle of induction, it follows that we can construct a convex contact repre-
sentation R|V | of T|V | = T that is area-proportional with respect to area. Obtaining a
breadth-first traversal of T requires O(|V | + |E|) time [CLRS09], which can be restated
to O(|V |) since |E| = |V | − 1 because T is a tree. The construction of the initial trian-
gle and the trapezoids require constant time each, therefore, the total time complexity
is O(|V |).

The next result relates contact representation to Euler diagrams and allows us efficiently
generate Euler diagrams if a contact representation for a special kind of tree is provided.

Lemma 8. Let D = (L,Z ∪ {L∅}) be an abstract Euler diagram description with L∅ /∈ Z,
let T be a tree with vertex set V(T ) = Z and let R a contact representation of T . It is
possible to generate an Euler diagram that realizes D and satisfies the ’simple curves’ and
the ’connected concrete zones’ property in O(|Z| |L|) time.

Proof. Recall that every vertex of Z is a set of labels from L. Let l ∈ L be a label and C be
a connected component of the subgraph Tl of T induced by the vertices of Z containing l.
In the contact representation R the zones of V(C) are represented by a set of curves C
such that the union of the images of the curves in C is a connected component in the plane
and therefore a closed curve with image

⋃
c∈C image(c) \ {x ∈ R2 | ∃c, c′ ∈ C : c 6= c′, x ∈

image(c), x ∈ image(c′)} describes a region of the plane which by R is used to represent
zones with label l. We assign the label l to this curve and repeat this process for the other
connected components of Tl to obtain a set of curves with label l. We furthermore repeat
this process for every label in L to obtain a set of labeled curves and therefore an Euler
diagram D that by construction realizes D.

Let c ∈ R be the curve that is associated with zone z ∈ Z. In D the concrete zone with
label set z consists of exactly one minimal region which is the interior of c, therefore, D
satisfies the ’connected concrete zones’ property. Let now c be a curve of D. Curve c
describes a boundary of a union of the interior of simple closed curves and is therefore also
simple since if two curves of R intersect, the connected components of their intersection
contain more than one point. Therefore, D satisfies the ’simple curves’ property.

For the time complexity analysis observe that we can use the following procedure to ob-
tain D. Let {z, z′} be an edge of T and let c, c′ be the curves ofR that are associated with z
and z′ respectively. We assign the label set (z∪z′)\(z∩z′) to the points image(c)∩image(c′)
and repeat this process for every edge of T , which takes O(|Z| |L|) time in total since T is
a tree and every vertex of Z is a set of up to |L| labels. Let now z ∈ Z be a vertex of T
and let c ∈ R be the curve associated with z. We assign the label set z to the points of
image(c) which have not yet been labeled in the previous step. These are the points that in
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Figure 3.2: Euler diagram generated by using Lemma 7 and Corollary 2.

the contact representation R separate the interior of c and the outer infinitely large region.
We repeat this process for every vertex of T which also requires total time O(|Z| |L|).

Observe that the procedure described in Lemma 8 can be used to generate an Euler diagram
that realizes D and satisfies the ’simple curves’ and the ’connected concrete zones’ property
even if T is a graph that is not necessarily a tree. In Section 2.1 we introduced labeled
hypergraphs as a connection between hypergraphs and Euler diagrams. We now extend
the results of Lemma 8 by showing that the generated Euler diagram also possesses the
’unique curve labels’ property if T is a tree-support for the labeled hypergraph of D. Note,
however, that if T is a support that is not necessarily a tree this additional property is not
guaranteed, since there might be ’holes’ in the concrete zones of the resulting diagram.

Corollary 2. Let D = (L,Z∪{L∅}) be an abstract Euler diagram description with L∅ /∈ Z,
let T be a tree with vertex set V(T ) = Z and let R be a contact representation of T . If T is
a tree-support for the labeled hypergraph H(D) = (Z,S(L)) for D, it is possible to generate
an Euler diagram that realizes D and satisfies the ’simple curves’, the ’connected concrete
zones’ and the ’unique curve labels’ property in O(|Z| |L|) time.

Proof. We apply the procedure described in Lemma 8 to obtain an Euler diagram D that
realizes D and satisfies the ’simple curves’ and the ’connected concrete zones’ property
in O(|Z| |L|) time. Let l ∈ L be a label. If T is a tree-support for H(D) the subgraph Tl
of T induced by the vertices containing l is connected and therefore only one simple closed
curve is required to describe the region of the plane which by R is used to represent the
zones containing l, implying that D satisfies the ’unique curve labels’ property.

Figure 3.2 shows an Euler diagram that was generated by using Lemma 7 and Corollary 2.
The realized abstract Euler diagram descriptions is D = (L,Z ∪ {L∅}) with L = {a, b, c}
and Z = {{a}, {b}, {c}, {a, c}, {a, b, c}}. In Section 1.1.2 we have seen that the ’no concur-
rency’ property is a strong constraint for Euler diagram generating algorithms in the sense
that there exist very simple abstract Euler diagram descriptions for which it is not pos-
sible to construct Euler diagrams that realize them while satisfying the ’no concurrency’
property. The set of zones Z contains exactly two zones containing label b namely {b}
and {a, b, c}. Assuming one does not want to violate the ’simple curves’ or the ’unique
curve labels’ property, it is not possible to realize D while satisfying the ’no concurrency’
property since in this case a minimal region of the concrete zone with label set {b} and a
minimal region of the concrete zone with label set {a, b, c} have to be neighbours, which
is only possible if the curves labeled a and c are concurrent.

In Section 2.1, we defined the concurrency weight function w(D) : E(K(D)) → N0 for
abstract Euler diagram description D = (L,Z∪{L∅}) as w(D)({z, z′}) = |(z∪z′)\(z∩z′)|,
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where K(D) is the complete graph with vertex set Z. For an edge {z, z′} this function
describes the number of (concurrent) curves that is needed if a minimal region belonging
to the concrete zone with label set z is a neighbour of a minimal region belonging to
the concrete zone with label set z′. We say that an Euler diagram realizing D that was
generated using Corollary 2 has minimal internal concurrency if the input tree-support’s
weight regarding w(D) is minimal amongst all tree-supports for H(D), which means that
the input is a minimum tree-support for w(D). Note that this definition should not be seen
as a general well-formedness property as it is tied to Euler diagrams generated with the
procedure presented in Corollary 2. Also take into account that this conditions does not
factor in the number of concurrent curves between the minimal regions of concrete zones
with some label set of Z and the outer minimal region belonging to the concrete zone
with label set L∅. However, for Euler diagrams generated with Corollary 2, minimizing
the input tree-support’s weight regarding w(D) does minimize the number of concurrent
curves between each neighbour pair of minimal regions belonging to concrete zones with
non-empty label sets in the resulting Euler diagram. Observe that the tree used to generate
the Euler diagram in Figure 3.2 is not a minimum tree-support as replacing the edge
{{a}, {a, b, c}} with the edge {{a}, {a, c}} results in a tree-support with lower weight.

We now combine the results of Section 2.2 and Section 3.1 in a final theorem.

Theorem 3. Let D = (L,Z∪{L∅}) be an abstract Euler diagram description with L∅ /∈ Z
and let area : Z → R+ be a function. If the labeled hypergraph H(D) = (Z,S(L)) for D is
a tree-hypergraph, it is possible to generate an Euler diagram in O(|Z|2|L|) time that (1)
realizes D, (2) is area-proportional with respect to area, satisfies (3) the ’simple curves’,
(4) the ’connected concrete zones’, (5) the ’unique curve labels’ and (6) the ’convex minimal
regions’ property and has (7) ’minimal internal concurrency’.

Proof. First, we have to compute the labeled hypergraph H(D) for D. We create |L| hyper-
edges and then add each zone to the hyperedges that correspond to the zones labels which
can be done in O(|Z| |L|) time. We use Theorem 1 to compute a minimum tree-support T
for H(D) regarding the concurrency weight function w(D) in O(|Z|2|L|) time. Note that
the edges’ values respective to the concurrency weight function w(D) can be computed
analogously to the edges’ values respective to the cardinality weight function C(D) and
therefore also in total time of O(|Z|2|L|). With Lemma 7 we construct a convex contact
representation R of T that is area-proportional with respect to area in O(|Z|) time and
use Corollary 2 to generate an Euler diagram D that realizes D (1) and satisfies the ’simple
curves’ (3), the ’connected concrete zones’ (4) and the ’unique curve labels’ (5) property
in O(|Z| |L|) time. Since each concrete zone of D consists of exactly one minimal region
that is the interior of the curve of R associated with the corresponding zone of Z and
since R is convex and area-proportional with respect to area, it follows that D satisfies
the ’convex minimal regions’ property (6) and is area-proportional regarding area (2).
Finally, since T is a minimum tree-support for H(D) regarding w(D), the resulting Euler
diagram D has ’minimal internal concurrency’ (7).

3.2 Aesthetic improvements and variations

In this last section we want to present a brief list of variations and improvements related
to the aesthetic aspects of the contact representations and Euler diagrams generated with
Lemma 7 and Corollary 2.

During the construction of the contact representation it is not necessary to reserve a line
segment s in a curve c that represents some vertex v if all neighbours of v are already
represented. Therefore, when creating the curve for the last neighbour of v instead of
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(a) (b)

Figure 3.3: Variations of the contact representations for trees from Lemma 7

choosing two new rays that are located clockwise consecutively between the rays r, r′ that
are connected by s it is possible to directly use the rays r and r′.

When constructing a contact representation with Lemma 7 the choice of the root vertex v1
impacts the output. Depending on the given data, experimenting with different centrality
measures for graphs, for example the ’center of a graph’ [KLP+05], might yield better
results. In our basic contact representation construction we use a triangle to represent
the root vertex and the trapezoids representing the remaining vertices are attached to one
specific side of the triangle. In order to obtain a representation that could be considered
more balanced we suggest representing the root vertex with a regular polygon and attaching
the neighbours of the root vertex to all of the polygon’s sides, see Figure 3.3a for an
illustration. One might also consider using a polygon that is not necessarily regular but
instead uses longer sides to attach neighbours that are supposed to cover a larger area or
that have a higher degree compared to the remaining neighbours. To obtain a more smooth
looking Euler diagram we suggest using a circle to represent the root vertex and using
circular arcs instead of line segments to represent the remaining vertices, see Figure 3.3b for
an example of such a representation. However, if this variation is used, the resulting Euler
diagrams do not satisfy the ’convex minimal regions’ property anymore. Observe that such
contact representations have resemblance to radial, space-filling hierachy visualizations,
see, for example, [SZ00].

Finally, the distance between the rays chosen when representing a vertex impacts how
flat or thin the resulting minimal region will be. This can be used to regulate the overall
diameter as well as other parameters of the final representation.
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4. Conclusion

We have presented a framework for algorithms that for the class of abstract Euler diagram
descriptions whose labeled hypergraphs are tree-hypergraphs generate area-proportional
Euler diagrams that satisfy the ’simple curves’, the ’connected concrete zones’, the ’unique
curve labels’ and the ’convex minimal regions’ properties and have ’minimal internal con-
currency’. The algorithms in this framework are efficient and easy to implement. We
have also provided an algorithm that computes minimum tree-supports for hypergraphs
in O(n2(m + log n)) time, where n is the number of vertices and m is the number of hy-
peredges, and thereby substantially improves upon the previously known O(n4m2) time
algorithm by Korach and Stern [KS03].

For future directions, recall that the Euler diagram drawing approach used in Section 3.1
is not restricted to contact representations of abstract Euler diagram descriptions that are
based on trees. In fact the approach works for contact representations of any planar graph,
however, the resulting Euler diagrams are not guaranteed to satisfy the same number of
well-formedness conditions. For example, even if a planar support is used, the resulting
Euler diagrams are not guaranteed to satisfy the ’unique curve labels’ property since there
might be ’holes’ in the concrete connected zones. Nevertheless, experimenting with other
types of supports, for example outerplanar supports, might still be worthwhile. This
motivates work related to the interesting open problem of deciding whether a hypergraph
has an outerplanar support. Finally, it would be interesting to actually implement the
Euler diagram generating algorithm as it is, to our knowledge, the first efficient algorithm
capable of drawing accurate area-proportional Euler diagrams with any number of labels
and without the constraint that the zone that contains all labels has to be represented
and, additionally, the generated Euler diagrams are guaranteed to satisfy a set of nice, yet
not too restricting well-formedness conditions, as explained in Section 1.1.2. However, our
algorithm is of course still restricted to abstract Euler diagram descriptions whose labeled
hypergraphs are tree-hypergraphs.
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